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ABSTRACT
We present a generative model for determining the infor-
mation content of a message without analyzing the message
content. Such a tool is useful for automated analysis of the
vast contents of online communication which are extensively
contaminated by uninformative, spam, and broadcast. Con-
tent analysis is not feasible in such a setting. We propose
a purely statistical methodology to determine the informa-
tion value of a message, which we denote the Information
Content Factor (ICF). Underlying our methodology is the
definition of information in a message as the message’s abil-
ity to generate conversation. The generative nature of our
model allows us to estimate the ICF of a message without
prior information on the participants. We test our approach
by applying it to separating spam/broadcast messages from
non-spam/non-broadcast. Our algorithms achieve 94% ac-
curacy when tested against a human classifier which ana-
lyzed content.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications—Electronic mail, Bulletin boards; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval—Information filtering ; H.1.1 [Models and

Principles]: Systems and Information Theory—Value of

information

General Terms
Algorithms, Experimentation

Keywords
Information Content Factor, broadcast, reply process, con-
versation thread, content analysis
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With ever-increasing Internet accessibility, various elec-
tronic media, such as online forums, message boards, blogs,
and emails, are available for people to exchange ideas and
opinions worldwide. People utilize these tools to communi-
cate with strangers, friends, or experts, to just socialize or
to seek help. In general, a person initiates a topic, which
could be an activity, a question, a rumor, an advertisement,
or a proposal; if this topic is “interesting”, it may trigger
replies from people who have access to the message, other-
wise, it may be completely ignored by the recipients. In fact
a good working measure of a message’s interest value could
be the number of replies generated. Here, we explore this
idea further by giving a quantitative implementation of this
intuition.
The volume of such electronic data has increased tremen-

dously. The enormous data can easily overwhelm people in-
terested in analyzing the data for social science purposes [2,
8]. Needless to say, the data contains valuable information.
For example, the sentiments from a stock message board
have been analyzed to show that they could influence the
stock market [12, 1, 6]. On the other hand, huge amounts of
spam and noise also exist in the data. Consider a stock ana-
lyst observing a stock message board to extract useful tips.
It is not feasible to analyze every post given that there is
much spam. How should the analyst determine which posts
stand a good chance of being “interesting”? Removing the
spam from the data set is as important as identifying the
important messages. When studying interactions between
people (eg. social group dynamics) by looking at senders
and recipients of messages, the spam should be removed
since it does not represent interactions. In the case of email,
for example, the spam and broadcasts connect the sender to
one or more recipients but no interaction occurs; therefore,
when a social network is constructed from an email data set,
the existence of a significant number of spam and broadcasts
will distort the communication pattern that forms the ba-
sis for Social Network Analysis. The task of distinguishing
useful information from spam among millions of messages is
difficult [6]. A straightforward method to separate the in-



formative messages from uninformative ones is to examine
the content of the messages; however, for large data sets this
method is not practical.
We propose a generative model to determine the informa-

tion value of a message, which we call the Information Con-
tent Factor (ICF). Our approach does not examine message
content. We take as input, a set of conversation threads
which have been preprocessed from the raw digital data. A
conversation thread is defined as a collection of messages
in response to a message. The message, which initiates the
conversation, is called the root message. The parent-child
relationship between messages is determined by the reply
function. All replies to a message are children of that mes-
sage, and a message is the parent of its replies. Thus, a root
message generates a tree of replies (the thread). The depth
of the thread is the depth of the tree. The total number
of replies to the root message is the summation of messages
at each generation summed over all generations. The gen-
eral intuition behind our generative model is that the more
replies, the larger the ICF of the root message is.
We recognize the need to differentiate between the trans-

fer of information and communication. As noted in the
Shannon-Weaver Model [10], information transfer is a tech-
nical process while communication involves the transfer of
meaning from source to destination and is a human cognitive
process. The “importance” of a message lies in its transfer
of meaning. We postulate that important topics generate
more information transfer – participants in the information
transfer process are motivated to add value to important
messages1. Therefore, we argue that the more informative
or important a message is, the more replies it induces. We
propose the ICF, which ranges from 0 to 1, to measure how
informative a message is based upon the reply structure to
that message. The ICF is computed from the thread struc-
ture. The ICF can be used to separate the informative mes-
sages from uninformative messages without examining the
content. We apply this methodology to identify broadcasts
in the Enron email data set, and we test against a human
who has access to the content. Our approach gives a 94%
success rate, treating the human as ground truth.
The outline of the paper is as follows. Section 2 describes

two general reply processes and their expected number of
replies. We then present the email reply process, which is a
mixture of these two processes in Section 2.3. Finally we ap-
ply the methodology to Enron emails to identify broadcasts.
We conclude with suggestions for future research.

2. GENERATIVE STATISTICAL MODEL
We assume a message with ICF 1 will be replied with

probability 1 by each of the recipients of that message, and
a message with ICF 0 has no replies. More generally, the
ICF is related to the probability of obtaining a reply. There
are two parts to our generative model. The first determines
the probability that a message is replied given its ICF b.
The second determines how the ICF of a reply is related
to the ICF of the parent message. Intuitively the higher b,
the more likely a reply, and the ICF of a reply should be
smaller than the ICF of the parent. We define the ICF-
propagation function f(b) to capture the decay in ICF from

1This material is based upon communications with our col-
league, James H. Watt, Professor, Department of Language,
Literature, and Communication, RPI.

parent message to child message, 0 < f(b) < 1. Thus, for a
message with ICF b,

P [reply] = b,

ICF [reply] = bf(b)

For example, if the ICF of the root message is b, the ICF
of each message at depth 1 will be bf(b), and the ICF of each
message at depth 2 will be bf(b)f(bf(b)), and so on. One
interesting special case is f(b) = f , where f is a constant
decay factor. The ICF of a message at depth i will be bf i.
Assume a sender S initiates a message M . We consider two
cases: the messageM has one recipient; and, the messageM

has multiple recipients. Let R denote the recipient set. In
the case of multiple recipients, R = {R1, R2, ..., Ri, ..., Rn},
where n ≥ 2 is the number of recipients.
We give the generative model for three reply processes

below. The first is for the single recipient reply process.
The second is for the multiple recipients in the “Reply All”
framework in which the recipients can either choose to reply
to all the recipients (including the sender) or not to reply at
all. In forums, message boards, or blogs, it is appropriate to
assume that the root message is for all the active members
who are willing to reply, and each replied message is again
open to all the active members. In emails, it is slightly
different. The third reply process is a mixture of these two in
which the recipient may choose one of 3 actions: not to reply,
reply only to sender (initiating a single recipient sequence);
or, reply to all (re-initiating the same process). This third
process is more applicable to email data which will be our
application. The general idea behind the generative model
will become clear from these three examples. The specific
details are however application dependent and it should be
possible to extend our framework to accommodate different
domains.

2.1 Single Recipient Reply Process
In this reply process, the sender S initiates the root mes-

sage to the recipient R, and R may take 2 actions: reply to
S or don’t reply. If R chooses to reply to S, and S again
has two options, reply to R or don’t reply, and so on. The
conversation between S and R continues until one of them
fails to reply.

2.1.1 Single Recipient Reply Process Example
Figure 1 illustrates an example of such a conversation be-

tween S and R. We assume the ICF of the root message is b.
The ICF, depth, probability of each message are indicated
in the figure. For example, when S initiates a message to
R at depth = 0, the probability p that R replies is b. If
R replies, the ICF of this replied message is bf(b), and its
depth is 1 in the reply process, and so on.
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Figure 1: Reply process with one recipient

2.1.2 Expected Number of Replies



This reply process is recursive with decreasing ICF. The
recursion shows that the expected number of replies of the
parent message is a function of the expected number of
replies of the child messages. Let X denote the total number
of replied messages to the root message with one recipient.
Let E(b) = E[X|b] be the expected number of replies to the
root message with ICF b.
We derive E(b) recursively as

E(b) = b (1 + E(bf(b))) (1)

The first term is the expected number of replies to the root
message, and the second recursive term captures the ex-
pected number of messages for the single recipient reply
process initiated by the first reply. It turns out that it is
hard to solve (1) analytically. We give an approximate re-
cursion to calculate E(b). First we approximate E(b) when
b is small using a Taylor series expansion to second order,
and then use (1) to calculate E(b) recursively.
The Taylor series expansion of E(b) at b = 0 is given by

E(b) = E(0) + E ′(0)b+
E ′′(0)b2

2
+ . . . (2)

Since b is small, we ignore the orders higher than 2. When
b = 0, the probability of reply for each recipient is 0, there-
fore by definition, E(0) = 0. To find E ′(0) and E ′′(0), the
first and second derivative of E(b), E ′(b) and E ′′(b), should
be obtained first.

E ′(b) = 1 + E(bf(b)) + b(f(b) + bf
′(b))E ′(bf(b)) (3)

E ′′(b) = 2f(b)E ′(bf(b)) + b
`

4f ′(b) + bf
′′(b)

´

E ′(bf(b))

+b
`

f(b) + bf
′(b)
´2
E ′′(bf(b)) (4)

Therefore, we have E ′(0) = 1 and E ′′(0) = 2f(0) from
(3) and (4). Thus, E(b) can be calculated numerically as in
Algorithm 1. The expected number of replies to any of the
messages in the stream can be obtained by replacing b with
corresponding ICF for that message.

Algorithm 1 Numerical analysis of E(b)

if b ≤ 10−5 then

E(b)← b+ b2f(0)
else

E(b)← b (1 + E(bf(b)))
end if

2.2 Multiple Recipient Reply Process
In this reply process, the sender S initiates the root mes-

sage to the recipient set R = {R1, R2, ..., Ri, ..., Rn}, where
n ≥ 2. Ri may take 2 actions: reply to the sender and the
other recipients or not to reply. We assume that the recip-
ients choose to reply or not independent on the recipients.
The conversation among {S}

S

R along a particular message
path dies when a recipient fails to reply. The conversation
ends when every message path dies.

2.2.1 Multiple Recipient Reply Process Example
Figure 2 illustrates an example of such a conversation be-

tween S and R = {R1, R2, R3}. We assume the ICF of
the root message is b. The ICF, depth, probability of each
message are indicated in the figure. For example, when S

initiates a message to R at depth = 0, the probability p that
each of R1, R2, and R3 replies is b. If Ri replies, the ICF of
this replied message is bf(b), and its depth is 1 in the reply
process, and so on.
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Figure 2: Reply process with multiple recipients

2.2.2 Expected Number of Replies
This reply process is also recursive with decreasing ICF.

Let Y denote the total number of reply messages to the
root message. Let F(n, b) = E[Y |n, b] denote the expected
number of replies to the root message with ICF b.
We derive F(n, b) recursively as

F(n, b) = nb (1 + F(n, bf(b))) (5)

The logic behind this expression is that S starts n in-
dependent threads of the same form (note the factor n).
For each thread, the expected number of messages is 1 +
F(n, bf(b)) with probability b because Ri starts exactly the
same process with lower ICF bf(b). Follow the same pro-
cedures shown in Section 2.1.2, we can obtain F(n, 0) = 0,
F ′(n, 0) = n and F ′′(n, 0) = 2n2f(0). When b is small,
F(n, b) can be approximated by Taylor series to second or-
der. F(n, b) can be calculated numerically as in Algorithm
2.

Algorithm 2 Numerical analysis of F(n, b)

if b ≤ 10−5 then

F(n, b)← nb+ n2b2f(0)
else

F(n, b)← nb (1 + F(n, bf(b)))
end if

2.3 Mixed Reply Process
A mixed reply process is a mixture of the single recipient

and multiple recipient reply processes. In the mixed reply
process, sender S initiates the root message to the recipi-
ent set R = {R1, R2, ..., Ri, ..., Rn}, where n ≥ 2. Ri may
take 3 actions: reply to the sender only (“Reply”), reply to
the sender and all other recipients (“Reply All”), or not to
reply. We assume that each recipient acts independently.
We denote the probability of reply to the sender only as
p1 = bp∗1, and the probability of reply to the sender and the
other recipients as p2 = bp∗2, where p∗1 and p∗2 denote the



probability of reply using “Reply” and “Reply All” option
respectively when the ICF is 1, and p∗1 + p∗2 = 1. The con-
versation among {S}

S

R along a particular message path
dies when a recipient fails to reply. The conversation ends
when every message path dies.

2.3.1 Mixed Reply Process Example
Figure 3 illustrates an example of such a conversation be-

tween S and R = {R1, R2, R3}. In this particular reply pro-
cess, at depth 1 R1 chooses “Reply All”, R2 chooses “Not
Reply”, and R3 chooses “Reply”. We assume the ICF of
the root message is b. The ICF, depth, probability of each
message are indicated in the figure. For example, when S

initiates a message to R1, R2, and R3 at depth = 0, the
probability of replying to the sender only, p1 = bp∗1, and
the probability of replying to the sender and the recipients,
p2 = bp∗2, and the probability of no action is 1 − p1 − p2,
which is 1 − b. The ICF of this replied message is bf(b),
and its depth is 1 in the reply process, and so on. What
we should notice is that once a “Reply” option is chosen,
the reply process followed will be the single recipient reply
process.
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Figure 3: Mixed reply process

2.3.2 Expected Number of Replies
Assume sender S initiates a message M to a list of recip-

ients R. Let R = {R1, R2, ..., Ri, ..., Rn} denote the recipient
set with n recipients. LetR′

i = {R1, R2, ..., Ri−1, Ri+1, ..., Rn}
denote R\{Ri}. We assume that when a message is replied,
two options, “Reply” and “Reply All”, are to be used, which
correspond to “S” and {S}

S

R′

i respectively as the recipi-
ent(s) in the reply message of Ri. Let p denote the probabil-
ity of reply, p = p1+p2, in which p1 = bp∗1 is the probability
of reply using “Reply” option, and p2 = bp∗2 is the probabil-
ity of reply using “Reply All” option.
Of the three actions, do nothing, Reply, Reply All, the last

two actions may result in more replied messages. Figure 3
shows an example of the reply process. Take recipient R3

as an example, at depth 1 R3 chooses “Reply”, the reply
process followed is the single recipient reply process; the
probability of reply to a parent message is the summation of
probability of “Reply” and “Reply All”, i.e, p = bp∗1+bp∗2 =
b(p∗1 + p∗2) = b. On the other hand, R1 chooses “Reply All”,
the reply process followed is the recursive process with a

lower ICF.
Let Z denote number of replies of this process, and X

denote number of replies when a “Reply” option is selected
when multiple recipients exist. Let G(n, b) = E[Z|n, b] be
the expected number of replies to the root message. Since
the “Reply All” option leads to a recursive reply process
with a lower ICF, G(n, b) is given recursively as

G(n, b) = n{bp∗1(1 + E(bf(b))) + bp
∗

2(1 + G(n, bf(b)))} (6)

The logic behind this expression is that S starts n inde-
pendent threads. The term bp∗1(1 + E(bf(b))) captures the
expected number of messages for the single recipient reply
process initiated by the “Reply” option at depth 1; the term
bp∗2(1 + G(n, bf(b))) captures the expected number of mes-
sages for the mixed reply process initiated by the “Reply
All” option at depth 1 because an exactly same process with
lower ICF bf(b) is started.
Since E(b) = b (1 + E(bf(b))) from (1), G(n, b) can be writ-

ten as:

G(n, b) = np
∗

1E(b) + nbp
∗

2 + nbp
∗

2G(n, bf(b)) (7)

Again, we get an approximate recursion for G(n, b) using a
second order Taylor expansion. We can obtain G(n, 0) = 0,
G′(n, 0) = n and G′′(n, 0) = 2np∗1f(0)+2n

2p∗2f(0). The cal-
culation of G(n, b) is shown in Algorithm 3. The expected
number of replies for any message in the thread can be ob-
tained by replacing b with the corresponding ICF of the
message.

Algorithm 3 Numerical analysis of G(n, b)

if b ≤ 10−5 then

G(n, b)← nb+ nb2p∗1f(0) + n2b2p∗2f(0)
else

G(n, b)← np∗1E(b) + nbp∗2 + nbp∗2G(n, bf(b))
end if

2.4 Statistical Determination of ICF
Given a thread for root message M , we would like to de-

termine the ICF b of message M . We select b to match the
observed tree. The approach we propose here is to select b

to match the expected number of messages and the observed
number of messages. This can be done at every level of the
tree, treating each node as the root of the subtree-thread.
The ICF of this subtree-root is determined form b and the
ICF propagation function.
For a given root message with ICF b, assume the depth

of the reply process is m, and there are ni messages at each
depth i. Let xij denote the total number of observed replies
to the jth message at depth i, bi denote the ICF of messages
at depth i, and E[Xij |nij , bi] denote the expected number
of replies to this message. We select b to minimize the sum-
mation of the squared difference between expected and real
number of replies for every message in the reply process.
Thus, we define the error function

Σ(b) =
m
X

i=0

ni
X

j=1

(xij − E[Xij |nij , bi])
2
, (8)

where bi is a function of b as follows:

b0 = b



bi = bi−1f(bi−1) i > 0

For each root message in an email data set, its conver-
sation threads could be obtained by examining the parent-
children relationship between emails. The observed number
of replies to each message in the conversation thread is thus
easy to obtain. Meanwhile, the expected number of replies
for every message has been derived numerically above. The
best fit b of the root message can thus be obtained from (8)
using nonlinear optimization.
The ICF b is then selected as argmin Σ(b). A second

approach, which we postpone to a full version of this paper
is to maximize the likelihood of the observed thread.

3. DETECTING BROADCASTS IN ENRON
EMAILS

The methodology is applied to a subset of Enron emails
to detect broadcast messages. A broadcast is defined as an
email which is sent to multiple recipients, but the conversa-
tion triggered by this email dies down quickly. The purpose
of detecting broadcasts is to eliminate the emails that in-
spire little or no interaction between sender and recipients
and hence are misleading for Social Network Analysis. In
this paper, only those root messages with 5 or more recipi-
ents are tested.

3.1 A Brief Description of Enron Email Data
Enron Corporation was founded in 1985. It became the

seventh largest business organization in the USA in fifteen
years [9, 11]. Enron’s stock price was as high as $90 in
August of 2000, however, Enron declared bankruptcy in De-
cember 2001 without any warning [9, 11]. It was the biggest
bankruptcy in American history at that time; thousands of
people lost their jobs; and hundreds of thousands of people
lost their retirement funds. After Enron’s bankruptcy nu-
merous investigations were conducted by authorities. Many
employees’ emails were also collected and released by Fed-
eral Energy Regulatory Commission (FERC) to the public
for investigation [5]. Among the many interesting messages,
it is expected to have many spam/broadcasts.
The data set we are testing on is extracted from the March

2, 2004 Version of Enron emails posted by Cohen [3]. The
March 2, 2004 Version contains 517,431 messages dated from
November 1998 to June 2002 organized into 150 employee
folders. We identified 156 employees from this data set, and
most of them were senior managers of Enron [14]. Because
the communication among these 156 employees was our in-
terest, 21,693 emails among these 156 employees were ex-
tracted from the March 2, 2004 Version. The conversation
threads are constructed and tested by our methodology.

3.2 Constructing Email Threads
Methods for threading emails into conversations have been

discussed in previous research [4, 7, 13]. Although it is ar-
gued that language processing should be applied to thread-
ing electronic messages [4, 7], we adopt a simpler but effi-
cient method.
In an email system, usually two options, “Reply” and “Re-

ply All”, are available for replying a message. We ignore the
slight possibility that neither of them is used in replying. We
assume that when one of these two options is used to reply
a message, the subject will not be changed except a “Re:”
may be added. We examine the “Subject”, “From”, “To”,

“Cc”, and “Date” headers to construct the parent-children
relationship. If the “Subject” header of a message contains
“Re:”, we consider it as a child message. To find its parent
message, we compare header fields of two messages. If the
“Reply” option is used, the recipient of the replied message
will be the sender of the parent message; and if the “Re-
ply All” option is used, the recipient of the replied message
will be the sender and the other recipients of the parent
message. For both options, the sender of the child message
should be one of the recipients of the parent message. The
“Date” field will be used as a time constraint to determine
the parent-children relationship for any two messages, since
the response time should not be long. We use 96 hours as
the response time window. From the data set, 1116 threads
in which the root message has 5 or more recipients are con-
structed.

3.3 Experiments
In this experiment, we assume the ICF propagation func-

tion f(b) = f is a constant ranging from 0 to 1. Nine set-
tings, f ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are tested.
The probabilities of “Reply” and “Reply All” when ICF is 1
(p∗1 and p∗2) are approximated by their relative frequencies of
having been used. It turns out p∗1 and p∗2 don’t differ signif-
icantly, therefore, p∗1 = p∗2 = 0.5 is used in this experiment.
We randomly select 50 threads as a training set, and another
50 as a testing set. For each thread in the test and training
sets, we read the content of the email to determine if it is a
broadcast message; if a message is to inform of a decision,
a result, news, a meeting time, or anything that doesn’t re-
quire a reply, we categorize it as a broadcast, otherwise it is
considered as a normal message. The ICF of each thread at
each f setting is calculated by minimizing (8). A threshold
is then chosen to determine if a thread is a broadcast, i.e., a
thread is a broadcast if the ICF of the thread is not larger
than the threshold, and it is a normal message otherwise.
Let C and H be the variables indicating if a message is a

broadcast from the statistical method and the content of the
message respectively. They can be either 0 or 1, in which 0
represents normal message, and 1 represents broadcast. Let
T denote the threshold. For any message i, Ci is defined as:

Ci(T ) =



0 if ICFi > T

1 otherwise
(9)

The error Err is defined as the cumulative absolute dif-
ference between Ci and Hi in (10). The threshold T is de-
termined by minimizing the error function as shown in (11).

Err =

50
X

i=0

(Ci(T )−Hi)
2 (10)

T
∗ = argmin

50
X

i=0

(Ci(T )−Hi)
2 (11)

3.4 Results
The result shows that the magnitude of f doesn’t effect

the error Err greatly for a given threshold. Table 1 shows
the nine f values with their corresponding optimal threshold
T ∗ and error Err. When f ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8},
the error Err is 2; however, when f = 0.9, Err is 3.
A linear relationship between f and T is clear from Figure

4. The regression analysis shows the adjusted R2 = 99.4%



Table 1: f and its corresponding threshold T

f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T ∗ 0.2813 0.2580 0.2395 0.2237 0.2092 0.1955 0.1809 0.1651 0.1480
Err 2 2 2 2 2 2 2 2 3

with slope -0.1596 and intercept 0.2910. Therefore, T =
0.2910 − 0.1596 ∗ f can be used to estimate the threshold
for a given f value. However, we notice that the error when
f = 0.9 is larger than the error when f takes the other eight
values. We further investigated the effect of f on the ICF
with an example. 
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Figure 4: f and its associated threshold T

In this example four threads are illustrated in Figure 5.
All of their root messages have 5 recipients, but the real-
ized replies are different. Thread (a) shows one of the five
recipients replies to the sender of the root message; thread
(b) has two of the five recipients reply, one chooses “Reply”
and the other chooses “Reply All” option; thread (c) shows
one of the recipients replies to the sender, and the sender
follows up with another message; thread (d) shows one of
the recipients replies to the sender and the other recipients,
and one of them follows up.
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Figure 5: Four threads as an example

The ICFs for thread (a), (b), (c), and (d) are shown in
Figure 6 for f ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. As

expected, the ICF decreases when f increases, and the rate
of decrease is almost a constant for each thread. However,
the decreasing rate varies from thread to thread. For in-
stance, thread (a) has a flatter slope compared with (b),
(c), and (d) as shown in Figure 6. As a result, the ICF of
(a) is very close to that of (b) at f = 0.9 although they are
quite apart from each other at f = 0.1 because thread (b)
expects more replies when f is large. Thread (b), (c), and
(d) cluster when f is small but separate when f is large.
Threads (c) and (d) intersect when f is around 0.55 be-
cause the ICF of (d) is more sensitive with high f values.
The difference in slopes is identified as the reason that error
Err changes with f . Compared with two replies in (b), (c),
and (d), thread (a) has only one reply; therefore, (a) should
be distant from the others in terms of ICF. From Figure
6, we notice that when f is small, (a) is indeed separated
from the other three threads, therefore, small f values are
recommended.
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Figure 6: ICF vs. f for four threads

Another reason that we recommend small f values (≤ 0.3)
is justified as follows. Consider the thread “A→B→A→B”,
three emails between A and B. Communication patterns like
this are very common in real life. Intuition suggests that
the ICF of the root message should be high (≥ 0.9). Table
2 lists the f values and their corresponding ICFs for this
thread. The table shows that when ICF is at least 0.9,
f ≤ 0.3. On the other hand, f cannot be too small since we
also need to differentiate the interesting root messages which
have triggered heated discussions. Therefore, f ∈ [0.1, 0.3]
is our recommendation.
The Relative Operating Characteristic, or ROC curve,

is plotted in Figure 7, for f = 0.1, with the training set
data. The X axis is the false positive rate (FPR), which
means it is categorized as a normal message from the con-
tent but it is classified as a broadcast using our method-
ology; and the Y axis is true positive rate (TPR), which
means the message is categorized as a broadcast from both
the content and our methodology. The area under the ROC
curve is larger than 90%, which proves that our method-
ology is very effective (on the training set). We applied
the combination of f = {0.1, 0.2, 0.3} and its associated



Table 2: f and its corresponding ICF for thread A→B→A→B

f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ICF 0.9796 0.9396 0.8920 0.8395 0.7824 0.7200 0.6513 0.5754 0.4914

threshold T ∗ = {0.2813, 0.2580, 0.2395} to the test data set,
which produced 3 disagreement out of 50 threads with ac-
curacy 94%. The confusion matrix is shown in Table 3, in
which “B” represents Broadcast and “NB” represents non-
broadcast. Since the error doesn’t deviate much from the
error of the training data, our method is believed to be ro-
bust. 
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Figure 7: ROC curve of the training data when f =
0.1

Table 3: Confusion matrix for the test data

Human

B NB

our algorithm
B 41 2
NB 1 6

4. CONCLUSIONS
We have developed a statistical method to evaluate how

informative a message is by the conversation it triggered.
This method is then applied to a subset of Enron email
data to detect the broadcast messages. We conclude that
the threshold to differentiate the broadcast from the normal
message is a linear function of information decay factor f ,
and f ∈ [0.1, 0.3] is recommended. The method is proved to
be effective and robust in detecting broadcast messages by
applying it on both the training and testing data. The pro-
posed method, in general, helps to process the data for vari-
ous analyses and achieve a better understanding of the data.
Our future research includes applying the methodology to
detecting interesting topics form conversation threads.
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