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Abstract—We present novel indexing and searching
schemes for semantic graphs based on the notion of the
i.degrees of a node. Thei.degrees allow searches performed
on the graph to use “type” and relationship information,
rather than textual labels, to identify nodes. We aim
to identify a network graph (fragment) within a large
semantic graph (database). A fragment may represent
incomplete information that a researcher has collected on
a sub-network of interest. While textual labels might be
available, they are highly unreliable, and cannot be used for
identification. Since this problem comes from the classical
NP-hard problem of identifying isomorphic subgraphs, our
algorithms are heuristic. This paper presents an expansion
from our previous i.degree work to include i.indegrees in
addition to i.outdegrees. Thei.outdegrees of a node are
determined by the types in the node’s neighborhood, while
a node’s i.indegrees are determined by the types of the
nodes to which it is a neighbor. To start, all nodes in
the database are indexed (can be done offline) according
to their i.degrees. The nodes in the database are then
filtered and scored for similarity. We present the results
from Wikipedia and Random graphs.

I. I NTRODUCTION

In this paper we present an approach to searching
large databases for small networks,fragments, each
represented as semantic graphs. The following practical
situation motivates the problem. A researcher discovered
a small hidden network that connects people, events,
places, etc., and presented the result as a small graph,
which we call afragment. Suppose the researcher has
a reason to believe that the information accumulated
so far in the fragment can also be found in a central
database which contains the union of data collected by
other researchers. While the information collected by the
researcher may be scarce, incomplete, and unreliable, the
information in the database accumulated by many other
researchers over a long period of time should be more
complete and reliable. Inversely, the newly accumulated
data may contain items not found, or not available earlier,
and thus not in the database. If the researcher wishes
to compare the fragment with the data in the central
database, the problem of fragment identification must
be solved. The task is to find statistically significant

approximate matches to the fragment in the central
database. While text labels, such as “Joe” for a name,
may be incorrect, the “category” or “type” of the label,
such as “person” is much more likely to be correct. In
this paper, we make the assumption that all objects, in the
database and in the fragment, are assigned with reliable
types. Since usually there are only a relatively small
number of types, they partition the set of objects into
large groups which makes it difficult to uniquely iden-
tify objects. The search algorithms that we developed
identify the fragment within the database by using the
relationships/links between the objects and their types
in the fragment, and by attempting to find a “similar”
pattern in the database.

There are two specific subproblems that arise:(1)
searching for a fragment which does not contain in-
formation new to the database; and(2) approximate
matching of the fragment which may contain new in-
formation. We focused on the first of these problems.
The difficulty of this problem arises from its close
relation to the classical NP-hard computational problem
of identifying a subgraph which is isomorphic to a given
fragment graph in a given large graph ([1, 2]). On the
other hand, the nature of the input–semantic graphs
with labeled nodes and edges–offers the possibility of
achieving efficiency for an average input. However, the
theoretical aspect of the problem is only one part of
the challenge. The main difficulty of the problem stems
from the lack of a strict definition of an “approximate
match”. In a real life situation, the researcher working
on the problem relies on his/her intuition and experience
to identify the significant “likelihood” of his/her guess.
Thus, to develop a system that helps the researcher, it is
necessary to create a tool which can easily incorporate
this knowledge and intuition. Our approach can easily
accommodate the researcher’s input, orhints, during the
actual usage of the system.

A similar problem is that of querying a database of
graphs. Given a graph query, the task is to retrieve
graphs from a large database which contain the query.
The traditional approach ([4, 6]) is to perform the search



via graph-based indices. We apply the general indexing
idea to our problem of searching for a sub-structure (a
fragment match) in a large structure (the database graph),
and present it as a two-stage process:(1) an off-line
indexing of the graph database; and(2) an on-line search
which employs the results of indexing. In the practical
setting, indexing would be performed infrequently. The
indexing-enabled search would have to be executed for
every specific search request and is expected to be very
fast.

We index an arbitrary semantic graph via the com-
puting of i.degrees of its nodes. Thei.degrees of the
nodes are used to construct a hierarchical set of node-
partitionings, where each next partitioning is a sub-
partitioning of the previous one.

Our search algorithm starts by computing thei.degrees
of the nodes of the fragment and selecting some repre-
sentative node,the anchor. The i.degrees of the anchor
are then compared to that of the database nodes, and
a few of the most similar nodes are returned. The
identification of a match for the anchor is an important
first step in the general fragment identification problem.
This anchor search can be complemented by finding
network communities which contains the anchor as a
member (see [3]).

We test our search algorithms on two classes of
inputs: randomly generated graphs and the Wikipedia-
graph (see Section IV.) It turns out that the search on
randomly generated graphs yields very good results.
Thus, random graphs are easy, as opposed to the real
life graphs. It is considerably more difficult to achieve
good accuracy for the minimal Wikipedia-graph due to
its non-uniformity. The enhanced Wiki-graph, which
has additional types, achieves a higher rate of accuracy.
It is likely that any successful search would have to
be based on assumptions provided by an researcher,
related to the “shape” of the subgraph, to match a given
fragment. Additionally, the researcher should be able to
define the types to be used.

II. D EFINITIONS

We assume that the nodes of the input graph are
labeled by “non-confusable” categories, or types such
as “person,” “place,” “event,” and so on. The types are
distinct from general labels that may be incorrect, and of-
ten are not reliable. Thus, while a person is not confused
with an event, the names (labels) “John” and “Josef” can
be confused. In real-life applications, the user may deal
with labels that s/he considers completely reliable, so
those labels can be used as types. For convenience, we
assume that types are enumerated1, 2, 3, . . . , t, where
t is the total number of types used. Our graphs are

directed; all notations used but not defined here can be
found in [5].
i.outdeg: measure of the types in a nodes

i.Neighborhood. Given nodex, the i.outdeg(x) is
a vector of lengtht, where thekth coordinate is the
number of paths of lengthi that start atx and end
at nodes of typek. By extension, 0.outdeg(x) is the
vector representing the type ofx.
i.indeg: given nodex, the i.indeg(x) is a vector of

lengtht, where thekth coordinate is the number of paths
of length i that start at nodes of typek and end atx.

i.dist: this function computes the “dissimilarity”
of two nodes of the same type by comparing their
i.(in/out)deg. This is calculated by the Manhattan
distance between the vectors:

i.dist(v, w) =
i∑

j=1

t∑

k=1

|j.deg(v)[k]− j.deg(w)[k]|

wheredeg is eitherindeg or outdeg.
Dominating i.dist: this, like i.dist, is also a measure

of “dissimilarity,” but requires that the first node’si.deg
dominates the second, that is at everykth position the
first is not less than the second; else, the dominating
i.dist is considered to be some very large constant.

Fuzziness: this is a measure of the number of nodes
within a graph for which a particular nodev is similar
to. Two nodes may be consideredr-fuzzy to each other
if similarity(v, w) < r for somer ≥ 0.

Indexing: indexing is the process of assigning val-
ues to nodes as a preprocessing step. Each node’s
i.(in/out)degs fori = [0, k] are calculated; indexing
yields a hierarchical partitioning of the node-set.
N(x): this denotes the set of neighbors ofx. The

neighbors are the nodes that have incoming edges from
x. That is:v ∈ N(x) iff (x, v) ∈ E

Diversity: dvst(x) is the count of the unique types
in N(x); a node x is more diverse than a nodey
if dvst(x) > dvst(y) or if dvst(x) = dvst(y) and
|N(x)| > |N(y)|.

III. SEARCH ALGORITHM

This section details the algorithms used for locating
matches to the anchor within the database. We assume
the database has been pre-processed; each node is as-
signedi.degrees, fori = [0, k], wherek is a preselected
integer.

Before the query step, we have an indexed database
graphG, and a query fragment graphF . We indexF
using the same rangei = [0, k] as was used for indexing
G. Also, we are either given, or obtain algorithmically,
an anchor nodex from F .

Once an anchorx is specified, we search for a match
to x within the database. All nodes of the database



are ranked using the preselected similarity method,
i.distance or dominatingi.distance. Then the topn
candidates are returned, wheren is predetermined.

The basic approach we originally developed is with a
single node using similarity ofi.deg. A more advanced
method makes use of the anchor and some number,m,
of its neighbors . These nodes are them most diverse
neighbors ofx.(See Algorithm 1)

Algorithm 1 Fragment Search
Require: 1. fragment graphF

2. anchor nodex ∈ F

3. database graphG
4. i for the maximumi.degree to compare
5. n for the number of candidates to return
6. m for the number of neighbors to use in the search
7. a similarity functionSimilarity(node, node)

Let D be the sorted list of them most diverse nodes
in N(x)
for v s.t. v ∈ G AND type(v) = type(x) do

d← Similarity(v, x)
for j : 1→ m do
dtemp ← minw∈N(v)(Similarity(w,D[j]))
d← d+ dtemp

candidates← candidates∪ pair(d, v)
return the bestn candidates

We have improved on this by using a more sophisti-
cated method through filtering. We filter the candidates
based on if they pass some function. For our tests, we
used dominatingi.distance for filtering. If the candidate
passes the filter, then the algorithm checks if it is possible
for all the neighbors ofx to have a match among the
neighbors ofv such that each pair also meets the filter
requirement. This is done using bipartite matching from
the Boost Graph Library. If the candidate can pass the
filter, it is scored; at the end the best candidates are
returned.

IV. GRAPH GENERATION

Wikipedia Graph
The main graphs we used for testing were constructed

from Wikipedia. Each page is a node and page-links
are edges. Some, but not all, pages also have semantic
information, including types. Only pages with semantic
type information are used in the graph.

We used DBpedia.org, a website which stores a variety
of Wikipedia databases. We used “Ontology Infobox
Types” to gather the node and type information and
“Raw Infobox Properties” for the edges. Nodes which
had neither incoming nor outgoing neighbors were re-
moved from the graph.

Algorithm 2 Fragment Filter Search
Require: 1. fragment graphF

2. anchor nodex ∈ F

3. database graphG
4. H filter function
5. S score function
6. n for the number of candidates to return

for v s.t. v ∈ G AND type(v) = type(x) do
if H(v, x) = pass then

if ∃ a bipartite matchingM : N1(x) → N1(v)
s.t. ∀(xj , vk) ∈M,H(vk, xj) = pass then

score← S(v, x)
candidates← candidates∪ pair(score, v)

return the bestn candidates

TABLE I
WIKIPEDIA GRAPH PROPERTIES

Nodes Types Max Outdegree Edges
Minimal 1188437 26 649 3614485

Enhanced 1188437 42 649 3614485

Since the type distribution of the minimal Wikipedia
graph is nonuniform (see Table II), we have ex-
panded from previous work to use a second, enhanced,
Wikipedia graph in which the largest type (Place) was
broken into its subtypes (populated place, building,
mountain range, etc.). This enhanced graph resulted in
an increase to 42 total types.

Random Graph
The random graphs are the second type of graphs used

for experimentation; we generate them using statistics
collected from the Wikipedia graph. To do this we
redistributed all the edges uniformly amongst the nodes,
and then reassigned the types randomly between nodes.
Since the edges are uniformly distributed, this alters
their i.degrees, which in particular, develops more unique
i.degs. This graph has the same number of edges, but
slightly fewer nodes because some nodes were isolated
during the random edge distribution, and these nodes are
removed during processing.

V. PARTITIONING

The search for an anchor (or the fragment) is influ-
enced by the number of nodes with the samei.outdeg
and i.indeg. If this number is too large, the search may
require that more nodes than is feasible for an analyst
to use be returned to achieve a reasonable success rate.
Thus, it is important that the partitioning of the database
by i.degrees yields small, on average, partitions. The
partitioning data for the Wiki graph is presented in
TABLE II.



TABLE II
M INIMAL WIKIPEDIA GRAPH PARTITIONING STATISTICS

#Parts Max size Avg. size
0-deg 26 368775 457009
1-out-deg 18077 103073 65.7
2-out-deg 327609 17672 3.6
3-out-deg 469097 13421 2.5
1-in-deg 548917 7379 2.9
2-in-deg 573517 7379 2.1
3-in-deg 579509 7379 2.0

Table II shows us that partitioning by 1.outdeg pro-
vides on average 65.7 nodes with the same 0.deg and
1.outdeg. A partitioning by 3.outdeg shows an average
of 2.5 nodes with the same 0-,1-,2-, and 3.outdeg. While
it initially seemed that using onlyi.outdeg would be
sufficient because of its small average partition sizes,
in our initial testing (Fig.1) that proved to not be the
case. Since the maximum size of a partition is so large,
the i.indeg’s were needed for identification.

TABLE III
ENHANCED WIKIPEDIA GRAPH PARTITIONING STATISTICS

#Parts Max size Avg. size
0-deg 42 286082 28297
1-out-deg 21802 73295 54.5
2-out-deg 349398 15883 3.4
3-out-deg 478741 13179 2.5
1-in-deg 560115 6686 2.1
2-in-deg 583228 6686 2.0
3-in-deg 588777 6686 2.0

Table III shows that the enhanced graph partitions
better than the original. The enhanced graph has much
lower maximums while the average partition sizes are
also slightly lower than the minimal graph.

TABLE IV
3.OUTDIST FUZZINESS FOR100 RANDOMLY SAMPLED NODES

r 0 1 2 3 4
Avg. 1.6 4.6 16 40 62
Max 54 211 1717 5354 6968

Partitioning while it helps for understanding and
optimizing our solution, does not solve the problem.
Because we are attempting to locate fragments which
may be missing data or contain new information, we
must consider that nodes can have differenti.degs. That
is, even ify ∈ G is the ideal match tox ∈ F , x may not
have identicali.degrees toy. Considerr-fuzziness, as
we increase maximum difference,r, these groups grow
very quickly (Table IV). This indicates that searching for
a node byi.deg alone will not guarantee good precision.

VI. FRAGMENT GENERATION ALGORITHMS

As part of our testing methodology, we sought to
extract fragments from the database, anonymize them,
and relocate them within the database using our algo-
rithm. The fragment generation method uses a random
walk with restarts. In our testing we usedp = 0.9 and
α = 0.7. Note that the subgraphs generated are induced
subgraphs on the nodes: all possible edges that existed
in the database graphG will exist in the fragment graph
F .

Algorithm 3 Fragment Generation P-Random Walk ’p’
Require: 1. graphG

2. maximum sizen
3. probabilityp
4. constantα

Choose randomlyx ∈ G such that|N(x)| > 2
Add x to V (F )
u← x

previousSize← 1
while |V (F )| < n ∧ p >= p ∗ (αn) do

Choose at random a nodew from N(u ∈ G)
Attempt to addw to V (F )
u← w

restart← false

With probability p, restart← true

if restartthen
u← x

if |V (F )| = previousSize then
p← p× α

previousSize = |V (F )|

VII. VALIDATION AND RESULTS

To determine the filtering algorithm’s success, we
tested it on both random and wikipedia-based graphs.

With an initial filter of Dominating 3.outdist, in the
minimal wikipedia graph, there is much improvement
over the previous algorithm wich used 3-Neighbors. For
fragments of size 40 or 20, we see that filtering improve
the likelihood of success over using the 3-N search. We
also see that the having more data (larger fragments) still
displays more success. (Figure 1)

As we expand to include not only the outdegrees of
nodes, but also the indegrees, we see gains averaging
between 10-15% in both the Minimal and Enhanced
wiki-graphs (Figure 2) for fragments of size 40.

What we see in Random graphs with the 26 types
is near 100% success within the first five candidates,
(omited for clarity). We examined graphs with only 5
types to see the difference between the algorithms(Figure
3). We see that filtering with out- and indegrees, per-
forms the best. Filtering with only outdegrees is nearly



Fig. 1. 3.outdist search in Minimal Wikigraph, 3 Neighbors vs.
Filtering
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Fig. 2. Filtering with 3-out vs. 3-out/in in Minimal and Enhanced
Wiki Graphs
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Fig. 3. 5-Types Random Graphs filtering 3.outdeg vs. filtering 3.out
and 3.in
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identical to 3-Neighbor, 3.outdist search. This is not
surprising since most nodes have 3 or less neighbors so
the use of all neighbors does not necessarily add much to
the filter. The surprising result here is that 3-Neighbors
with dominating 3.out/indistance performs much worse
than that with only dominating 3.outdistance.

Fig. 4. Scoring with center+neighbors vs. center-only
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We considered several scoring methods including a
method which only included comparing the i.dist be-
tween the center node to the candidate node. We can
see that whether we are using the center node, or the
center node plus neighbors, adding indegree improves
the results. This is not necessarily true for all datasets or
methods of fragment generation. We also see that adding
information about neighbors during scoring improved the
success rate.

TABLE V
AVERAGE SEARCH TIME IN SECONDS

Fragment Size 20 30 40

out 168 153 159
in+out 196 181 183
out+filtering 162 162 163
in+out+filtering 87 88 86

These tests were performed over 50 samples. When
we consider indegree in addition to outdegree the time
taken on average does increase, however if we also use
our bipartitie-matching filtering technique the average
time decreases greatly. This is because many candidates
can be filtered out before the bipartite matching step is
necessary.

VIII. F UTURE WORK

Our experiments indicate that all, rather than some,
of the neighbors of the anchors has a positive affect on
the search. This feature is a step towards of the total



alignment of the fragment in the database graph. Al-
though incorporating the total alignment should improve
the accuracy, the difficulty of this improvement relates to
the computational complexity of this operation. The only
practical algorithm available is based on the backtracking
strategy, and as a result is time consuming. Thus, to make
the operation fast, the backtracking needs to be restricted,
which may negatively affect the procedure’s accuracy.

While the experiments in the enhanced graph show
improvement with only breaking apart the largest type,
this approach could be expanded, based on the user’s
needs, to generate sufficiently small types. The caution
that needs to be used here is that as we break apart
types we risk the assumption of non-confusable types
being broken. For example, a person could be a “Sci-
entist” and also a “Mathematician”. So as this route is
explored, it would also require the definition of a type
comparison function, likely with a probabilistic approach
to confusability within subtypes.

Another expansion would be incorporating guesses by
the user. We expect that any software system for solving
the fragment identification problem to be very flexible
when accommodating the users’ suggestions. Future
systems will also need to be able to provide suggestions
to the user to improve their likelihood of success. For
example, the system could specify additional information
(nodes or links to be discovered by the user) that could
improve the odds of an individual query.
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