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ABSTRACT

This paper is devoted to the problem of partitioning
the vertex set of a graph into two equally sized subsets (to
within one element) in such a way that the number of edges
cut is minimal. A sequence of n log n - time approxima-
tion algorithms is presented. It is proved that for almost
all graphs each member of the sequence produces a parti-
tion close to the best solution.

1. Introduction

This paper is devotced to the problem of partitioning the vertex set
of a graph G(V,E) into two disjoint subsets V; and V, in such a way
that

(8) V)l = I53V1 ], 1yl = 21l ;

(b) the number of the edges that have one end in V; and one end
in V, is minimal.

The problem and its diverse generalizations were studied in [1],
[5], [9], [10]. Itis known [6] that the problem is NP-complete, making
unlikely the existence of a polynomial algorithm producing an exact
solution for every graph. However, in the areas of its practical appli-
cations such as computer program segmentation [8], or layout of elec-
tronic circuits on computer boards ([3], [4], [7]), the problem is partic-
ularly important for graphs on many thousands of vertices. In such a
situation, one cannot afford even a quadratic algorithm.

In this paper we present a sequence of nlogn-algorithms that pro-
duce good approximate solutions. It is proved that for almost all
graphs without parallel edges, every algorithm of the sequence con-
structs a partition close to the best solution.

Throughout the paper the following notations will be used. Given
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a graph G,V = V(G) and E = E(G) denote respectively the set of ve
tices and the set of edges of G; n(G) = IV(G)I, p(G) = IE(G)I. WV
permit graphs to have parallel edges; however, loops are not allowe:
If x,y € V(G) then d(x) is the degree of x;d(x,y) is the number of tl
edges joining x and y. If A,B C V then p(A,B) denotes the number
edges of the form (x,y)(x € A,y € B).

We will consider only those partitions of V(G) that satisfy tl
condition (a) above. It is clear that if n = n(G) is even (resp. od

n n
then the number of different partitions is % n (resp. n—1 ). If
2 2

is a partition of V(G) then c,(G) denotes the number of edges cut |
7; ¢(G) = m'inc,,(G), c(n,p) = mgxc(G) where G ranges over the s
of all graph with n vertices and p edges.

Let G (n,p) = {G | n(G) = n, p(G) = p} where G has no par:
lel edges. Then K(n,p)=1 G (n,p)!; K(n,p,a) =1{G:G €
(n,p) and ¢(G) = ap(G)}

All concepts we do not explain here can be found in [2].

2. Upper and Lower Bounds
We start with the following simple bound
THEOREM 1. For every graph G(V,E) with IVl = nand |IE = p

p-n
2(n—1)

c(G) = .
ﬂ'—'z:—l)— if n is odd

if n is even,

PROOF. First let n be even. Then

iin
5[,,]«:(6) = $¢4(G) (
2 g
where o ranges over the set of all partitions of G.
Straightforward calculations show that in the right side of (*) tl
n—2
contribution of each edge is exactly n , therefore

2
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[ ]C(G) = [ ]p(G)
2
The result follows.

In the case of odd » instead of (*) we have

[,,fl ]c(o) = 3¢(G)

2

n
but now the contribution of each edge is equal to 2[ n—1
2

result-

-1

ing in
1 1
c(G) s 2(1 + n)p.

A lower bound for ¢(n,p) is derived by considering the following
graph G

Let s be the largest integer such that p = s(n—1) — -‘Z—(%——Q and

let r=p—s(n—1)+£2—1-)-. It can be easily proved that

0 =srsn-s- —2. Now, the set of vertices V and the set of edges E of
G p are defined by

V= {xy,x;,...,x,}
E={(xpx))li=1,...,5;j=1,...,n(i#)} U
{rgr XDl = s+2, . .. ,s+r+1}.
Thus, if r = 0 then G; P contains exactly s vertices of degree n—1

and thelr deletion produces an empty graph on n—s vertices. If r > 0
then G = {x;. . .. ,x;} is a graph with n—s vertices and r edges

(x5+15 :+2) Tt s(xs+l’xs+r+l)-
Routine calculations show that the minimal partition cuts the set

{x1, . . . .x,} into two parts of sizes [%J, [%] and
cGrp) = By 4 ¢ - (2202 gy

z + |zl
—

* .
one can see that G, , provides a

where {z} denotes the integer nearest to z and (z)* =

s2n—s) _ s=2r
2 4

Since p =
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lower bound for ¢(n,p) that is very close to the upper bound prove«
above.

CONJECTURE. For all n and p
c(n,p) = c(Gy p)-

From the proof of theorem 1 it clearly follows that if ¢(G) is clos:

to %p then for most partitions o the value ¢,(G) is close to —;-p a

well. It may seem from this that such graphs are rather rare. How
ever, this is not the case. As was proved in [8] if p/n - « almost al

graphs are such that for every partition c,(G) is asymptotically %

As a matter of fact, in [8] one can find essentially stronger results
The next theorem can be considered as an illustration of them. W
give here an independent and simple proof of the theorem.

THEOREM 2. For any positive a < % there exists a B such that i

p > Bnand n ~ « then

K(n,p,a)
-0
K(n,p)

PROOF. Let us fix some set V of n vertices and some partitio
o = (V,Vy). Also, let R(n,p,i) ( resp. R (n,p,i) ) denote th
number of graphs on V with p edges and ¢(G) = i(resp.c,(G) = i)
Then K(n,p,a) = 3 R(n,p,i) <2" 3 Ry(n,p.i).

IS ap I%sap

Let us assume that n is even (the odd n case is similar). Then

n_ n_n
n 4 4 2
K(np,@)<2"- 3| ;|- p—1i
i< ap
. o1
Since for any i < 5P
2| {2_n| (2] |P_=n
4 4 2 4 4 2
i—1 p—i+1 i p—i |
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(n2)(n2 _
on 4 4 2
P _
K("’p,a) Lq p q
< ,Where = |la
K(n,p) (nz n q = lap]
2 2
\ p
Then
q p—q _ q ;q
1.,_1 )
[2" 2"] Z,,2
P 1
2P
2
(1 5]
-n
) an 1 2 _ in
1 L2 (Ln2 - 1
\2 J . p p—q
( \
2 [2" 2H]L4n ]
\ P ) p —q
(
12
[p] 2V TP
1 ) 1 1
~P—q ) | | P
’ a4t T - /4 n
PR I U P 1. ,
e 2Pt %,,2
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= (1 1
2 | =n2—j+1  oal-p+q—j+1
1 2 4
Y I 12 .
j=1 i j+1 2np j+1
1 n
—p— — 1
2P ™1 . lnz—-l—p+1—i 2 —l-nz-—j+1 1 2P
q+i 4 2 2 2
N T SR < p-q
. 2 . ~ 2 = I Sy -
i= 2p+1 2" q+1—i j=1 2" j+1

2(1-a)
The result follows for p > Bn , where 8 is such that

3 B(3-a)
22. [——1—] 2 ..

n n n p(E-a)
22[1+%]2<\/Z-22-[ 1 ]2

2(1—a)

3. Algorithms

We now describe a sequence {Cut(2k)} of n log n algorithms th
produces approximate solutions to the problem. Each algorithm of tl
sequence reduces the problem for the original graph to that for
smaller graph and does so several times until the final graph is suff
ciently small to be treated by an exhaustive search procedure. We ¢
not specify this procedure. Let Sy, denote an arbitrary algorith
which for every input [G(V,E); A; B] where IVl < 2k, A and B a
disjoint subset of V and IAl, 1Bl = —2—IVI , produces a partitic
1 = (V,V;) such that A C V;, B C V, and, for which, with these re
trictions, the number of the edges cut by 7 is minimal. Since k

assumed to be bounded the running time of Sy, can be taken as a co:
stant.

We start with the descriptions of two procedures.

Procedure CONTRACTION (2k)

Input: Graph G(V,E) on 2kq vertices ( k,q are integers )

Output: Graph G’(V',E’) on 2q vertices.

1. Let xj,x5, . .. ,xy, be the order of the vertex set of G. For

subgraphs G1,Gy. . .. .G, induced on subse



ON THE MINIMAL CUT PROBLEM 301

X, = (Xl. e .ka),
X2 = (x2k+1. N .X4k). c e .Xq = (kaq—2k+l' P .kaq) .

2. Apply Sy to [G;;0;D]. Let 7y = (Yy—1,Y5) be the resulting
partitionof G; (i = 1,2, . . . ,q).

3. Form graph G'(V',E") on 2q vertices x;’, . . . ,x;,' defining two

vertices x;' and x;’ to be joined by m edges iff there are exactly m
edges between ¥; and Y. Stop. O

Procedure EXTENSION

Input: Graph G(V,E); _ordered set R ={x),x;, ....x}
(R C V;r = 2k—1); partition (V{,V,) of G—R.

Output: Partition (V,V;) of G.

1. If ris even go to 5 otherwise proceed to 2.

2. PutH =G - {x}}.

3. Apply EXTENSION to H; let (U;,U,) be the resulting partition

of H.

4, Calculate d(fl,L_ll) and d(fl,L_lz). If d(fl,ﬁl) =< d(fl,L_lz) then
put Vi=UyVy= Uy U {x}, otherwise put
Vi=U, U {Il},V2 = U,. Stop.

5. Form graph F on the vertices x,x;, . . . .X,,X,4},%,43 by con-

tracting subsets V,,V; into X, . 1, %, ,; respectively.

6. Apply Sy to [Fi{x,;1};{x,+5}]. Let (W;,W,) be the resulting
partition of F.

7. Construct partition (V,V;) of G from (W, W,) by substituting V;
and V, for %, , ; and %, , ; respectively. Stop. O

Algorithm CUT (2k)

Input: Graph G(V,E).

Output: Partition 7(V,,V,) of G; the number ¢ of the edges cut by .

1. PutH = G(V,E).

2. If n(H) < 2k apply S,;. Stop.

3. Calculate the remainder r of n = v(H) modulo 2k. If r > 0 go
to 4 otherwise go to 7.

4.  Construct sequence ¥y,X5, . . . , X, of vertices by the rule:

(1) xy is a vertex of the maximal degree; (ii) x,+ 1 is such

that 4 (x,+1) d(x;,x;+1)(n—i—1) is maximal; where d (x,+1) is
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the degree of ;1 in F = H — {xy, . . . ,x;_1}.

5. Apply CUT(2k) toH' = H - {x;, . . . .x,}; let 7 be the resultin
partition.
Apply EXTENSION to [H;x,%;. . . . .X,;7 ]. Stop.

Apply CONTRACTION(2k). Let H be the output.
Apply CUT(2k) to H; let 7 be the resulting partition.
Restore the partition T of H from T be the resulting partition.

10. Restore the partition + of H from 7 by replacing vertices of i
with the corresponding sets of H. Print. Stop.

© 2 N

4. Running Time and Accuracy

It is not hard to see that the running time of CUT(2k) is O(nlogn
for every fixed k. Consider:
1)  Step 4 in CUT(2k) can be performed in linear time.

2) CUT (2 k) calls itself recursively, each time on a graph half siz
of the previous. Therefore, logn calls are made to CUT(2k).

3) EXTENSION and CONTRACTION (2k) are evidently linear.

DEFINITION. A partition 7 of a graph G with n vertices and p edge
is called admissible if

pn

2(n—1) if nis even

€G) =1 p(a+1) ifnisodd’
2n

LEMMA. Let the input partition of EXTENSION be admissible an
let the sequence x;, . . . ,x, of vertices be chosen according to the rul

from Step 4 of CUT(2k). Then the output partition is also admissible.
PROOF. It is sufficient to consider the cases r = 1 and r even. W
will prove the case r even only since the case r = 1 is much simple
and can be done in a similar way.

Let us consider %r graphs defined by

Gl = G, Gi+1 = Gi_{fzr'—l’x_zi} (i = 1,...,% - 1)
From the rule in step 4 of CUT(2k) it follows that given G; an

%1 » %5 maximizes the quantity d’(%y;) — d(¥y, T3i—1)(n(G;) — 2
in G;, where d*(x) denotes the degree of x in the graph G;.
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Therefore if we prove the lemma in the case r = 2, then each of
the graphs G, 5, . . . ,G,,G gets an admissible partition and therefore
Step 6 in EXTENSION produces an admissible partition too.

Now, let {G(V,E); %}, T35 0 = (V,V,)} be the input of EXTEN-
SION, let x, be such that d(x;) — d(x;,x;)(n—2) is maximal, and also
let + = (V,,V,) be the output partition.

Then
d(xy) - d(x'l,x'z) + d(x;) — d(x'l,x';

2

€: < ¢o(G — {x,x5}) + d(xy,xp) +

d(%)) + d(%
= %p(G {Il,xz}) n= § + ( 1) 5 ( 2)
= —(p(G) - d(F)) - d(%,) + d(fl,fz))n -2, 4G) ; d(%,)

- %p(g). e T 3)(2”(6) + d(%),%,)(n—2) - d(F)) — d(&
Thus, the result would follow from the inequality
206) 4 ae,2)(n-2) - d(z) - d(5) = .
If it fails then Vx #x;
-2,’,’—5? + d(%),x)(n—2) — d(x) — d(x) > 0

due to maximality of d(x,) — d(x,%;)(n—2).

Therefore,
2p(G
—;p-g—l(n 1) + (n 2) g d(xy,x) > (n—1)d(x)) + ? d(x)
X 11 x A‘l
implying

2P(G) + (Pl—2)d(f1) > (n—l)d(fl) + 2p - d(fl)

which is not possible.
Now we are ready to prove the following.

THEOREM 3. If 7 is the output partition of CUT(2k) applied to a
graph G(V,E) then 7 is admissible. .
PROOF. It will be carried out by induction on the number © of calls
of the procedure S(2k).

If ® = 1 then n(G) < 2k and the result follows from Theorem 1.
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Let ® > 1 and let H be the graph to which §,, was applied the last
time. The number n(H) is apparently = 2k. Because of the lemma
we can assume that H is the last term of a sequence of graphs

Fy,F,. ... .F, = H such that F;, is constructed from F; by applying
CONTRACTION(2k) (i = 1,...,¢4—1) . Thus n(H) is even. Lel
71,23, . . . .2y, be the set of the vertices of H ordered in such a way

that z,;_;,z5; correspond to the classes of the same partition

7, = (Yp;-1,Yy  occurring in the course of applying

CONTRACTION(2k) (i = 1, . . . .d).

Let us denote by Z; the set of vertices of F; contracted into z;

1, . ,2d). Because of the induction assumption the partition

(Z5;- l,Zo,) of the subgraph T; induced on Z,; _; U Z,; is admissi-
(i =1, .d). Therefore, if

1ZjI(j = 1. . 2d),p, = p(T)), and = ¢o,(T) then

pP;i-m
= %p,-(l + 2m1—-1) = 2;_1(1' =1,....d).

Let us assume for simplicity that d is even. (The odd d-case is
similar ). If p;; = p(Z9—1 U 254,255 1 U Z)) (i #j) then every parti-
tion of F{ , that does notcut Z,;_; U Z,; forall i = 1, .d can be
interpreted as a partition of H. If one of these partltlons is admissi-
ble, an admissible partition of H; will be returned. Therefore, assum-
ing that none of such partitions is admissible we come to the following

inequality.
1 1 1
it b )

I

ll "

U
o;
ble
m

or
2-m-p-(d-1)
2dm - 1

<p *)
4

wherep = 3, pij .
ij=1
1w

Let us consider partitions of F; that cut every set Z,;_; U Z,; into
the parts Z,;_; and Z,; (i = 1,...,d) . Itis clear that
(a) every such partition can be originated from some partition of H,
(b) the mix}imal partition of such a kind cuts not more than

=P + 3 c; edges. So,
2 i=1
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1 m
e DS 57+ ,@fi P m- 121’"

_ 1 m N _ . m _ = 1
=Pt o PP = 5P Paem=1y"
Using (*) we come to

mo__ m@-) __ m . @=1)
v e E)S TP T Gam-Dem=D) P T 1PN 2dmo1)
mp(2dm—d) mdp

T~ Cm-1D)Qdm-1)  2dm-1 "
The proof is complete.
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