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Abstract. The primary focus of this paper is to describe stable statis-
tics of the blogosphere’s evolution which convey information on the social
network’s dynamics. In this paper, we present a number of non-trivial
statistics that are surprisingly stable and thus can be used as bench-
marks to diagnose phase-transitions in the network. We believe that sta-
ble statistics can be used to identify anomalous behavior at all levels: that
of a node, of a local community, or of the entire network itself. Any sub-
stantial change in those stable statistics must alert the researchers and
analysts to the need for further investigation. Furthermore, the usage of
these or similar statistics that are based solely on the communication
dynamics and not on the communication content, allows one to diagnose
anomalous behavior with minimal intrusion of privacy.

1 Introduction

Large social networks, such as the Blogosphere, are now channels for a signifi-
cant portion of information flow. One would expect important social events to
manifest themselves on such social networks as changes to the information flow
dynamics, slightly before, during and after the events. More specifically, suppose
one tracks social groups which are identified based solely on the pattern of their
communication. One might ask whether a particular group gains in popularity
and has the potential for becoming a large movement, so that a thorough study
of this group is warranted. In order to answer questions like this, a picture of
what normal group dynamics and behavior look like is needed as a benchmark
against which hypotheses might be tested.

Our goal is to develop a framework for detecting anomalous behavior in
blogosphere-like social networks. In particular, we take the first step in this di-
rection by describing normal behavior against which anomalous behavior can
be calibrated. As our test-bed, we take data from the LiveJournal blogosphere.
There are certainly many parameters that can be extracted from the data. How-
ever, for any statistic of the social network’s evolution to be useful as a diagnostic
tool of anomalous behavior, the statistic should be stable during the normal func-
tioning of the network. Only then can we identify a change in the statistic, and
possibly connect it to some underlying change in its fundamental behavior.

The primary focus of this paper is to describe stable statistics of the blogo-
sphere’s evolution which convey information about the social network’s dynam-
ics. We categorize such statistics as follows:



(i) Individual statistics: statistics relating to properties of individual nodes,
such as in-degree and out-degree distributions;

(ii) Relational statistics: statistics describing communication links (edges) in
the network, such as the persistence of edges, correlation, and clustering
coefficients;

(iii) Global statistics: statistics relating to global properties of the network,
such as the size and diameter of its largest (“giant”) component and total
communication density;

(iv) Community statistics: statistics relating to the community (social group)
structure in the network; and

(v) Evolution statistics: statistics relating to evolution in the social network;
for example, the average lifespan of a social group.

We are interested in the dynamics of such statistics, in particular, their sta-
bility. In this paper, we present a number of non-trivial statistics that are surpris-
ingly stable and thus can be used as benchmarks to diagnose phase-transitions in
the network. The stability of these statistics is surprising because even though
the network size is stable, the network dynamics itself is far from stable–our
experiments show that close to 60% of the edges in the network change from
week to week. We believe that stable statistics can be used to identify anoma-
lous behavior at all levels: that of a node, of a local community, or of the entire
network itself. Any substantial change in those stable statistics must alert the
researchers and analysts to the need for further investigation. Furthermore, the
usage of these or similar statistics that are based solely on the communication
dynamics and not on the communication content, allows one to diagnose anoma-
lous behavior with minimal intrusion of privacy.
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Fig. 1. Blogograph generation example. Vertices are placed for every blogger who
posted or commented, the edges are placed from the author of the comment to the
author of the post (the blog owner). Parallel edges and loops are not allowed.

We define the blogograph to represent the communication within a fixed
time-period. For our experiments, this period is one week. The blogograph is a
directed unweighted graph with a node for every blogger and a directed edge



w |V | |E| GC C d α

35 111,248 376,878 96.0% 0.0788 5.336 2.87
36 118,664 411,294 96.0% 0.0769 5.327 2.74
37 120,549 410,735 96.0% 0.0752 5.375 2.79
38 119,451 386,962 95.8% 0.0728 5.455 2.82
39 113,296 323,062 95.2% 0.0666 5.641 2.80
40 124,329 430,523 96.3% 0.0764 5.332 2.77
41 121,609 380,773 95.9% 0.0705 5.471 2.81
42 124,633 415,622 96.2% 0.0739 5.349 2.74
43 123,898 403,309 96.5% 0.0713 5.425 2.81

Fig. 2. Statistics for observed blogograph: order of the graph (|V |), graph size (|E|),
fraction of vertices that are part of giant component (GC size), clustering coefficient
(C), average separation (d), power law exponent (α)

from the author of any comment to the owner of the blog where the comment
was made during the observed time period. Parallel edges are not allowed and
a comment is ignored if the corresponding edge is already present in the graph.
To study the evolution dynamics, we considered consecutive weekly snapshots of
the network. The communication graph contains the bloggers that either posted
or commented during this week and the edges represent the comments that
appeared during the week. An example blogograph is given on Figure 1.

Our data was collected from the popular blogging service LiveJournal. Live-
Journal imposes few restrictions on communication. What makes this network
particularly interesting for our purposes is that bloggers typically make decisions
to communicate and join social communities without strong influence from the
outside. For this reason we believe the network observed at LiveJournal has a
natural communication structure as the steady state of the network evolution.
This makes the LiveJournal Blogosphere an attractive domain for our research.

Much of the communication in LiveJournal is public, which allows for easy
access, especially given the real time RSS update feature provided by LiveJournal
that publishes all open posts that appear on any of the hosted blogs. In our
experience, the overwhelming majority of comments appear on a post within
two weeks of the posting date. Thus, our screen-scraping program visits the page
of a post after it has been published for two weeks and collects the comment
threads. We then generate the communication graph.

We have focused on the Russian section of LiveJournal. as it is reasonable
but not excessively large (currently close to active 250,000 bloggers) and almost
self contained. We identify Russian blogs by the presence of Cyrillic characters
in the posts. Technically, this also captures the posts in other languages with a
Cyrillic alphabet, but we found that the vast majority of the posts are actually
Russian. The community of Russian bloggers is very active. On average, 32%
of all LiveJournal posts contain Cyrillic characters. Our work is based on data
collected during September and October of 2006.



3 Global, Individual, and Relational Statistics

The observed communication graph has interesting properties. The graph is very
dynamic (on the level of nodes and edges) but quite stable if we look at some
aggregated statistics. For any week, about 70% of active bloggers will also be
active in the next week. Further, about 40% of edges that existed in a week will
also be found in the next week. A large part of the network changes weekly, but
a significant part is preserved. Some of the important parameters of the blogo-
graph illustrating their stability are presented in Figure 2. The giant component
(GC) is the largest connected subgraph of the undirected blogograph. A giant
component of similar size has been observed in other large social networks [5, 4].
The clustering coefficient (C) refers to the probability that the neighbors of a
node are connected. The clustering coefficient of a node with degree k is the ratio
of the number of edges between it’s neighbors and k(k−1). The clustering coeffi-
cient of the graph is defined to be the average of the node clustering coefficients.
The observed clustering coefficient is stable over multiple weeks and significantly
different from the clustering coefficient in a random graph with the same out-
degree distribution, which is 0.00029. The average separation (d) is the average
shortest path between two randomly selected vertices of the graph. We computed
it by sampling 10,000 random pairs of nodes and finding the undirected shortest
path between them. The blog communication graph is not significantly different
with respect to this parameter than other observed social networks [5, 6].

The in-degree of a node describes its popularity in a network. The popularity
is determined thought the interaction of network participants and depends on
the properties of the participants and the network structure. Many large social
networks [1, 4] have a power law in-degree distribution, P (k) ∝ k−α , where P (k)
is the probability a node has degree k. Figure 3 shows the in-degree distribution
averaged over the observed period. We observed a power law tail with parameter
α ≈ 2.81, which is stable from week to week. This value was computed using
the maximum likelihood method described in [3] and Matlab code provided by
Aaron J. Clauset.

Figure 6 shows the average cumulative in-degree distribution over 9 weeks of
observed data with an envelope that shows the maximum and minimum curves
over the same 9 weeks shown with grey area. The envelope curves appear very
close to the average value, clearly showing the stability of the in-degree distri-
bution.

The out-degree distribution of the network describes the activity levels of the
participants. Figure 7 shows the average cumulative out-degree distribution over
9 weeks of data with an minimum and maximum curve envelope. As with the
in-degree distribution, the envelope curves of the out-degree distribution appear
very close to the average value and illustrate the stability of the out-degree
distribution.

We use edge stability and edge history to evaluate the evolutionary dynamics
of individual edges in the snapshots of the evolving network. Edge stability
measures the number of the observed time periods that contained a particular
edge and the edge history measures how close the end points of the edge were



in the previous iteration conditioned on the activity level of the source of the
edge. Both edge history and edge stability can be measured in the directed or
undirected graph. We found that directed version to be more informative for
edge stability evaluation and the undirected version to be more informative for
edge history. Figure 4 presents the edge stability distribution shown on a log
scale. As shown, the majority of the edges appear only once or twice in the
observed period, but the network also contains some edges that are very stable
and appear almost in every observed week.

We define the history HT
ij of an edge (i, j) found in iteration T to be the

geodesic distance between vertices i and j in the graph of iteration T − 1. The
average edge history with minimum and maximum curve envelopes over nine
observed weeks of data is presented in Figure 5. This plot shows the average
portion of edges whose end points had a geodesic distance one, two, three, etc in
the previous observed week for each activity level (out-degree). The lower line
on the plot shows the portion of the edges in time period T that were present in
the the graph of time period T −1 and therefore had geodesic distance one. The
second line from the bottom shows the portion of edges whose end points had
geodesic distance at most two, third line is for portion of edges with geodesic
distance three, etc. The minimum and maximum curves for each line bound the
envelope around it. Clearly, the envelope is very close to the line itself. This
suggests that the edge histories are stable in the observed period. It is surprising
to see that the portion of the edges that repeat week to week conditioned on
the out-degree of the edge source is so stable. As Figure 5 shows the portion
of edges repeated in the next week is around 40% for vertices with out-degree
five, 45% for vertices with out-degree ten, and 47% for vertices with out-degree
fifteen. Furthermore, the portion of edges for which the end points had geodesic
distance greater then one follows the same trend.
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Fig. 3. Average in-degree distribution
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Fig. 4. Edge stability

4 Community and Evolution Statistics

Beyond statistics centering on individual vertices and edges, statistics of groups
may also be examined. In order to determine groups in the data, the Iterative
Scan algorithm presented in [2] was used. This algorithm produces sets of ver-
tices which are locally optimal with respect to some density function. A formal
definition of communities discovered is given as follows.

Definition Given a graph G(V, E) let function δ, called the density, be
defined on th set of all subsets of V . Then, a set C ⊆ V is called a cluster
if it is locally maximal w.r.t δ in the following sense: for every vertex x ∈ C

(resp. x 6∈ C), removing x from C(resp. adding x to C) creates a set whose
density is smaller than δ(C).

This definition is compatible with social science observations that a commu-
nity is a set of individuals with more communications within the set than outside
of it. Within the description above, the formulation of the density function δ is
left to the algorithm user. In these experiments, the definition is

δ =
Ein

Ein + Eout

+ λep

where Ein and Eout are the numbers of edges within the community and cut
by the community boundary respectively, ep is the edge probability within the
community, and λ is a parameter which can either increase or decrease the
amount of weight placed on the edge probability of a community. This weighting
was added to the density function improve the intuitive ”quality” of clusters in
sparse graphs such as the one detailed in this paper. Without this term, sparse
areas of the graph can be added to a cluster quite easily resulting in very large
communities with high diameters.
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Fig. 5. Average edge histories with envelopes. The bottom line presents the portion
of edges that existed in the previous iteration; every next line shows the portion of
the current edges whose endpoints in the previous iteration were on the distance not
exceeding the corresponding value.
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Fig. 6. Cumulative in-degree distribution with envelope for nine observed weeks
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Fig. 7. Cumulative out-degree distribution with envelope for nine observed weeks

The algorithm was seeded using the Link Aggregate algorithm described
in [2]. The number of clusters produced after optimization via Iterative Scan,
their average size, average density, and average edge probability are all shown
in Figure 8. Further, two plots showing size and density are given in Figure 9.
Note the similarities in both scale and shape of these plots. Also in Figure 9 is a
plot showing the boundary of each week’s plot. Here, each point is defined as the
largest 5% of the clusters in a given range along the y-axis of the plot. The portion
of this plot where the lines are furthest apart are areas of few communities.
However, it can be seen that each of the plots has an upper portion similar to
those observable in the preceding weekly plots. The plots also show that each
week has a number of low density communities of size 2. These communities are
merely seeds which optimization did not modify. They can be filtered out based
on some domain specific criteria, but in this case, were left in the data to get a
more general sense of the algorithm’s performance without obscuring details.

week |C| sizeavg δavg e
avg

p

35 7700 9.1827 0.5606 0.30258
36 7602 9.2324 0.5495 0.30522
37 7688 9.1895 0.5521 0.30258
38 8647 9.0304 0.5516 0.30259
39 9965 9.1915 0.5389 0.29669
40 7908 9.0282 0.5519 0.30556
41 9094 9.1223 0.5348 0.29901
42 8240 9.1368 0.5379 0.30066
43 8768 9.0991 0.5357 0.30282

Fig. 8. Cluster Statistics



Now that communities are clearly defined, the question of how they evolve
over time arises. For this paper, we have defined community evolution as follows.
The Iterative Scan algorithm takes as input a set of seeds and produces optimized
output communities. The output from running the algorithm on one week can
be used as input to the next week’s optimization. This causes some difficulty as
sets of connected vertices taken from one graph may not be connected in the
next. In order to get around this, the set of vertices that make up the optimized
community are placed into the next graph and the largest connected component
of this set in the new graph is used as a seed. A second difficulty is the definition of
when a community actually succeeds another. Given two successive communities
Ct and Ct+1 discovered in the manner described above, we consider cluster Ct+1

to be a continuation of cluster Ct if

|Ct ∩ Ct+1|

|Ct ∪ Ct+1|
> t

where t is a threshold value indicating how strong we require the continuation
to be. We define the lifespan of some initial community as the number of con-
secutive graphs in which the initial community exists or one of its continuation
communities exists.

We measure these lifespans with respect to some initial set of communities
which are discovered in the manner presented at the start of this section. Figure
10 shows a histogram of the lifespans with respect to three different starting
weeks in the 9 week data. These numbers appear to be quite stable.

5 Conclusion

In the observed graph, communication patterns are dynamic. Even with these
changes in the linkage of individual nodes, general statistics appear to be quite
stable. Beyond this, link evolution and community evolution present another
set of statistics which are stable. We propose that each of these sets of base
statistics can be used as a foundation upon with future mechanisms for detecting
anomalous individuals and communities can be built. In the future, this work
will be expanded to a variety of structurally different social networks. In these
explorations, additional in-depth statistics will also be examined.
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Fig. 9. The top figures show a size-density plot for weeks 35 and 40. Each point rep-
resents one discovered community. The bottom figure shows a line representing the
boundaries of each week’s plot.
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