
DIMACS Series in Discrete Mathematics

and Theoretical Computer Science

Discovering Optimization Algorithms

Through Automated Learning

Eric Breimer, Mark Goldberg, David Hollinger, and Darren Lim

Abstract. In this paper, we describe the supervised learning approach to op-
timization problems in the spirit of the PAC learning model. By this approach,

we discover domain-specific algorithms by learning from an oracle, which is also
an optimization algorithm for the problem in question. We describe examples
of learning backtracking-based algorithms and algorithms that implement the
dynamic programming paradigm.

1. Introduction

For many NP-hard optimization problems, heuristic algorithms perform rea-
sonably well in practice. This suggests that linking NP-hardness and intractability
is not always justified, or maybe even rarely so. A possible explanation for this
phenomenon is that the input domains on which the heuristic algorithms are tested
do not contain “really hard” inputs. One of the most transparent restrictions on
inputs used for testing is their sizes. An algorithm designer might conclude that
meeting the needs of “practical” computing can be achieved by developing libraries
of procedures that are efficient on the domains of interest. This strategy is de
facto adopted by numerous software packages, such as LEDA [38] and LINK [5].
The obvious difficulty with this approach is the multitude of optimization prob-
lems and domains of interest: there are too many of both. Typically, the design
and improvement of algorithms is performed by algorithm designers, and is based
on intuition about the problem, knowledge of various algorithmic techniques, and
an understanding of specific input features. Designing algorithms tuned to work
well on specific input domains can be tedious and time consuming, and may re-
sult in a redundant and unmanageable set of specialized algorithms. The main
point of this paper is that a good way of dealing with these problems is to design
learning schemes, or learning algorithms, that automatically learn domain-specific
optimization procedures.

Automating the algorithm design process has been a focus in the machine
learning and artificial intelligence research community (see [14, 31, 40, 41]). The

2000 Mathematics Subject Classification. To be completed by the authors.

Key words and phrases. To be completed by the authors.

The second author was partially supported by an internal RPI grant.

c©2005 American Mathematical Society

1

Administrator
The Keywords: Optimization Algorithms, Machine Learning, Supervised Learning, Independent Set Problem, Longest Common Subsequence Problem, Shortest Superstring Problem, Backtracking Algorithms, Dynamic Programming Algorithms

Administrator
Subject Classification: 68W01 Algorithms

2 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

idea of automated algorithm development was perhaps first realized in the field of
genetic programming [34]. However, since genetic programming does not focus on
efficiency, so far it appears that, with some notable exceptions (see [26]), evolving
programs–the main idea of genetic programming–is not yet practical. The learning
approach to designing combinatorial optimization algorithms has been extensively
developed in the context of reinforcement and statistical learning (see [8, 9, 10,
45, 51]). An algorithm implementing the reinforcement learning strategy keeps
track of the state-space of its search and moves from state to state according to
a pre-designed set of objective functions that, in effect, control the search. The
objective functions are manually designed based on general and problem-specific
experience.

In this paper, we describe the supervised learning approach to optimization
problems in the spirit of the PAC learning model [48]. By this approach, we learn
domain-specific algorithms by consulting an oracle, which is also an optimization
algorithm for the problem in question. Designing optimization algorithms by means
of supervised learning was initiated in [4, 24, 19] and was further applied in [11,
12, 13, 20, 21, 22, 23]. Briefly, the PAC model applied to learning combinatorial
algorithms is comprised of four stages:

(1) Algorithm training is performed on an input domain determined by a
probability distribution or a suitable input generator;

(2) The evolved algorithm is tested on the same domain on which it was
trained (and is expected to perform “well”) ;

(3) The performance of the evolved procedure is characterized by a profile,
comprised of the accuracy of its output and the probability of achieving
that accuracy; and

(4) The performance of the learning process is characterized by the number
of training samples needed to construct a new algorithm with a given
performance profile.

For a practically feasible implementation of the supervised learning model,
one needs to supply a reasonably efficient oracle-algorithm whose performance is
analyzed by the learning algorithm in order to construct a more efficient target-
algorithm, which we also call the evolved algorithm. For example, in order to
design an algorithm for the longest common subsequence problem [13], we use the
algorithm from [50] as an oracle. To design a fast heuristic for the Maximum
Clique Problem [19], we use a procedure which implements a restricted backtrack-
ing algorithmic paradigm. In both cases, the usage of the oracle for learning and
for testing involves time-demanding experiments. In [20, 21, 22], we employ a
method of reverse learning algorithm engineering, for which the learning is done on
inputs generated from a given set of outputs. When reversed learning algorithm en-
gineering is possible, we completely avoid the need for an efficient oracle algorithm.
Another way of avoiding the time-consuming learning stage of the design process
is to do the learning on inputs of a small to moderate size, and “generalize” (scale
up) the results to the inputs of a large size. This technique is successfully used in
[13].

Supervised algorithm learning is essentially generic. The examples of learning
presented in this paper deal with algorithmic strategies: backtracking (Section 2)
and dynamic programming (Section 3). We describe the learning algorithms and

SHORT RUNNING TITLE TO BE COMPLETED BY THE AUTHORS. 3

illustrate them with several developed applications. The last section of the paper
outlines possible implications of learning algorithms on practical computing.

2. Learning strategy for backtracking

Backtracking is an algorithmic paradigm that can be applied to virtually any
discrete optimization problem, but as is well known, it is frequently inefficient for
even moderate-size inputs. Nevertheless, experiments show [4, 24] that optimal
solutions can often be obtained by traversing just a small portion of the whole
backtracking tree. Thus, “learning” an area containing optimal solutions, the search
area of the domain, may lead to a backtracking-based algorithm that is efficient on
the domain. Having developed a description of the appropriate search area, the new
algorithm would search through those nodes of the backtracking tree that belong
to the search area; the output would be the best solution found. The success rate,
i.e., the probability of finding an optimal solution, can be evaluated by testing, if
not theoretically.

The challenge is to develop a general strategy for determining (learning), repre-
senting, and using a small search area where good solutions to inputs from a given
domain can be found. In this section, we describe one such strategy which uses the
language of backtracking coordinates for restricting the area of the search. In the
following sections, we presents the experimental results of two implementations of
the strategy: the Maximum Independent Set problem and the Shortest Superstring
problem.

2.1. Backtracking coordinates. The search performed by a backtracking
algorithm can be viewed as scanning the nodes of the associated backtracking tree.
Backtracking coordinates are strings of non-negative integers that describe the lo-
cations of the nodes in the tree, provided the order in which the algorithm visits
the branches of the tree is fixed. Given two strings of non-negative integers,

α = (a0, . . . , ap−1) and β = (b0, . . . , bq−1),

we say that α covers β and write β � α, if appending α with q − p 0’s (only if
q > p) yields

bi ≤ ai, (i = 0, . . . , p − 1).

For a given string α, the α-box B(α) is defined to be the set of all strings β
covered by α. Given an integer t ≥ 0 and a string α = (a0, . . . , ap−1), the (t;α)-
box B(t;α) consists of all strings β = (b0, . . . , bq−1) covered by α and such that∑q

i=0 bi ≤ t. When α and t are understood from the context, we will call the set a
box.

Let T be a rooted directed tree and let v ∈ V (T). The subtree T (v) is defined
as a subgraph of T induced on all vertices in T that can be reached from v by a
directed path. A branch of v is a connected component of T (v) − v. A rooted
directed tree with all edges directed from the root is called a preorder tree if, for
every internal node, its children are linearly ordered. Let (v0, v1, . . . , vk) be the
directed path from the root r = v0 to a node v = vk in a preorder tree T and let
di ≥ 0 be the index of vi+1 in the ordered set of its siblings (i ∈ [0, k − 1]). We call
string (d0, d1, . . . , dk−1) the T -coordinates of v in T .

Every backtracking tree is an example of a preorder tree. If E is a backtracking
algorithm, T is its backtracking tree, and I is an input to the problem under
consideration, then there is a node v ∈ V (T) corresponding to a solution S of I.

Administrator
Short Title:Discovering Optimization Algorithms

4 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

The T -coordinates of v are called the backtracking coordinates of S with respect
to E, or simply the coordinates of S when E is understood from the context. The
sum of the coordinates is called total. Backtracking coordinates of an optimal
solution indicate the deviation of an optimal solution from the greedy solution,
which corresponds to the 0-string. For a string α = (a0, . . . , ap−1), the search
area S(α) covered by α is the set of all nodes of T whose backtracking coordinates
(x0, . . . , xs−1) belong to the box B(α). The search area covered by the pair (t;α) is
the (t;α)-box B(t;α). In general, we will consider search areas that are covered by
the union of (t;α)-boxes. Then the scanning of such a search area involves testing
membership of a node to the area. In the straightforward approach, the complexity
of the testing is proportional to the size of the database containing all (t;α)-boxes.

2.2. Database learning. The essence of database learning is to accumulate
backtracking coordinates of solutions to inputs from a given domain and then to
“re-interpret” the database of the coordinates as a description of a search area
for the new algorithm. In the simplest case, the backtracking coordinates of each
solution is treated as a (t;α)-box and the union of all such (t;α)-boxes is used to
determine the search area. The algorithm is expected to perform “well” on the
inputs in the domain, but it can be applied to arbitrary inputs.

To be able to construct a database (a collection of (t;α)-boxes), we need an
oracle—an algorithm which can find an optimal solution to a given input to the
problem. In the absence of a ready-to-use oracle, a variation of backtracking can be
employed (see below the explanations to Stage 3). As a rule, an oracle is not very
efficient, hence, the task of learning can also be viewed as boosting the efficiency of
an oracle. Note that every combinatorial optimization problem can be efficiently
reduced to that with a given target value of the objective function; often, the
target value is a part of the input. The algorithms designed by database learning
construct, with the prescribed probability, solutions whose value of the objective
function is equal to the target. The learning comprises the following five stages:

Stage 1: Define a backtracking tree T for the problem;
Stage 2: Use a given instance generator to supply inputs to oracle O;
Stage 3: Apply O to the generated instances and store in D.initial the

coordinates of the solutions;
Stage 4: Let S be the union ∪αB(α), where α ranges over the initial data-

base D.initial. Define the search area of the algorithm as a set SA

containing S.
Stage 5: Set up the output algorithm to be the procedure which searches

for a solution by scanning the nodes of T whose backtracking coordinates
are in SA.

Thus, the learning proper is being done at Stage 4, where the accumulated
database D.initial is re-interpreted and generalized as a search area SA described
with the use of another database, termed D.final.

2.3. Restriction trees. A more efficient representation of the union of boxes
is achieved with the use of restriction trees defined in [19]. They enable a constant
amortized time for testing the membership of a node in a subtree of a backtracking
tree which is the union of boxes. The idea of the representation implemented
by restriction trees is, simply, to consistently replace identical branches of boxes
by using integer labels on the edges, that show the range of the corresponding

SHORT RUNNING TITLE TO BE COMPLETED BY THE AUTHORS. 5

backtracking coordinates. The information about the totals is given by labels on
the vertices. The simplest case of an r-tree is a restriction path, r-path, P =
{(t, d0), (t, d1), . . . , (t, dp)}, where t is the label of the vertices (identical to all), and
{d0, . . . , dp} are the labels of the edges. P represents the set A(P) of all nodes of
the backtracking tree whose coordinates belong to a {t; d0, . . . , dk}-box. In general,
an r-tree T is a rooted, directed (from the root) tree such that

• every vertex and every edge has an integer label;
• for every vertex v, a linear order is defined on the set E(v); all labels on

edges in E(v) with a possible exception for the first one are positive.

The properties of restriction tree and algorithms for constructing restriction tree
that represent the search area described by a database of solutions can be found in
[19].

Creating the restriction tree can be done off-line and need only be done once
for a given database. At run-time, the search algorithm keeps a pointer to a re-
striction tree and updates this pointer each time the search procedure moves in the
search tree. The restriction relevant to the current search node is thus immediately
available by looking at the restriction tree. Since the labels of the edges and nodes
of the restriction tree are upper bounds for the out-degrees of the nodes of the
search tree, the size of the former is usually only a fraction of that of the latter
(for a complete description see [19]). However, large databases that define complex
search areas may result in large restriction trees. Although the overhead associated
with the restriction lookup operation is reduced to constant factor, the size of the
restriction tree may grow beyond practical limits. In general, for large problems,
the database required to support a high degree of accuracy contains many entries
accumulated from many training samples and the size of the resulting restriction
trees becomes too large to be practical.

2.4. Maximum independent set problem. The learning approach is ap-
plied in [24] and [19] to the Maximum Independent Set problem (linearly equivalent
to the Maximum Clique problem). The language for describing search areas–the
backtracking coordinates–is used in [24] to build programs that implement the stan-
dard backtracking algorithm whose search is restricted by imposing bounds on the
backtracking coordinates of the tree-nodes that are to be scanned by the program.
In [24], the selection of the bounds is given to the user; in [19], the notion of bounds
is generalized to that of restriction trees, and an algorithm is described, which learns
the restriction tree corresponding to a given input domain. It turns out that the
language of backtracking coordinates is also useful for efficiently traversing the rel-
evant part of the backtracking tree. The oracle used for our learning algorithm
is a modification of the standard backtracking algorithm based on the following
empirical observation: for many problems and many input domains, the individual
backtracking coordinates of optimal solutions, as well as their sum, are small; in
particular, the coordinates with large indices are 0’s (greedy ending). By utilizing
this observation, we created a procedure which is computationally acceptable as an
oracle for learning.

The performance of the program implementing the evolved algorithm, called
RB (for restricted backtracking), was tested on the domain of random graphs with
edge probabilities 0.3, 0.5, and 0.7; the respective domains were denoted G(n, 0.3),
G(n, 0.5), and G(n, 0.7). All experiments were done using a Sparc Ultra 2 Model

6 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

220, and the software is available from http://www.cs.rpi.edu/∼hollingd/rb/. The
purpose of the testing is to establish the learning rate of RB and to compare its
performance with that of RS [3], which implements the reactive search strategy
proposed by Battiti in [2]. Our experiments confirmed that the size of the area that
with high probability contains solutions to all inputs is significantly smaller than
that of the whole tree. Furthermore, the area can be “learned” using a relatively
small number of examples. Our experiments also show that the rate and quality
of learning are superior for denser graphs, for which the length of the solution is
shorter.

Although RB’s performance is superior to that of RS on G(0.5) and G(0.7), the
reverse is true for G(0.3). Tables 1–3 present the results of the comparison. The
numbers in every block are, respectively, the average run-time in seconds, and the
rate of success, i.e., the proportion of the graphs for which the targets are found.

Our main objective is the improvement of RB. We identify the reason for the
failure of RB to outperform RS on G(0.3) to be the “coarseness” of the clustering
procedure for post-processing of the solutions accumulated in the training data-
base. The search area constructed by the current clustering procedure contains too
much “useless” space traversed by the evolved algorithm. Our idea is illustrated in
Figure 1. The points in Figure 1(A) are collected through learning; the shaded area
in Figure 1(B) is the area traversed by the standard backtracking algorithm; the
search area produced by the current procedure is illustrated in Figure 1(C); and the
search area that should be used by the algorithm is in Figure 1(D). Time-saving will
be much higher for the k-dimensional integer inputs that arise from independent
sets of the expected size k.

Note that the clustering problem we are dealing with is different from and is, in
fact, easier than the classical clustering of sets in k-dimensional spaces for large k.
An additional feature is that the description of the search area must be developed
so that the evolved algorithm can efficiently traverse the area. The main reason
this version of clustering is easier is that the effect of “non-perfect” clustering on
the efficiency of the evolved algorithm is only marginal. Our current clustering
algorithm is almost the simplest possible. We envision substantial improvement in
this key element of the learning algorithm. More accurate clustering combined with
efficient traversing can be done with the efficient use of restriction trees introduced
in [19].

2.5. Shortest superstring problem. Database learning was applied in [20,
22] to the Shortest Superstring Problem, SSP. The instance of SSP is a finite col-
lection S = {s1, s2, . . . , sn} of strings over a finite alphabet. The problem is to
construct a shortest string u such that every sj appears in u as its substring. SSP
is known to be NP-hard [36]. A number of approximation algorithms with a fixed
approximation ratio have been developed that use different variations of the greedy

Table 1. q = 0.5; Target = expected

n = 816 n = 1122 n = 1591

RS 1.21 1.0 19.9 1.0 330.5 0.8

RB 0.18 1.0 5.4 1.0 93.6 1.0

SHORT RUNNING TITLE TO BE COMPLETED BY THE AUTHORS. 7

A C DB

Figure 1. Database Clustering Illustration

strategy [1, 15, 17, 33]. SSP is closely related to DNA-sequencing, which aims
to sequence a strand of DNA from a set of “reads” (short fragments of the future
superstring) whose locations in the strand are not known [49].

Since the applications of SSP involve very large inputs, the only practically
feasible strategy of implementing restricted backtracking appears to be to start with
greedy merging, e.g. merging two input strings with the longest overlap. The greedy
merging is applied a sufficient number of times until the number of remaining strings
is sufficiently small. After that, it is replaced with a more elaborate, although more
time-consuming search for the shortest superstring. For many applications, it was
experimentally discovered that the need for non-greedy steps emerges only after a
long sequence of greedy ones. The moment when the greedy strategy should be
abandoned to achieve optimality depends on the input domain. For example, for
the set of randomly generated strings the greedy strategy happen to be optimal
almost till the very end; for the domain of DNA strings of the length up to 500,000,
the first non-greedy merging needed for optimality was usually when close to 70
fragments left (out of an initial 5000) after the preceding merging. In our approach
[20, 22], the threshold is learned by experimentation.

The important property of SSP is that it permits reverse learning algorithm
engineering. Often, the set of input strings is obtained from an (unknown) super-
string by a random, or quasi-random fragmentation. This is assumed to be the case
for the set of reads that are obtained for the DNA-assembly problem. Thus, we
can learn the “parameters” of an assembly-strategy by selecting a long string u to
serve as a target-superstring, and developing, at random, a set {s} of substrings of
u, to serve as an instance of the problem. Knowing “an answer” to a given input

Table 2. q = 0.5; Target = expected - 1

n = 2293 n = 3329 n = 4851

RS 23.9 1.0 164.1 0.9 512.1 0.3

RB 1.59 1.0 13.0 1.0 171.61 1.0

Table 3. q = 0.3, 0.7

(q, n, Target) (0.7; 2700; 11) (0.3; 1262; 26)

RS 378 1.0 49 1.0

RB 11 1.0 82 1.0

8 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

allows checking the correctness of the possible merges. Such a construction is easily
done for the case of randomly generated strings u; furthermore, many repositories
contain already sequenced DNA-strings, that can be used for training and testing
the evolved algorithms. Having created the set {si} and u, one can easily deter-
mine if a greedy merging, is optimal. More generally, for a known superstring, it
is computationally simple to determine backtracking coordinates of a sequence of
mergings that would have yielded the superstring u from {si}.

This learning strategy was implemented [20] for SSP and in [22] for a more
general variation of the string assembly problem. All inputs in our experiments are
4-symbol strings. The algorithms were tested on three domains, comprised of ran-
domly generated strings, and several domains defined by DNA strings that were col-
lected from various web-sites. The random domains are Random, Weighted Random,
and Markov. The strings from Random are generated by a procedure which se-
lects characters of the string at random according to the uniform distribution. The
Weighted Random domain generates strings at random according to a weighted dis-
tribution {0.261, 0.239, 0.239, 0.261} which is the set of frequencies of based pairs
A,C,G, T in the Human Chromosome 22 [43]. The generator for domain Markov
creates strings by a Markov process using the table computed from Human Chro-
mosome 22. The DNA-strings that we used for the experiments are helicobacter
pylori (H. pylori), (see [46]) and Human Chromosome 22. The length of the former
is close to 500,000 and that of the latter is close to 32, 000, 000. For our learning ex-
periments, we used randomly selected superstrings of lengths ranging from 200,000
to 500,000 at the interval of 50,000; for each value of the length and each domain,
one hundred superstrings were used for learning. Each superstring was a substring
of H. pylori or Human Chromosome 22; those originated from H. pylori (resp.
Chromosome 22) form the domain P (resp. H). For each domains, fifty strings were
used for testing. Most of the experiments were performed on ten Ultra-SPARC
workstations running Solaris 8; early experiments were run using Solaris 7.

In DNA sequencing, it is not always the case that the shortest superstring is
chosen as the correct answer, but for the purposes of testing our databases, we look
for the shortest superstring found within the search area. The strings were obtained
by randomly splitting each of the superstrings. The length of the strings was fixed
at 500 and the cover ratios (the average coverage rate of the strings) used were 5.0
and 6.0. Every version of the evolved algorithm Assembly was tested on the domain
that was used for its training, but also on “wrong” domains, for which it was not
trained. For testing, the algorithms were given the collections of reads, but not the
superstrings, as was done for learning. The knowledge of the superstrings allowed
us to evaluate the approximation ratios of the algorithms by comparing the results
found by the algorithm with the lengths of the corresponding superstrings. Since
the experiments showed no significant difference in the performance of Assembly
learned on the three random domains, we show here only the results of experiments
related to domain Random (R). The two main objectives of the experiments were
testing the accuracy of the algorithms on the domains and measuring the running
time as a function of the number of operations, as well as the actual execution time.

SHORT RUNNING TITLE TO BE COMPLETED BY THE AUTHORS. 9

Table 4. Accuracy of Assembly, Length 500,000

H/H H/P R/H R/R

5.0 1.003|45 1.005|38 1.0191|28 1.001|48

6.0 1.002|45 1.006|36 1.0165|27 1.001|49

The accuracy of learning is measured by the approximation ratio, which we
compute from the experiments according the following formula:

1

N

N∑

i=1

length(Ti)

length(ui)
,

where N is the number of test-inputs (in our case N = 50); ui is the ith superstring
used for testing; Ti is the superstring constructed by Assembly for the ith test. The
accuracy results are shown in Table 4 for cover ratios 5.0 and 6.0. Every column
of the tables is labeled with two symbols that show the learning domain (left)
and the testing domain (right). The rows correspond to the cover ratios. The two
numbers of each entry in the tables show the accuracy (left) and the number of tests
for which Assembly constructed the initial superstring (right) for input lengths of
500,000. The data show that the H-trained Assembly performs significantly better
on domains H and P than the Random-trained Assembly.

The running time of Assembly is determined by that of subroutines Greedy,

B Greedy, (both are provably polynomial) and Restricted backtracking. The
Figures 2–5 show the growth of the computation bounds versus the length of input.
A detailed explanation of the bounds Bound and B Bound can be found in [20].
Figure 2 presents the growth of the parameter Bound of Greedy for four domains.
Similarly, Figure 3 presents the growth of the parameter B Bound for B Greedy on
four domains and for cover ratios 5.0 and 6.0. Note that even for maximal length of
500000, Bound≤ 70 and B Bound≤ 50 (different for different domains). In all cases,
both bounds are significantly smaller for cover ratio 6.0 than that for 5.0. The
data also show a significant difference between the values coming from the random
domains and the DNA-domains. This and other plots suggest the reason for the
poor performance on the DNA-domains the version Assembly trained on R.

Figure 4 presents the growth, for all four domains and for the two cover ratio
values, of the search space size for Restricted Backtracking bounded by the
database which is accumulated during learning. The running time of the procedure
is proportional to the size of the search space. Figure 5 presents the growth of
the size of the database (the number of lines) depending on the sizes of the strings
and the cover ratios. The plots suggest a sub-exponential growth of the size of the
space, but would need more experiments with longer superstrings (maybe up to
several million) to conjecture a polynomial growth.

3. Oracle-based learning for dynamic programming

3.1. Introduction. Dynamic programming is a bottom-up algorithmic strat-
egy which achieves efficiency by systematically recording solutions for small sub-
problems and using them to find solutions for larger subproblems. The re-computation
of smaller subproblems is eliminated through the use of additional memory, which

10 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

10

20

30

40

50

60

70

80

200000 300000 400000 500000

M
ax

im
al

 B
ou

nd

Input Length

Ratio 5.0

RANDOM
MARKOV
 HUMAN
 PYLORI

5

10

15

20

25

30

35

40

45

200000 300000 400000 500000

M
ax

im
al

 B
ou

nd

Input Length

Ratio 6.0

RANDOM
MARKOV
 HUMAN
 PYLORI

Figure 2. Non-Greedy Height

15

20

25

30

35

40

45

50

55

200000 300000 400000 500000

M
ax

im
al

 B
ou

nd

Input Length

Ratio 5.0

RANDOM
MARKOV
 HUMAN
 PYLORI

5

10

15

20

25

30

35

200000 300000 400000 500000

M
ax

im
al

 B
ou

nd

Input Length

Ratio 6.0

RANDOM
MARKOV
 HUMAN
 PYLORI

Figure 3. B Bound

0

2000

4000

6000

8000

10000

12000

14000

16000

200000 300000 400000 500000

D
at

ab
as

e
V

ol
um

e

Input Length

Ratio 5.0

RANDOM
 HUMAN

 MARKOV
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

200000 300000 400000 500000

D
at

ab
as

e
V

ol
um

e

Input Length

Ratio 6.0

RANDOM
 HUMAN

 MARKOV

Figure 4. Database Volume

can be an expensive trade-off. When the set of different subproblems is reasonably
small, dynamic programming is the technique of choice. Many sequence comparison
problems are efficiently solvable through the use of dynamic programming; among
them are files comparison [39], sequence alignment [16, 44], and the longest com-
mon subsequence problem, LCS [37].

While the computational benefits of dynamic programming are generally sig-
nificant, for many “real-world” problems the inputs of interest are too large to be
solved using this method. Whether it is possible to further reduce unnecessary or
redundant computation for these types of problems is of great practical interest.
Many attempts have been been made to develop more efficient algorithms for LCS

SHORT RUNNING TITLE TO BE COMPLETED BY THE AUTHORS. 11

0

25

50

200000 300000 400000 500000

N
um

be
r

of
 C

oo
rd

in
at

es
 in

 D
at

ab
as

e

Input Length

Ratio 5.0

RANDOM
 HUMAN

 MARKOV
0

25

50

200000 300000 400000 500000

N
um

be
r

of
 C

oo
rd

in
at

es
 in

 D
at

ab
as

e

Input Length

Ratio 6.0

RANDOM
 HUMAN

 MARKOV

Figure 5. Database Size

[28, 29, 42, 47, 50]. A learning approach for designing faster LCS-algorithms was
used in [13]. Similar to learning for backtracking, learning for dynamic program-
ming attempts to discover the “search area” which is essential for finding solutions
to instances from the input domain in question. If the solutions to inputs from a
given source are “close” to each other, learning may discover a small search area
which would yield a more efficient algorithm. It is important to note that as for
learning for backtracking, the goal of the learning approach here is not to discover
“learnable” input domains, but rather to design a framework for automatically
designing an algorithm tailored for a given input domain.

An algorithm implementing the dynamic programming strategy finds a solu-
tion to a problem instance by constructing a set S of solutions to all subproblems
associated with the given instance. The principle of optimality asserts that if a
solution to a problem is optimal, then the solution to its subproblem is also op-
timal. Thus, only optimal solutions must be stored. Each entry of S is found as
an optimal extension of the solution to a candidate subproblem. For each solution
from S, the algorithm would “know” the particular subproblem whose extension
yields this solution. Thus, having developed a solution to a problem instance, one
can backtrack through a sequence of diminishing subproblems that lead to the so-
lution. This defines the solution trace related to the instance of the problem. If
the set S is encoded as a multi-dimensional matrix M of reals (as often the case),
a solution trace is a one-dimensional sequence {ai,ki,li,...} (i = 1, 2, . . .) of entries of
M . The search area of an input domain is then the union of all solution traces1

over all inputs from the domain. The determination of the search area (given the
encoding) is the objective of learning. An oracle algorithm is any algorithm for
the problem at hand which is utilized for collecting the solution traces for inputs
from the domain of interest. The search area may depend on the oracles bias, that
is the particular way it selects solutions among equally optimal ones.

Learning, as implemented in [13], consists of three major steps: (a) generating
uniformly at random a finite number of instances from a given domain; (b) applying
an oracle to each instance, in order to produce a set of solution traces; and (c)
refining and scaling the search area. The algorithm which emerges from learning
implements the restricted dynamic programming strategy, for which the full search
is reduced to the search within the search area learned.

1Here we neglect the fact that there can be more than one optimal solution for a given input.

12 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

The goals of the third step, refining and scaling, are (c 1) to develop a method
for creating a “small” search area which would contain solution traces for “most”
inputs of a given domain; and (c 2) to develop a method for scaling up the search
area learned from inputs of “small” size to that for inputs of any given size. A
practically acceptable relaxation of c 1 is to aim for the search area which contains
solution traces of “most” of “almost” optimal solutions. The first of these tasks
is close to the rectangle learning game described in [32]. According to our exper-
iments with the LCS-problem, even reasonably simple algorithms for both tasks
yield impressively accurate and fast LCS-algorithms.

3.2. The longest common subsequence problem. The standard qua-
dratic dynamic programming algorithm for LCS constructs solutions for all sub-
problems defined on prefixes {〈Si, Tj〉} of the input pair 〈S, T 〉. Here, for two
sequences S and T , Si and Tj denote the prefix of S of length i and the prefix of
T of length j, respectively. Let n = |S| ≥ m = |T |. If l(i, j) is the length of the
shortest common subsequence of Si and Tj , then the n × m matrix M = [l(i, j)] is
called the dynamic programming matrix. The algorithm computes all entries of M ,
in particular, l(n,m), which is the real target. The first row, {l(i, 1)}n

i=1, and the
first column, {l(1, j)}m

j=1, are computed directly. Every other entry is computed
using the following reduction:

if S[i] = T [j],
then l(i, j) = l(i − 1, j − 1) + 1,

else l(i, j) = max(l(i, j − 1), l(i − 1, j)).

After M is computed, the solution trace and the longest common subsequence are
determined by tracing back the computation using the same reduction above. The
solution trace is a sequence {(si, ti)} (i = 1, . . . , n), where s1 = t1 = 1, sn = n,
tn = m, and for i > 1, the pair (si−1, ti−1) is defined by

if l(si, ti) = l(si−1, ti−1) + 1,
then {si−1 = si − 1 and ti−1 = ti − 1};

else if l(si, ti) = l(si, ti − 1),
then {si−1 = si and ti−1 = ti − 1};

else {si−1 = si − 1 and ti−1 = ti}.

In our experiments, the oracle was an implementation of the O(np)-time algo-
rithm described in [50]. Our implementation employs the technique from [27, 28]
to create a linear memory algorithm.

For each input, the oracle solves the problem and returns an optimal solution
trace shown in Figure 6(a). Multiple inputs are solved to form a collection of
solution traces shown in Figure 6(b). Afterwards, the collection can be refined into
a dynamic programming search area shown in Figure 6(c). To identify clusters
of solution traces, L traces from the database are used to produce n sorted lists
{listi}, each of length L; listi consists of the y-values that are the ith entries of
the corresponding traces. Two points, listi(a) and listi(a + 1), are included in the
same cluster if

|listi(a) − listi(a + 1)| ≤ tm/L,

where t is a tuning parameter. Executing this rule for all adjacent pairs of {listi(a)}
(a ∈ [1, L]) may split the list into more than one cluster. Figure 7 shows the cluster
boundaries for several different randomly generated input domains.

SHORT RUNNING TITLE TO BE COMPLETED BY THE AUTHORS. 13

g

c

t

g

a

c

c

g

t

a

c t g a g g t ca c

(a) (b) (c)

Figure 6. Search area formation for the LCS problem: (a) Solu-
tion trace, (b) Collection of solution traces, and (c) Search area.
Note that the bottom left cell of matrix is defined as l(1, 1).

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Figure 7. Search area boundaries for different input distributions

In our experiments, the number of training examples is fixed to 300. Each clus-
ter is refined in order to extract an “essential” part of the search area. The points of
the original cluster that are removed are assumed to be noise. The refinement op-
eration cuts off the boundary points in a sequence of steps shown in Figure 8. The
number of refining steps is determined experimentally. After each refinement, the
new algorithm with the current search area is tested. The refinement and testing
are repeated until the accuracy exceeds the predetermined level.

A scaling operation is applied to a sequence of search areas {Si} obtained
through learning on relatively short inputs of lengths {ni}; (ni < ni+1) (0 ≤
i ≤ k − 1) in order to develop a search area S for longer inputs from the same
input domain (Figure 9). For this particular application it is advantageous to
consider search areas described by their lower and upper bounds 〈fi, gi〉 (fi ≤ gi;
i ∈ [0, k − 1]).

The sizes {|Si|} are approximated by the function Anα
i + B, for which the

parameters A, B, and α are determined using the least squares method. To scale
up the areas themselves, an integer q ≤ n0 is selected, and for each i ∈ [0, k − 1],
sets {fi(x

i
j)} and {gi(x

i
j)} are considered, where xi

j = ⌈j(ni − 1)/q⌉ (j = 0, . . . , q).

For each j ∈ [0, q], the sequence F (j) = {fi(x
i
j)}

k−1
i=0 (resp. G(j) = {gi(x

i
j)}

k−1
i=0) is

approximated by the function F j
∗ [n] = a[j]n− b[j]nγ (resp. Gj

∗[n] = a[j]n+ c[j]nγ).
The value γ is selected to be α− 1 to guarantee that the size of the scaled up area
would grow as nα; the other parameters are determined using the least squares
method.

14 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

KEY:

Search Area Boundary

Noise

Refinement Step 1 Refinement Step 2 Refinement Step 3 Refinement Step 4

Trace Boundaries

Figure 8. Refining the search area

n = 1000 n = 1100 n = 1200
Directly Learned Search Areas

n n n

n = 1300

n

x j
1 x j x j x j

2 3 4

Scaling

n = 100,000, m = 200,000

Scaled Search Area

n

m

Figure 9. Scaling search areas

Denote f(x) and g(x) the lower and upper bounds of the search area S on
inputs (S, T), where |AS = n ≤ |T | = m. Then the values of these functions for
{xj = ⌈j(m − 1)/q⌉} (j ∈ [0, q]) are set to be a[j]n − b[j]nγ and a[j]n + c[j]nγ ,
respectively. The values of f(x) and g(x) for x 6∈ {⌈j(n − 1)/q⌉} are computed
using linear extrapolations; that is, if xj < x < xj+1 for some j ∈ [0, q − 1], then

f(x) = (x − xj)
f(xj+1) − f(xj)

xj+1 − xj

.

In our experiments, ni ranges from 1000 to 10,000 and q = n0.

3.3. Selected experiments. To reduce experimentation to a manageable
amount, we fix the target accuracy to 0.999 and evaluate the growth of the running
time of the programs subject to this constraint. The rdp-program is trained on
sequences of length up to 10,000 (either two symbol or four symbol inputs). To
establish its accuracy, the solutions found by rdp are compared with the optimal
solutions found by np for 50 inputs. These trials are used to measure both the
speedup over np and the accuracy of the evolved program. The running times are
extrapolated to project the asymptotic running time of the procedure. The areas
obtained by direct learning are scaled up to construct search areas for large inputs.
The training is done on the domain of equal length sequences generated uniformly
at random.

The two plots in Figure 10 show the relationship between the average number
of comparisons and the length of the input for the following algorithms:

• np by Wu et al.: Used as the oracle for both learning and accuracy testing.
• rdp(learned): Uses restricted dynamic programming on search areas that

were directly learned and refined to produce 0.999 accuracy.

SHORT RUNNING TITLE TO BE COMPLETED BY THE AUTHORS. 15

Table 5. Asymptotic growth of the algorithms

Input Type np (oracle) rdp(leaned) rdp(scaled)

two symbol 0.065n2 5.082n1.41 5.883n1.42

four symbol 0.156n2 6.237n1.43 6.796n1.45

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

0 20000 40000 60000 80000 100000

N
um

be
r

of
 c

om
pu

ta
tio

ns

Input size

Growth of 2-symbol inputs

np
rdp (learned)
rdp (scaled)

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

0 20000 40000 60000 80000 100000
N

um
be

r
of

 c
om

pu
ta

tio
ns

Input size

Growth of 4-symbol inputs

np
rdp (learned)
rdp (scaled)

Figure 10. Runtime growth of rdp and np

• rdp(scaled): Uses restricted dynamic programming on search areas con-
structed by scaling. Search areas learned on inputs of length 1000 to
10,000 are scaled for larger input lengths.

The measurements were done on the lengths 1000 + i × 200, for i = 0, . . . , 45.
Additional experiments not present here show that for both programs, rdp and np,
the cpu running time is proportional to the number of comparisons. Furthermore,
the number of comparisons for rdp is very close to 3× the size of the search area.

The asymptotic growth of the running times of the algorithms was computed
using the least squares method and the results are presented in Table 5. To summa-
rize, the experiments indicate that learning and scaling yield a near-optimal LCS
algorithm that is asymptotically faster than the oracle.

The two plots in Figure 11 show the effects of relaxing the accuracy constraint
on the number of computations. Both plots in Figure 11 present the average accu-
racy computed on 50 testing trials for inputs of length 100,000. The search areas
are developed by collecting and clustering 300 traces. Afterwards, each search areas
is reduced using the refinement process. The two initial search areas yield greater
than 0.9999 accuracy for two and four symbol inputs. For two symbol inputs, rdp
run on the unrefined area achieves a speedup of 2.1 over the np-algorithm. After
refining the search area to the 0.999-accuracy, rdp achieves a speedup of 10.6. Sim-
ilarly, for four symbol inputs, refinement to 0.999 accuracy increased the speedup
from 4.0 to 17.3. Refinement significantly reduces the size of the search areas while
introducing only a slight loss of optimality.

The scaled search areas are developed by learning on inputs of length 1000 to
10,000. Then the areas are scaled up to inputs of length 15,000 to 100,000. For all
experiments, the scaled search areas achieves a slightly better than 0.999 accuracy:
for two symbol inputs, the average accuracy is 0.9992 with a standard deviation
σ = 6.7 × 10−5; and for four symbol inputs, the average accuracy is 0.9992 with

16 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

0.999 0.9992 0.9994 0.9996 0.9998 1

N
um

be
r

of
 c

om
pu

ta
tio

ns

Accuracy of rdp

Refinement of 2-symbol inputs

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

0.9988 0.999 0.9992 0.9994 0.9996 0.9998 1

N
um

be
r

of
 c

om
pu

ta
tio

ns

Accuracy of rdp

Refinement of 4-symbol inputs

Figure 11. Refining the search areas

σ = 8.6 × 10−5. In an additional experiment, we further scaled the two symbol
search area for inputs of length 1,000,000. Based on 20 trials, rdp(scaled) achieves
the average accuracy of 0.9994 with σ = 8.7× 10−5. Scaling provides a process for
generating highly accurate search areas for large input sizes where direct learning
would be infeasible.

4. Conclusion

The development of the learning approach to the problem of designing optimiza-
tion algorithms may have a significant impact on the model of practical computing.
We envision future systems, similar to LEDA and LINK, containing learning al-
gorithms that “perpetually” learn and store search areas for diverse domains of
inputs to the corresponding problems. In addition to the collection of databases
with search areas, the algorithms are supplied with classification algorithms that
determine, given a specific input, the most appropriate search area or areas to be
used by the programs on the input. The effectiveness of the whole system, includ-
ing the learning algorithm and the classification algorithm, will in time increase
when more search areas are identified and/or more efficient learning strategies are
discovered.

The need for massive background and/or online experimental work necessitates
the development of software support for creating, running and post-processing ex-
periments. Such a system should be able to facilitate the monitoring of ongoing
experiments and the analysis of the results. This system will use XML or a sim-
ilar tool for a common data representation; automatically build experiments; and
support a variety of methods for viewing graphical and textual results, as well as
generating summaries.

Acknowledgements

The authors are grateful to the reviewers for useful comments.

References

[1] C. Armen and C. Stein, A 2.75 approximation algorithm for the shortest superstring problem,
DIMACS Workshop on Sequencing and Mapping (1994).

[2] R. Battiti, Reactive search: toward self-tuning heuristics, in (V. J. Rayward-Smith, ed.),

Modern Heuristic Search Methods, John Wiley and Sons, 1996, 61–83.
[3] R. Battiti and M. Protasi, Reactive local search for the maximum clique problem, Algorithmica

29(4) (2001), 610–637.

Administrator
2. John Wiley and Sons, New York, 1996

SHORT RUNNING TITLE TO BE COMPLETED BY THE AUTHORS. 17

[4] J. Berry and M. Goldberg, Path optimization and near-greedy analysis for graph partitioning:
an empirical study, Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete

Algorithms SODA (1995).

[5] J. Berry, LINK: A system for experimentation with graphs and hypergraphs, SIAM Discrete

Mathematics Newsletter 2(7) (1997), http://dimacs.rutgers.edu/berryj/LINK.html.

[6] J. Berry and M. Goldberg, Path optimization for graph partitioning problems, Discrete Ap-

plied Mathematics 90 (1999), 27–50.
[7] M. Berry and G. Linoff, Data Mining Techniques, John Wiley and Sons, 1997.

[8] K. Boese, A. Kahng, and S. Muddy, A new adaptive multistart technique for combinatorial
global optimization, Operation Research Letters 16 (1994), 101–113 .

[9] J. Boyan and A. Moore, Learning evaluation functions to improve optimization by local search,
Journal of Machine Learning Research 1 (2000), 77–112.

[10] J. Boyan, W. Buntine, and A. Jagota, eds., Statistical machine learning for large-scale opti-

mization, Neural Computing Surveys 3 (2000).
[11] E. Breimer and M. Goldberg, A supervised learning approach for detecting significant local

alignments, Currents in Computational Molecular Biology, RECOMB 2002 (2002), 26–27.
[12] E. Breimer, M. Goldberg, B. Kolstad, and M. Magdon-Ismail, On the height of a random set

of points in a d-dimensional unit cube, Journal of Experimental Mathematics 10(4) (2001),

583–597.
[13] E. Breimer, M. Goldberg, and D. Lim, A learning algorithm for the longest common subse-

quence problem, Proceedings of the Second Workshop on Algorithm Engineering and Exper-

iments, ALENEX (2000).
[14] J. Crutchfield and M. Mitchell, The evolution of emergent computation, Proceedings of the

National Academy of Sciences 23 (1995), 10742–10746.
[15] A. Czmuaj, L. Gasieniec, M. Piotrow, and W. Rytter, Sequential and parallel approximation

of shortest superstrings, 4th Scandinavian Workshop on Algorithm Theory SWAT (1994),

95–106.
[16] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis, Cambridge

University Press, 1998.
[17] M. Elloumi, Algorithms for the shortest exact common superstring problem, Special Issue of

the South African Computer Journal, University of the Witwatersrand, South Africa Publish,

(2000).
[18] M. Gelfand, A. Mironov, and P. Pevzner, Gene recognition via spliced sequence alignment,

Proc. Natl. Acad. Sci. USA 93 (1996), 9061–9066.
[19] M. Goldberg and D. Hollinger, Designing algorithms by sampling, Discrete Applied Math-

ematics 110 (2001), 59–75. (Also, M. Goldberg and D. Hollinger, Designing algorithms by

sampling, Proceedings of Algorithms and Experiments, Trento, Italy (1998).)
[20] M. Goldberg and D. Lim, A learning algorithm for the shortest superstring problem, Pro-

ceedings of the Atlantic Symposium on Computational Biology and Genome Information and

Technology (2001), 171–175.
[21] M. Goldberg and D. Lim, A learning approach to shotgun sequencing, Currents in Compu-

tational Molecular Biology, RECOMB 2002 (2002), 72–73.
[22] M. Goldberg, D. Lim, and M. Magdon-Ismail, A learning algorithm for string assembly,

Workshop on Data Mining in Bioinformatics BIOKDD, 7th International Conference on

Knowledge Discovery and Data Mining, ACM SIGKDD, 2001.
[23] M. Goldberg and D. Lim, Designing and Testing a New DNA Fragment Assembler VEDA-2,

(to appear).
[24] M. Goldberg and R. Rivenburgh, Constructing cliques using restricted backtracking, in (D.

Johnson and M. Trick, eds.), DIMACS Series in Discrete Mathematics and Theoretical Com-

puter Science: Cliques, Coloring, and Satisfiability, 26, 1996, 75–88.
[25] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.

[26] W. E. Hart, Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms:
Drug Docking Application, in (W. Banzhaf, J. Daida, A. Eiben, M. Garzon, V. Honavar,
M. Jakiela, and R. Smith, eds.), Proceedings of the Genetic and Evolutionary Computation

Conference, 1 (1999), 855–862.
[27] D. Hirschberg, A linear space algorithm for computing longest common subsequences, Com-

munications of the ACM 18 (1975), 341–343.

Administrator
13. A Learning Algorithm for the Longest Common Subsequence Problem, Eric Breimer, Mark Goldberg, Darren Lim, ACM Journal of Experimental Algorithms (online), Vol. 8, Article 4, 2003.

Administrator
7. John Wiley and Sons, New York, 1997

Administrator
15. A. Czmuaj, L. Gasieniec, M. Piotrow, and W. Rytter, Sequential and parallel approximation of shortest superstrings, Journal of Algorithms, Volume 23 (1) (1997), 74 - 100

Administrator
17. M. Elloumi, Algorithms for the shortest exact common superstring problem, South African Computer Journal 26, South African Computer Society, Johannesbourg, South Africa (2000)22-26.

Administrator
26. W. E. Hart, Comparing evolutionary programs and evolutionary pattern search algorithms: drug docking application, in (W. Banzhaf, J. Daida, A. Eiben, M. Garzon, V. Honavar, M. Jakiela, and R. Smith, eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), 13-17 July 1999, Orlando, Florida, Morgan Kaufmann Publishing, San Francisco (1999), 855–862.

Administrator
23. This paper has yet to be published but appears as a Technical Report, Computer Science Department, Rensselaer Polytechnic Institute 2003

Administrator
19. Please omit the second reference. The correct reference is[19] M. Goldberg and D. Hollinger, Designing algorithms by sampling, Discrete Applied Math-ematics 110 (2001), 59–75.

18 E. BREIMER, M. GOLDBERG, D. HOLLINGER, AND D. LIM

[28] D. Hirschberg, Algorithms for the longest common subsequence problem, Journal of the ACM

24 (1977), 664–675.
[29] J. Hunt and T. Szymanski, A fast algorithm for computing longest common subsequences,

Communications of the ACM 20 (1977), 350–353.
[30] A. Jain and R. Dubes, Algorithms for Clustering Data, Prentice Hall, 1988.

[31] J. Jang, C. Sun, and E. Mizutani, Neuro-fuzzy and Soft Computing, Prentice Hall, 1997.
[32] M. Kearns and U. Vazirani, Computational Learning Theory, The MIT Press, 1994.
[33] R. Kosaraju, J. Park, and C. Stein, Long tours and short superstrings, 35th IEEE Symposium

on Foundation of Computer Science (1994).
[34] J. Koza, Hierachical genetic algorithms operating on populations of computer programs,

Proceedings of the 11th International Joint Conference on Artificial Intelligence 1 (1989),
768–774.

[35] J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection, The MIT Press, 1992.
[36] D. Maier, The complexity of some problems on subsequences and supersequences, Journal of

ACM 25 (1978), 322–336.
[37] W. Masek and M. Paterson, A faster algorithm for computing string edit distances, Journal

of Computer and System Science 20 (1980), 18–31.

[38] K. Mehlhorn and S. Naher, LEDA: A library of efficient data types and algorithms, in (A.
Kreczmar and G. Mirkowska, eds.), Proceedings of the 14th International Symposium on

Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 379

(1989), 88–106, http://www.algorithmic-solutions.com.
[39] W. Miller and W. Myers, A file comparison program, Software–Practice & Experience, 15

(1985), 1025–1040.
[40] M. Mitchell, J. Crutchfield, and R. Das, Evolving cellular automata with genetic algorithms:

a review of recent work, Proc. of the First International Conference on Evolutionary Com-

putation and Its Applications EVCA (1996).
[41] T. Mitchell, Machine Learning, WCB/McGraw-Hill, 1997.

[42] E. Myers, An O(ND) difference algorithm and its variations, Algorithmica 1 (1986), 251–266.
[43] Sanger Institute: Human chromosome 22, http://www.sanger.ac.uk/HGP/Chr22.
[44] T. Smith and M. Waterman, Identification of common molecular subsequences, Journal of

Molecular Biology 147 (1981), 195–197.
[45] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press, 1998.

[46] TIGR: The Institute for Genomic Research, http://www.tigr.org.
[47] E. Ukkonen, Algorithms for approximate string matching, Information and Control 64

(1985), 100–118.

[48] L. Valiant, A theory of the learnable, Communications of the ACM 27 (1984), 1134–1142.
[49] J. Venter et al., The sequence of the human genome, Science 291 (Feb. 2001), 1304–1351.

[50] S. Wu, U. Manber, E. Myers, and W. Miller, An O(NP) sequence comparison algorithm,
Information Processing Letters 35 (1990), 317–323.

[51] W. Zhang, and T. Dietterich, Solving combinatorial optimization tasks by reinforcement

learning: a general methodology applied to resource-constrained scheduling, (submitted),
http://www.cs.prst.edu/∼tgd.

Computer Science Department, Rensselaer Polytechnic Institute, 110 Eighth Street,

Troy, NY 12180

E-mail address: {breime, goldberg, hollingd, limd}@cs.rpi.edu

Administrator
The address should indicate that Eric Breimer and Darren Lim are now affiliated with:Computer Science Department, Siena College, 515 Loudon Road, Loudonville, NY 12211email: ebreimer@siena.edudlim@siena.eduMark Goldberg and David Hollinger are still affiliated with:Computer Science Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180email: goldberg@cs.rpi.eduhollingd@cs.rpi.edu

Administrator
31. Prentice Hall, Englewood Cliffs, NJ

Administrator
32. MIT Press, Cambridge, MA

Administrator
33. R. Kosaraju, J. Park, and C. Stein, Long tours and short superstrings, 35th IEEE Symposiumon Foundation of Computer Science, IEEE Publishing, Los Alamitos, CA (1994) 166-177

Administrator
35. MIT Press, Cambridge, MA

Administrator
41. T. Mitchell, Machine Learning,McGraw Hill, New York, NY 1997.

Administrator
45. MIT Press, Cambridge, MA

Administrator
51. This paper has yet to be accepted but appears as a Technical Report, Department of Computer Science, Oregon State University 1998

Administrator
49. As a matter of practicality, this work is typically cited with Venter as author. But here are the other 200 co-authors:J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J. Mural, Granger G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans, Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides, Richard M. Ballew, Daniel H. Huson, Jennifer Russo Wortman, Qing Zhang, Chinnappa D. Kodira, Xiangqun H. Zheng, Lin Chen, Marian Skupski, Gangadharan Subramanian, Paul D. Thomas, Jinghui Zhang, George L. Gabor Miklos, Catherine Nelson, Samuel Broder, Andrew G. Clark, Joe Nadeau, Victor A. McKusick, Norton Zinder, Arnold J. Levine, Richard J. Roberts, Mel Simon, Carolyn Slayman, Michael Hunkapiller, Randall Bolanos, Arthur Delcher, Ian Dew, Daniel Fasulo, Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar Hannenhalli, Saul Kravitz, Samuel Levy, Clark Mobarry, Knut Reinert, Karin Remington, Jane Abu-Threideh, Ellen Beasley, Kendra Biddick, Vivien Bonazzi, Rhonda Brandon, Michele Cargill, Ishwar Chandramouliswaran, Rosane Charlab, Kabir Chaturvedi, Zuoming Deng, Valentina Di Francesco, Patrick Dunn, Karen Eilbeck, Carlos Evangelista, Andrei E. Gabrielian, Weiniu Gan, Wangmao Ge, Fangcheng Gong, Zhiping Gu, Ping Guan, Thomas J. Heiman, Maureen E. Higgins, Rui-Ru Ji, Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, Yiding Lei, Zhenya Li, Jiayin Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V. Merkulov, Natalia Milshina, Helen M. Moore, Ashwinikumar K Naik, Vaibhav A. Narayan, Beena Neelam, Deborah Nusskern, Douglas B. Rusch, Steven Salzberg, Wei Shao, Bixiong Shue, Jingtao Sun, Zhen Yuan Wang, Aihui Wang, Xin Wang, Jian Wang, Ming-Hui Wei, Ron Wides, Chunlin Xiao, Chunhua Yan, Alison Yao, Jane Ye, Ming Zhan, Weiqing Zhang, Hongyu Zhang, Qi Zhao, Liansheng Zheng, Fei Zhong, Wenyan Zhong, Shiaoping C. Zhu, Shaying Zhao, Dennis Gilbert, Suzanna Baumhueter, Gene Spier, Christine Carter, Anibal Cravchik, Trevor Woodage, Feroze Ali, Huijin An, Aderonke Awe, Danita Baldwin, Holly Baden, Mary Barnstead, Ian Barrow, Karen Beeson, Dana Busam, Amy Carver, Angela Center, Ming Lai Cheng, Liz Curry, Steve Danaher, Lionel Davenport, Raymond Desilets, Susanne Dietz, Kristina Dodson, Lisa Doup, Steven Ferriera, Neha Garg, Andres Gluecksmann, Brit Hart, Jason Haynes, Charles Haynes, Cheryl Heiner, Suzanne Hladun, Damon Hostin, Jarrett Houck, Timothy Howland, Chinyere Ibegwam, Jeffery Johnson, Francis Kalush, Lesley Kline, Shashi Koduru, Amy Love, Felecia Mann, David May, Steven McCawley, Tina McIntosh, Ivy McMullen, Mee Moy, Linda Moy, Brian Murphy, Keith Nelson, Cynthia Pfannkoch, Eric Pratts, Vinita Puri, Hina Qureshi, Matthew Reardon, Robert Rodriguez, Yu-Hui Rogers, Deanna Romblad, Bob Ruhfel, Richard Scott, Cynthia Sitter, Michelle Smallwood, Erin Stewart, Renee Strong, Ellen Suh, Reginald Thomas, Ni Ni Tint, Sukyee Tse, Claire Vech, Gary Wang, Jeremy Wetter, Sherita Williams, Monica Williams, Sandra Windsor, Emily Winn-Deen, Keriellen Wolfe, Jayshree Zaveri, Karena Zaveri, Josep F. Abril, Roderic Guigó, Michael J. Campbell, Kimmen V. Sjolander, Brian Karlak, Anish Kejariwal, Huaiyu Mi, Betty Lazareva, Thomas Hatton, Apurva Narechania, Karen Diemer, Anushya Muruganujan, Nan Guo, Shinji Sato, Vineet Bafna, Sorin Istrail, Ross Lippert, Russell Schwartz, Brian Walenz, Shibu Yooseph, David Allen, Anand Basu, James Baxendale, Louis Blick, Marcelo Caminha, John Carnes-Stine, Parris Caulk, Yen-Hui Chiang, My Coyne, Carl Dahlke, Anne Deslattes Mays, Maria Dombroski, Michael Donnelly, Dale Ely, Shiva Esparham, Carl Fosler, Harold Gire, Stephen Glanowski, Kenneth Glasser, Anna Glodek, Mark Gorokhov, Ken Graham, Barry Gropman, Michael Harris, Jeremy Heil, Scott Henderson, Jeffrey Hoover, Donald Jennings, Catherine Jordan, James Jordan, John Kasha, Leonid Kagan, Cheryl Kraft, Alexander Levitsky, Mark Lewis, Xiangjun Liu, John Lopez, Daniel Ma, William Majoros, Joe McDaniel, Sean Murphy, Matthew Newman, Trung Nguyen, Ngoc Nguyen, Marc Nodell, Sue Pan, Jim Peck, Marshall Peterson, William Rowe, Robert Sanders, John Scott, Michael Simpson, Thomas Smith, Arlan Sprague, Timothy Stockwell, Russell Turner, Eli Venter, Mei Wang, Meiyuan Wen, David Wu, Mitchell Wu, Ashley Xia, Ali Zandieh, Xiaohong Zhu

