
Overlapping Communities in Social Networks

Mark K. Goldberg
CS Dept, Rensselaer

110 8th St. Troy, NY, USA
goldberg@cs.rpi.edu

Stephen Kelley
Oak Ridge National

Laboratory
Oak Ridge, TN, USA
kelleys@ornl.gov

Malik Magdon-Ismail
CS Dept, Rensselaer

110 8th St. Troy, NY, USA
magdon@cs.rpi.edu

Konstantin Mertsalov
CS Dept, Rensselaer

110 8th St. Troy, NY, USA
kmertsalov@gmail.com

William A. Wallace
CS Dept, Rensselaer

110 8th St. Troy, NY, USA
wallaw@rpi.edu

ABSTRACT
Identifying communities is essential for understanding the
dynamics of a social network. The prevailing approach to
the problem of community discovery is to partition the net-
work into disjoint groups of members that exhibit a high de-
gree of internal communication. This approach ignores the
possibility that an individual may belong to two or more
groups. Increasingly, researchers have begun to explore new
methods which allow groups to overlap. One problem with
existing approaches is that the definition of a community
comes as the result of a particular algorithm. Such an ap-
proach to ”defining”communities has been extended to over-
lapping communities with some success.

Our goals in this paper are twofold: first, to present an
axiomatic approach to defining overlapping communities in
terms of the properties a group should satisfy to be a com-
munity; and second, to justify the existence of overlapping
in the structure of social communities experimentally us-
ing LiveJournal Blog data. Historically, the justification for
overlapping groups has been primarily intuitive rather than
quantitative. We present a heuristic algorithm which out-
puts a collection of communities that satisfy the required
minimal properties and demonstrate that, in real-life so-
cial networks, a large number of individuals are members
of communities which have non-trivial overlap with other
communities.
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1. INTRODUCTION
The advent of the Information Age has opened new possi-
bilities in the field of social network analysis by making very

large repositories of data available to researchers. Phone
calls, electronic communication via email, and scientific pub-
lication co-authorship records are now stored in centralized,
relatively easily-accessible locations. In addition, many so-
cial networking services and blog-providers have emerged as
important forums for individual expression and discourse.
All of these provide researchers with a rich and publicly ob-
servable data to use in the analysis of social interactions.

As social networks grew to sizes far beyond the possibility
of manual processing, it became increasingly important to
develop computationally efficient, accurate algorithms that
can bring important features of a network to the forefront.
Essential to the understanding of these networks is the iden-
tification of groups, or communities. Accurate group detec-
tion offers insight into the structure and function of large
complex networks.

In this paper, we address two issues facing the field of com-
munity detection: (1) the lack of a commonly accepted defi-
nition of what constitutes a community, allowing for commu-
nities to overlap; and (2) a quantitative (statistical) analysis
of large-scale social network demonstrating significant num-
bers of communities which have non-trivial overlap.

The existing literature on locating communities in a variety
of different domains has led to various definitions of what
constitutes a community, or a group. The definitions range
from maximal complete subgraphs to sets comprised of indi-
viduals who are more similar to each other than to outsiders.
In general, the definition of a community has been based on
the output of some algorithm. The lack of a well accepted
definition of a community makes it difficult to fairly com-
pare the performance of different community detection algo-
rithms, especially since these works define a community as
the output of their algorithm

Much of the current work treats the problem of locating
groups as a hierarchical partitioning problem (see [20, 10,
13, 6, 8, 12, 19, 9, 4]). According to this approach, the com-
munity structure of a network is assumed to be hierarchical:
individuals form disjoint groups which become subgroups of
larger groups until one group, comprising the whole society,
is formed. While this assumption is valid for some types of
networks, e.g. organizational networks or taxonomies, many



social networks contain pairs of communities that overlap
while not containing each other as a sub-community. Con-
sider an individual in a social network representing “friend-
ship.” He or she may have friendship relations across many
different social circles, such as those focused around the
workplace, family unit, religious group, or social club. In
this case, assuming the hierarchical social structure of the
network would lead to missing important information about
members’ attachment to the numerous social circles with
which they concurrently interact. The observations above
are being used as an intuitive justification for designing algo-
rithms that find overlapping communities in social networks
(see [3, 2, 5, 1, 16, 7, 14]).

We first consider the definition of overlapping communities.
We formulate minimal properties (axioms) for a set of mem-
bers to qualify as a community. These are minimal require-
ments that often appear in the definitions in current use.
We attempt to give only the minimal requirements which
preserves flexibility and generality. The starting point is a
density measure defined on subsets of the vertices. Typi-
cally, the density function would represent the communica-
tion intensity in the network. The minimality of the require-
ments outlined by the axioms may lead to implementation
difficulties when the number of all sets satisfying the ax-
ioms is too big. Because of this possibility, we acknowledge
that depending on the specific application, filtering out of
some candidate sets based on auxiliary constraints might be
needed.

We then show empirically through quantitative experiments
that a definition of communities allowing for overlap is es-
sential for analysis of social networks. We empirically an-
alyze several social networks, including a small, commonly
used benchmark dataset, Zachary’s Karate Club ([21]), and
a large, real-life dataset, the network of communication in
the blog-provider LiveJournal ([11]). We present a heuristic
algorithm which outputs a collection of communities that
satisfy our axioms. We further demonstrate that, in real-life
social networks, a large number of individuals are members
of communities which have non-trivial overlap with other
communities. Using structural properties of communities
identified by our overlapping group detection algorithm and
the declared friendship relations of the underlying network,
we demonstrate that a significant number of the associations
are not captured if one restricts to disjoint communities.

2. DEFINING COMMUNITIES
A social network is a weighted graph G = (V, W ), where
the edge weights wij measure similarity. 1 For example, the
edge weight between two books would be large if the same
customer bought both books. An edge between two mem-
bers of an online social network might exist if they com-
municated with each other. A “community” of books might
represent a topic; a community of members on an online
social network might represent a social group. Such com-
munities are expected to overlap. Overlapping communities
pose a problem for standard definitions of communities, as
we will soon see. In the remainder of this paper, we will
focus on communication networks (though our discussion is

1If a social network is dynamic then one might have a time
series of such graphs; we consider here a static snapshot of
a network.

general), where communication can be viewed as a measure
of similarity.

The starting point is typically some notion of a set-density,
and for concreteness, we will use the density definition:

d(S) =
Win(S)

Win(S) + Wout(S)
, (1)

where Win(S) is the total weight of edges whose endpoints
are both in S, and Wout(S) is the total weight of edges
with one end point inside S and the other outside S. The
rationale behind this notion of density is that it captures
how much intra-group similarity there is compared with the
similarity between S and the outside world.

It is typically understood that communities should display
more intra-group similarity than extra-group similarity. This
is a self-evident intuition for non-overlapping communities,
but when communities are allowed to overlap, we have to re-
examine even such a basic intuition. To illustrate, consider
the stylized example below.

The idea in this picture is to depict some form of orga-
nized/coordinated ring-group which would intuitively pass
as a community (for example, a committee of NSF-reviewers).
Since we allow overlapping groups, a node could belong to
multiple communities, as illustrated by the shaded circles.
A node belongs simultaneously to this ring-community as
well as to other communities. By virtue of belonging to
those other communities, the node will communicate exten-
sively outside the ring-group (especially if the node belongs
to many other communities). This means that the node will
display more extra-group similarity than intra-group sim-
ilarity. There is no flaw with the intuition that a commu-
nity should display intra-group similarity; it is because com-
munities can overlap that the extra-group similarity can be
larger. Thus, we can rule out algorithms which search for
communities for which d(S) is larger than some threshold
(for example requiring intra-group similarity to be larger
than extra-group similarity means that d(S) > 1

2
). Note

that the ring in our example, though it is connected and
appears structured, is not particularly dense; in fact, if each
member connects to δ external nodes, then d(S) = 1/(δ+1),
which can be arbitrarily small. Other communities may not
have as low a density as this. We can go farther in saying
that this subset should be considered a community indepen-
dent of the natures of the other communities in the network.



Thus, a community is a locally defined object. Thus, meth-
ods which define a global objective function (for example
modularity [13, 4]) which is optimized to identify all the
communities would fail this locality property. Such meth-
ods have found success in partitioning a network, but when
overlap is allowed, it is not even clear how to define such a
global objective function.

It is useful to consider one of the algorithms proposed in the
literature for finding overlapping communities: the clique
percolation method [17]. In a nutshell, the algorithm first
finds all cliques of size k, and defines the k-clique graph
whose vertices are the k-cliques, and two vertices are are
adjacent if the corresponding cliques share k − 1 vertices.
The connected components of the k-clique graph define the
communities in the network; the nodes in the union of the
k-cliques which correspond to a connected component are
the community. For k = 2, clique percolation defines the
communities as the connected components in the network.
It would be hard to argue that, for reasonably sized k, a
community so defined would satisfy most intuitive expecta-
tions of a community; the problem with this definition is
that it sets up a very rigid definition for a community, not
much milder than requiring the community to be a clique
– if one edge is missing, or if two k-cliques overlap by only
k − 2 nodes, then it is not acceptable. Clique percolation
would not, for example, be able to find the group illustrated
in our toy problem above. The main problem with such a
definition is that it is too rigid, and is uniform over the whole
network, requiring all communities to “look the same”.

As already mentioned about our toy ring group, the density
is d(S) = 1/(δ + 1). One can easily verify that if we remove
a node u from the group, its density drops to

d(S − u) =
1

δ + 1 + δ/(|S| − 2)
.

Alternatively, suppose we try to add one of the neighboring
nodes z to S. For illustration, assume that this node has
one connection into S and β connections to other nodes. In
this case, adding z changes the density to

d(S + z) =
1 + 1/|S|

δ + 1 + β/|S|
,

which is smaller than d(S), when z has more connections to
the outside world than the average for nodes already in S.
This means that S is locally optimal with respect to single
node moves. Thus, the requirement of local optimality can
capture S as a community. Further, many different types of
community can be locally optimal, with varying densities;
and, locally optimal communities can overlap. Not being
able to improve a community (as measured by the density
d) is intuitive; this does not require a high density or a spe-
cific structure of the community. The unified idea of the
discussion is that a community is a locally defined object.
A community in one part of the network should not rely on
what is going on in another part of the network. Further,
community structure can vary over the network – commu-
nication in some communities can be more intense than in
others; their structures can be different; etc.

Community Axioms. We now state the minimum require-
ments of a community.

Connectedness. A community should induce a connected
subgraph in the network – if the only way to get from
one node to another in the community is via some ex-
ternal node, it suggests that the community is incom-
plete.

Local Optimality. According to an appropriate density
metric d(), predefined on all subsets of nodes, the den-
sity of a community cannot be improved with the re-
moval or addition of a single node. 2

Our community axioms posit, in particular, that commu-
nities are identified “locally,” within one-hop distance from
the set. These two requirements are the only requirements
we will impose. As we will see, these requirements alone
are sufficient for discovering communities which overlap, and
satisfy the intuitive properties we expect of a commuity.

Algorithmically, it is not easy to identify all communities
satisfying these properties, and so we resort to a simple
greedy heuristic, which we discuss next. Our goal is to show
that the communities discovered using this greedy heuristic
which satisfy the two community axioms already reveal that
overlap is essential in social networks; this in turn means
that one must use a definition of a community which allows
overlap and addresses all the issues discussed in this section.

2.1 Connected Iterative Scan
To demonstrate the effectiveness of these axioms at discov-
ering overlapping communities, any algorithm would do, so
long as the groups produced are fit the axioms formulated
above. We will use a modification of an algorithm presented
in [3] to discover communities satisfying our two axioms.

In [3], the authors present group detection algorithm Iter-
ative Scan. This algorithm, starting from a seed commu-
nity, will add or remove vertices iteratively until the group
is locally optimal with respect to a defined density metric.
Vertices are evaluated in order of increasing degree, recon-
sidering vertices from low degree to high repetitively. This
algorithm has been previously used for a variety of applica-
tions with interesting results (see [11]). A similar method
based on greedy local optimization was also given in [1].

The density metric itself can be defined any number of ways,
however, our analysis uses the standard density function in
Equation 1. Our experiments show that in many social net-
works, there are a very large set of potential communities,
i.e., sets that satisfy the two axioms above. Thus, the fil-
tering out of candidate sets to be dictated by the specifics
of the application domain might be necessary. We chose to
order them by d(S), and considered as most “interesting”
those communities which had more internal than external
communication (d(S) > 1

2
). This filter is consistent with

the notion of a “weak” community as defined by Raddicchi

2Note, that the local optimality requirement, but not the
connectivity requirement, was first introduced in [2, 3]. Ex-
amples can be easily developed of locally optimal sets that
induce disconnected subgraphs.



Figure 1: Overlapping groups found in Zachary’s
Karate Club dataset. Different shapes identify the
eventual group division. Groups were ordered to
correspond to the number of distinct seeds which
produced them. Groups were then selected until
the graph was covered. Additional examination of
groups which are produced by fewer seeds offers in-
sight into potentially overlapping subgroups of the
primary groups presented here.

in [19]. Note that this additional requirement should not
be expected of all communities when overlap is allowed. In-
deed, it would be interesting to look at the communities for
which d(S) < 1

2
, as these communities are still locally opti-

mal (cannot be improved by single node moves), nevertheless
the spend a significant fraction of their communication en-
ergy ourside the group. These communities are of a different
type, in that they are involved in overlap with many other
communities and/or they are quite sparse.

To ensure the connectivity of the identified groups, we pro-
pose a new variation of this algorithm called Connected It-
erative Scan. Given a set of users as an initial seed, the
algorithm proceeds through users in order of increasing ver-
tex degree. Each user is considered for addition to or re-
moval from the set as appropriate with changes being made
as the individuals are evaluated if the modification improves
the group’s density. Once every user has been considered,
the set’s connectivity is examined. If the set consists of
multiple connected components, the set is replaced by the
connected component with the highest density, after which
the optimization restarts. Selecting only the highest density
component effectively sidesteps the issue of repetitively opti-
mizing to the same, disconnected cluster. The optimization
is complete for a seed when no single addition or removal
increases the density of the connected set.

For this application, seeding is done via LinkAggregate as
presented in [2]. The algorithm efficiently produces seeds
that form a cover of the entire vertex set. Sample results of
this algorithm for a community analysis of Zachary’s Karate
Club data set [21] are given in Figure 1. In this case, the two
groups overlap because some individuals have equal number
of associations with both communities.

The advantage of using this group definition is that it doesn’t
state any requirements for specific structural properties of
groups. Compared to the Clique Percolation Method found
in [16], which only finds groups that are composed of an set
of overlapping k-cliques, this criteria will find groups with
a variety of centralized and decentralized structures includ-
ing cliques, stars, and chains. The disadvantage lies in the
number of sets that can be considered groups. However, this
can be managed by effective post-processing of results. For
instance, in the analysis of Zachary’s Karate Club dataset
given above, locally optimal groups are ranked in order of
the number of distinct seeds that produce them. Groups
which are discovered more often from distinct seeds may in-
dicate greater stability and with respect to this analysis, are
given a higher rank. These groups are then selected in order
of decreasing ranking until the entire graph is covered.

Looking at the Zachary karate club data, it is evident that
the overlapping communities make sense. We now consider
a much larger social network, LiveJournal, on which to val-
idate the need for overlap. It will thus be necessary to de-
velop some quantitavtive methods for measuring the signif-
icance of overlap, since we will not be able to use visual
validation.

2.2 LiveJournal Dataset
In order to complete this analysis as described, the underly-
ing network data needs to be composed of a communication
network as well as user traits. LiveJournal provides a set of
services which allow for rich user to user interaction via blog
postings, comments, friendships, and stated user interests.
The data set consists of user comment and interest records
for the Russian section of this service over a 10-week period
in 2008. An undirected network representing user comments
is formed by placing an weighted edge between users A and
B if A makes a comment in response to a post by B, with
edge weight determined by the number of times user A com-
ments on a unique post of B. This network is very large,
consisting of over 300,000 users and 2.75 million weighted
edges with a total edge weight of 5.6 million.

In addition to commenting on other users’ posts, each in-
dividual in LiveJournal may declare which users he or she
considers to be a“friend”. This friendship relation is encour-
aged by the Friend Feed feature, which presents new posts
from any of a user’s friends as soon as the user logs into
the system. The directed nature of this relationship as well
as the Friend Feed feature results in a scale free distribu-
tion of friendship in-degree. Small numbers of popular users
collect comparatively large numbers of incoming friendship
declarations while the vast majority of users collect little to
no incoming friendship relations. These links will be used to
determine the significance and similarity of groups and their
overlaps. They will be explored further later in the text.

3. SIGNIFICANCE OF OVERLAP
In order to demonstrate that group overlap is a significant
feature of some social networks, it is important first to con-
sider the features which pairs of groups should have to indi-
cate that the overlap between them is significant. Consider
the overlapping groups presented in Figure 2. For the sake
of notation, group A consists of white and grey vertices, and
group B is composed of the the black and grey vertices. By



Figure 2: An example pair of groups that overlap.
The overlap is identified by the grey vertices while
individuals in only one group are colored black or
white depending on the group of which they are a
member.

this definition, individuals represented by vertices colored
grey are members of both group A and B.

For a pair of overlapping groups to have significant overlap,
and thus be considered a non-separable pair, the groups and
their overlap must fit certain criteria. In a general sense,
each criterion serves to identify quality overlapping groups
that cannot be expressed via a single group (the union), a
two, or a three partition. These criteria can be described
conceptually as:

3.1 Structural Significance
The existence of overlap between a pair of groups should
enhance the “quality” of each of the groups individually. For
example, if the quality of each group is measured by the
ratio of edges internal to the group to those which are cut
by the boundary of the group, removing A ∩ B from A and
B in the groups expressed in Figure 2 would result in a
decrease in the quality of each group. The two vertices in
the intersection A ∩ B have the same degree within each
group as they have external to each group. Thus, relative to
the previous quality metric, the vertices should be a part of
each group since they increase the numerator while holding
the denominator constant. Therefore, the overlap is key to
the structural significance of both of the groups in Figure 2.

3.2 Group Validity
It is also important that each group be somehow verifiable
using a reasonable method relative to the input data. Ide-
ally, using some underlying traits of individuals in the net-
work being analyzed, groups should have higher trait simi-
larity between members than one would expect if member-
ship in groups were determined at random. Examples of this
type of validation have been used in various previous litera-
ture using age and location as traits of the individuals [15].
Group validity is essential in filtering out groups that are
products of random structures in the underlying communi-
cation graph and serve to ensure that the group detection is
accurate.

3.3 Overlap Validity
Using the same notion of trait similarity, the individuals
within the overlap must have some similarity with the re-
mainder of each group of which they are a member. In Fig-

ure 2, the graph is divided into three groups A−B, B −A,
and A ∩ B (white, black, and grey respectively). For over-
lap to be important, A − B and A ∩ B must be similar,
B − A and A ∩ B must be similar, and A − B and B − A
must be dissimilar relative to certain significant traits in the
data. That is to say, individuals in the overlap need to be
clearly similar to the remainder of either group. However, it
is necessary that the remaining individuals in each group be
dissimilar to those in the other group. If this dissimilarity
does not exist, the overlapping pair can be captured in a
single partition and overlap is not necessary to explain the
relationships in the data.

Pairs of groups that satisfy each of these criteria are funda-
mentally sound communities due to their structural signifi-
cance and their group validity. Conceptually, the existence
of overlap validity restricts how the individuals can be placed
in a partitioning. If all users of the three groups are placed
in a single partition, dissimilar vertices in A−B and B −A
are associated. If the vertices are placed in three partitions
according to color, a strong association between A ∩ B and
both A−B and B−A is missed. The vertices may be placed
into a pair of disjoint groups only if the similarity between
A∩B and both A−B and B−A is highly unbalanced. If the
two similarities are comparable, however, one does not have
justification to place the users in one group or the other. A
detailed description of each of these cases is given further
in the text. Significant numbers of non-separable pairs indi-
cate that overlap is an essential component of communities
within the network.

3.4 Cohesiveness and Similarity
In sociological literature, group cohesion is defined as the
driving force that brings a set of individuals together to form
a group ([18]). Cohesive forces can take a number of different
forms: individuals coming together to perform a task, the
threat of external competition for resources, or the underly-
ing similarity of members of the groups. In the previously
described LiveJournal dataset, friendship declarations can
be used to approximate this cohesion. Due to the Friend
Feed provided by LiveJournal, friendship declarations are a
clear indicator of interest. By declaring a friendship, the
declaring user is notified whenever his or her ”friend” makes
a post. It can be assumed that individuals which attract a
large number of these friend declarations are highly impor-
tant to the discourse on some set of topics. Thus, friendship
declarations serve as a proxy for some set of declared inter-
ests from each user. In this analysis, an individual is defined
as influential if he or she has a friendship in-degree of 300
or more. This criteria marks approximately 4,800 bloggers
as influential.

To measure the cohesiveness of a group, we propose the fol-
lowing method. For the global society, compute a vector
G where, for every influential blogger i, Gi is the observed
probability that a randomly selected person will list i as
a friend. For each group l, we can similarly define a local
friendship vector Ll where for each influential blogger i, Ll

i is
the probability that a randomly selected person from group
l will list i as a friend. With these two vectors, a notion of
cohesiveness can formally be defined as the cosine similarity
between them.



similarity(G, Ll) = cos(θG,Ll) =
G · Ll

‖G‖‖Ll‖
(2)

A low value of similarity(G, Ll) for a given group l implies
that the local and global friendship vectors are orthogonal,
indicating that the group has a collection of interests that
appear at probabilities that are significantly different from
those of the global population. We examined this measure
relative to a cohesion of each member of a set of randomly
selected groups of the same size. A large difference between
the cohesion of an observed group and the expected cohe-
sion of a random group of the same size indicates that the
observed group has a cohesive set of interests different from
the global population. This demonstrates that the group
in question has a unifying set of traits among its members
and serves as group validation. As additional validation, the
average similarity between the friendship vectors of pairs of
individuals within a given group can be compared to the
expected similarity of random pairs selected from the entire
graph. Communities with higher similarity between pairs
than pairs selected from the whole graph have more cohe-
siveness between users.

Further, the concept of cohesion can be used to compare
pairs of communities that overlap. Consider two overlapping
groups A and B similar to the groups shown in Figure 2.
The intersection of the groups is given by A∩B. The set of
vertices which exist only in A is given by A−B and the set
of vertices which exist only in B is given by B−A. A group
with justified overlap will have a stronger similarity between
the intersection A ∩ B and each set B − A and A − B than
the similarity of the sets B − A and A − B. As previously
defined, pairs of groups which match this criteria are called
non-separable pairs. Significant numbers of non-separable
pairs indicate the existence of important associations which
are missed when a group analysis is restricted to a collection
of disjoint sets. This can be quantified in an overlap validity
measure as

OV(A, B) =
1

2
(sim(A ∩ B, A − B) + sim(A ∩ B, B − A))

−sim(A − B, B − A)

where both sim(A ∩ B, A − B) and sim(A ∩ B, B − A) are
greater than sim(A − B, B − A)

4. RESULTS ON LIVEJOURNAL
For the LiveJournal dataset we applied our Connected Iter-
ative Scan (CIS) algorithm to produce a set of communities
which satisfy the axioms, and as a point of reference, we also
partitioned this graph using the algorithm (CNM) designed
by Clauset, Newman, and Moore ([6]). The results of the a
quantitative analysis of the significance of community over-
lap in the network are presented in Table 1. It shows the
number, size, and coverage differences of the groups identi-
fied by CNM and CIS, respectively.

The partitioning (CNM) produces a small number of non-
overlapping groups across a wide variety of sizes, while CIS
produces a much larger number of smaller (overlapping)
groups which do not cover the entire graph. Note that cov-
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Statistics of Groups Found via CNM and CIS
Groups AvSize AvDens Q Cov

CNM 264 1190 0.745 0.485 100%
CIS 14903 168.8 0.455 – 47.5%

Table 1: Statistics of groups from CNM and CIS

erage is not a requirement – it is not necessary for every
node to belong to a cluster. Rather, we are interested in
finding those groups which naturally overlap, and studying
the significance of this overlap.

If the overlapping groups detected fit the requirement of hav-
ing structural significance, removal of a pair’s overlap will
produce a decrease in group quality, as measured by the den-
sity d. Overlapping groups are more compelling when the
overlap is structurally necessary for each group. After filter-
ing out groups which are a subset of a larger group (a trivial
form of overlap), the remaining overlapping groups display a
high degree of structural significance for the overlap. Specif-
ically, for 80.8% of the overlapping pairs, both groups in the
pair experience a decrease in density if the intersection is
removed. Figure 3 shows more details of the exact distri-
bution of changes in density when the overlap is removed.
Even though we observed that some groups are improved
by the removal of intersection, the overwhelming majority
of groups experience a significant decrease in density. We
conclude that the overlap is structurally significant.

We now investigate the validity of the groups found, with
respect to user traits. Figure 4 shows the average pair-
wise similarity between users within a community as well
as the average similarity between users in random groups,
where similarity is defined as the Jaccard index between the
two individual’s friendship declarations. The figure shows
that groups produced by CIS have much larger amounts of
similarity between users than the random case. Further,
group validity can be observed using the notion of cohe-
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jority of the discovered groups than one would ex-
pect at random. The plot contains 1279 points rep-
resenting the average pariwise similarity between
groups of a given size while the random data con-
sists of 554 points showing the same value. The error
bars in the random data represent ± one standard
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siveness presented earlier. The distribution of average cohe-
siveness for various sizes may be examined by using the set
of groups generated via Connected Iterative Scan, groups
resulting from a partitioning using CNM, and randomly se-
lected groups. These values are plotted with respect to size
in Figures 5 and 6.

From these plots, a number of conclusions can be drawn.
First, both group detection algorithms produce communi-
ties that are more cohesive than one would expect for a ran-
dom group of a given size. CNM produces groups with high
levels of cohesion for sizes larger than 5000 users, while CIS
produces many groups in the 100 to 5000 user size which
are not found via CNM that have better than random cohe-
sion. Both methods appear to find similar groups with high
levels of cohesion in the 10-100 user size. The two previous
plots show that the groups discovered are reasonable and,
for a majority of the overlapping groups, overlap is an im-
portant structural component. The third significant feature
is overlap validity. Figure 7 shows the overlap validity mea-
sure over pairs of groups with a given overlap. This value
is compared with the overlap validity measure for randomly
selected groups with the same size and overlap. The x-axis
denotes the overlap of the pair, where overlap is defined as
the Jaccard index of the two sets. Clearly, there is a larger
difference in similarity between the groups identified via CIS
and those generated at random.

For the 14903 unique groups that were discovered, 6373(∼
30%) of them overlap with at least one other group such that
the pair can be considered non-separable by the three valid-
ity conditions described previously. These pairs are com-
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Figure 5: A plot demonstrating the cosine similar-
ity between the interest vector for groups identified
via CNM and CIS and the global interest vector.
Each red point shows the size and similarity of a
group discovered via CIS, while blue points repre-
sent groups found via CNM. The green lines rep-
resent the average cosine similarity of a randomly
selected group of the same size plus and minus one
standard deviation. Smaller values along the y-axis
indiate significant differences from the global inter-
est distribution. A simplified version of this plot
showing the average cosine similarity across all sizes
is given in figure 6.

posed of 125740 unique users, a very significant portion of
the graph.

Further, a significant portion of the non-separable groups
have comparable similarity between the intersection A ∩ B
and both of the sets B − A and A − B. If the similarities
are considered comparable when they are within 5% of each
other, 3544 of the non-separable pairs have an overlap that is
associated equally with the remainder of each group. These
groups consist of ∼ 100, 000 unique users. The existence of
these groups is particularly significant in justifying overlap
between communities. They clearly show that many sets
of users are equally associated with distinct groups. Using
a partition-based method for the detection of communities
would either merge the entire pair into one group, failing
to recognize the dissimilarity between the vertices in sets
A−B and B −A, or placing the intersection with A−B or
B −A, missing the connection between the intersection and
the other set.

5. CONCLUSION
Previous attempts at developing algorithms for the detection
of overlapping communities have been primarily intuitive.
These methods have been developed without first examin-
ing to what degree overlap occurs naturally in networks. A
large amount of non-separable overlap would indicate that
the added complexity of new methods which allow for over-
lap is essential to capturing all relationships expressed in
the data. As a test network, we have examined a social
network composed of communication on a popular blogging
service LiveJournal. We have shown empirically that there
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Figure 6: A plot demonstrating the average con-
sine similarity between the interest vector of groups
identified via CNM and CIS and the global interest
vector. Each red point shows the average similarity
of all groups of that size found via CIS, while the
blue points represent the same values for groups dis-
covered via CNM. The green lines represent the av-
erage cosine similarity of a randomly selected group
of the same size plus and minus one standard devi-
ation. Smaller values along the y-axis indicate sig-
nificant differences from the global interest distri-
bution. A plot showing all points is given in Figure
5

are many groups, composed of many users which overlap in
a non-separable way – removing the overlap would decrease
the quality of the groupings substantially. Disregarding this
overlap would throw away the subtle relationships between
different social communities, a fundamental aspect to the
functioning of social networks.

In performing this empirical study, we developed methods
for identifying significant (non-separable) overlap. For the
overlap between groups to be considered significant, it must
satisfy certain criteria. First, the inclusion of the common
region into either group should enhance the quality of the
groups by some metric. In addition, the groups themselves
should be verifiable as significant through the use of a set of
relevant user traits. Finally, the similarity between compo-
nents of both groups involved in the overlap must be such
that the intersection is more similar with the remainder of
each group than the remainder of the groups are with each
other. If each of these criteria is satisfied, placing the mem-
bers of the group in some partitioning will not capture the
subtle associations present in the data.

We showed that two commuity axioms, connectivity and lo-
cal optimality, are enough to extract groups with significant
overlap. In fact the definition is so flexible that it can find
groups of very different forms. In building algorithms for
social networks, it is essential to allow for overlap and for
groups to be locally and non-uniformly defined. Our com-
munity axioms achieve this, and a simple greedy heuristic
to find sets which satisfy these axioms appears to work well
in practice.
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size and overlap.
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