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ABSTRACT
We study the communication dynamics of Blog networks,
focusing on the Russian section of LiveJournal as a case
study. Communications (blogger-to-blogger links) in such
online communication networks are very dynamic: over 60%
of the links in the network are new from one week to the
next, though the set of bloggers remains approximately con-
stant. Two fundamental questions are: (i) what models ade-
quately describe such dynamic communication behavior; (ii)
how does one detect changes in the nature of the communi-
cation dynamics. We approach these questions through the
notion of stable statistics. We give strong experimental evi-
dence for the fact that, despite the extreme amount of com-
munication dynamics, several non-trivial aggregate statistics
are remarkably stable. We use stable statistics to test our
models of communication dynamics: any good model should
produce values for these statistics which are both stable and
close to the observed ones. Stable statistics can also be used
to identify phase transitions, since any change in a normally
stable statistic indicates a substantial change in the nature
of the communication dynamics.

Our model for the communication dynamics in large social
networks is based on the locality of communication: a node’s
communication energy is spent mostly within it’s local social
“area.” By varying the definition of a nodes’ social area, our
model can be used for a variety of social networks. Our re-
sults with different definitions of locality show that the best
approximation to the stable statistics observed on the blog
network supported by LiveJournal occurs when the social
locality is defined as the union of clusters (social groups)
containing the node, and when nodes communicate within
their locality using a preferential attachment strategy.
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1. INTRODUCTION
The structure of large social networks, such as the WWW,

the Internet, and the Blogosphere, has been the focus of
intense research during the last decade (see [1, 7, 8, 12, 17,
19, 20, 21, 22]. One of the main foci of this research has been
the development of dynamic models of network creation ([2,
11, 22, 18]) which incorporates two fundamental elements:
network growth, with nodes arriving one at a time; and some
form of preferential attachment in which an arriving node
is more likely to attach itself to a more prominent existing
node than a less prominent one one (the rich get richer).

Once a network has grown and stabilized in size, how does
it evolve? Such an evolution is governed by the commu-
nication dynamics of the network: links being broken and
formed as social groups form, evolve and disappear. The
communication dynamics of these networks have been stud-
ied much less, partially because the typical networks studied
(the WWW, the Internet, collaboration networks) mainly
exhibit growth dynamics, and not communication dynam-
ics. Clearly, as a network matures, the growth (addition of
new users) becomes a minor ingredient of the total change
(see Figure 1). Further, links in a socially dynamic net-
work such as the Blogosphere should not be interpreted as
static. The posts made by a blogger a week ago may not
be reflective of his/her current interests and social groups.
In fact, blog networks display an extreme communication
dynamics. Over the 20 week period shown in Figure 1, in
a typical week, 510,000 pairs of bloggers communicated via
blog comments. Out of those about 380,000 are between
pairs of bloggers who did not communicate the week before,
i.e. over 70% of the communications are new. What models
adequately describe the dynamics of the communications in
such networks which have more or less stabilized in terms of
growth?

To begin to address this question, one must first develop
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Figure 1: Edge and vertex dynamics. Clearly the
rate of growth is decreasing however the fraction of
new edges which appear in a week remains approx-
imately constant at over 70%.

methods for testing the validity of a model. In such an en-
vironment of extreme stochastic dynamics, one cannot hope
to replicate the dynamics of the individual communications,
but rather the evolution of interesting macroscopic proper-
ties of the communication dynamics. Particularly interest-
ing macroscopic properties are those which are time invari-
ant. We refer to such properties as stable statistics. As we
demonstrate, even in such an active environment, certain
statistics are remarkably stable. For example: the power-
law coefficient for the in-degree distribution, the clustering
coefficient, and the size of the giant component (see Table
1).

1.1 Our Contributions
Our goal is two-fold. First, to demonstrate experimentally

that a (non-exhaustive) set of non-trivial statistics are in fact
stable in the Russian section of LiveJournal. Such stable
statistics may then be used to validate models, characterize
networks and identify phase transitions (testing for when the
model changes). Second, to present a locality based model
for communication dynamics. We show (through simula-
tion) that our model stabilizes to an equilibrium in which
the aggregate statistics of the communication dynamics ag-
gregate are stable. Further, among the set of models we
tested, the values for of the stable statistics from our model
best reproduces the statistics.

Stable Statistics.
Our case study was the Russian section of LiveJournal.

Over an observed period of 20 weeks, roughly 153,000 users
are active in any week period. The size of this set is quite sta-
ble (changes typically from 1 to 2%), although the makeup
of the set changes drastically from week to week. Surpris-
ingly many aggregated statistics computed for the Blogo-
graph show strong stability. Among those stable statistics
are: the distribution of the in-degrees and the out-degrees
of the nodes; the (overlapping) coalition distribution as de-
scribed by the cluster density and size; and, the coalition
lifespan distribution.

The nodes of the Blogograph represent bloggers and the
directed edges between them represent all pairs {A, B}where
blogger A visited the blog of B during the week in question,
and left a comment to a specific post already in the blog.

We consider the following five types of stable statistics:

(i) Individual Statistics: properties of individual nodes
such as the in-degree and out-degree distributions for
the graph

(ii) Relational Statistics: properties of edges in the graph
such as the persistence of edges and clustering coeffi-
cients

(iii) Global Statistics: properties reflecting global infor-
mation such as the size and diameter of the largest
component and total density

(iv) Community Statistics: properties relating to group
structure such as the community size and density dis-
tributions

(v) Evolution Statistics: properties related to the evo-
lution of graphs such as the average lifespan of com-
munities

The purpose of collecting these statistics is two-fold. First,
they create a baseline which describes the normal behavior
of individuals, communities, and the network as a whole.
Once this base has been established, anomalous behavior at
each of these levels can be identified and investigated fur-
ther. Second, stable statistics can be used for testing any
model of the network dynamics, as any model which at-
tempts to replicate the communication dynamics must, in
particular, be able to reproduce these statistics. Further-
more, the quality of a model can be measured by how well
the statistics computed from the network generated by the
model (in equilibrium) replicate those observed in the real
network.

Locality based Models of Communication Dynamics.
Existing growth-based models fail to adequately replicate

the observed stable statistics, as they do not capture commu-
nication dynamics. We consider models for communication
dynamics which take as input: (a) The current (observed)
communication graph; and, (b) each user’s out-degree (com-
munication energy) at the next time step (or a distribution
over for the user’s out-degree). These two inputs are stan-
dard for existing growth models (such as the preferential
attachment growth model). Such models are only applica-
ble when the communications are open (observable to all
nodes). The output is the communication graph at the next
time step, based on the model for probabilistic attachment
of each node’s out-edges.

We discuss intuitive extensions of growth models for mod-
eling communication dynamics and illustrate that these ex-
tensions are inadequate for modeling the observed stable
statistics. We present a locality based model which relies on
two fundamental principles to more accurately reflect the
observed communication dynamics. First, our concept of
locality reduces the set of nodes a node can attach to in the
next time step (a week in our case). This locality is based
on structural properties of the current (observable to all)
communication graph. The locality represents a semi-stable
set of “neighbor” nodes that an individual is highly likely to
connect to, and can be interpreted as that individuals view
of the communities she belongs to. We test various struc-
tural (graph theoretic) definitions of a node’s social locality,
ranging from trivial localities such as the entire graph to



notions of a node’s neighborhood (e.g. the 2-neighborhood;
the clusters to which a node belongs). Second, after ob-
taining a node’s locality, one must specify the attachment
mechanism, the mechanism used by the individual to select
the nodes in her locality to which she will connect at the
next time step. We test a number of different attachment
mechanisms which one could consider, ranging from uniform
attachment to some form of preferential attachment. Thus,
we present results using each of the various choices for the
locality and attachment mechanism.

Such probabilistic models are Markov chains, and we test
a model’s performance by comparing the values it produces
for the stable statistics after it has equilibrated. We find ex-
perimentally that the mixing times are small and the equi-
librium statistics are independent of the starting state (the
chains are ergodic), hence the equilibrium distribution is
unique. Our results indicate that our locality based model
with locality defined as the union of clusters to which a node
belongs and a preferential attachment mechanism produces
the best values for the stable statistics.

2. CLUSTERS
The notion of a social community is crucial to our model

of a Blog network. The underlying idea of our model is that
every user selects the nodes to visit (to leave a comment)
from the set of nodes that belong to a relatively small “area”
of a node. Our experiments with different definitions of the
local area of the node show that the best approximation to
the observed statistics is achieved if the area is taken as the
union of clusters containing a given node. Our definition of
network clusters is borrowed from [4, 5, 6] with an important
specification of the notion of the density of a set of nodes in
a network.

Definition. Given a graph G(V.E) let function D, called
the density, be defined on the set of all subsets of V . Then, a
set C ⊆ V is called a cluster if it is locally maximal w.r.t. D
in the following sense: for every vertex x ∈ C (resp. x 6∈ C),
removing x from C (resp. adding x to C) creates a set whose
density is smaller than D(C).

The idea of the definition matches the common under-
standing of a social community as a set of members that
forge more communication links within the set than that
with the outside the set. The function D is not specified
by the definition, but its precise formulation is crucial in
“catching” the nature of social communities. The density
function considered in [3] is as follows:

D(C) =
win

win + wout

, (1)

where win is the number of edges xy with x, y ∈ C and
wout is the number of edges xy with either x ∈ C & y 6∈ C
or x 6∈ C & y ∈ C (to allow for directed graphs). The
main deficiency of the definition of a cluster as a compu-
tational representation of a social community is that it is
easy to find examples of networks that permits very large
and loosely connected clusters, that intuitively are not rep-
resenting any community. The idea of our modification of
1 is to introduce an additional parameter which represents
the edge probability in the set

D(C) =
win

win + wout

+ λ
2win

|C|(|C| − 1)
, (2)

where the parameter λ depends on the specific network un-
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Figure 2: Number of posts per day that appeared
between January 14, 2008 and April 6th, 2008. The
periodic drops in the number of posts correspond to
Saturdays and Sundays.

der the consideration, and is supposed to be selected by the
researcher. For our experiments, we selected λ = 0.125.

3. DATA
We define the blogograph as a directed, unweighted graph

representing the communication of the blog network within
a fixed time-period. There is a vertex in the blogograph rep-
resenting each blogger and a directed edge from the author
of any comment to the owner of the blog where the comment
was made during the observed time period. Parallel edges
are not allowed and a comment is ignored if the correspond-
ing edge is already present in the graph. Loops, comments
on a bloggers own blog, are ignored as well. To study the
communication dynamics, we consider consecutive weekly
snapshots of the network; the communication graph con-
tains the bloggers that either posted or commented during a
week and the edges represent the comments that appeared
during the week. We chose to split graphs into one week
periods due to highly cyclic nature of activity in the blogo-
sphere (see Figure 1 and Figure 2). An illustration of the
blogograph’s construction is given on Figure 3.

The data used for our research was collected from the pop-
ular blogging service LiveJournal. As of May 2008, there are
more than 15 million user for the whole network; the number
of posts during a 24 hour period is approximately 191,000
(see html://www.livejournal.com/). Much of the communi-
cation in LiveJournal is public, which allows for open access.
LiveJournal provides a real time RSS update feature that
publishes all open posts that appear on any of the hosted
blogs. In our experience, the overwhelming majority of com-
ments appear on these posts within two weeks of the posting
date. Thus, our screen-scraping program visits the page of
a post after it has been published for two weeks and collects
the comment threads. We then generate the communication
graph.

We have focused on the Russian section of LiveJournal
as it is reasonable but not excessively large (currently close
to 580,000 bloggers out of the total 15 million) and almost
self contained. We identify Russian blogs by the presence of
Cyrillic characters in the posts. Technically this also cap-
tures the posts in other languages with a Cyrillic alphabet,
but we found that the vast majority of the posts are in Rus-
sian. The network of Russian bloggers is very active. On
average, 32% of all posts contain Cyrillic characters. Live-
Journal blogging has become a cultural phenomenon in Rus-
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Figure 3: Blogograph generation example. Vertices are placed for every blogger who posted or commented,
the edges are placed from the author of the comment to the author of the post (the blog owner). Parallel
edges and loops are not allowed.

week |V | |E| GC C d α
49 155,615 530,160 95.88% 0.0639 5.333 2.63
50 156,026 532,189 95.91% 0.0644 5.327 2.66
51 155,093 527,364 95.62% 0.0635 5.316 2.65
52 151,559 516,483 95.62% 0.0635 5.316 2.71
1 118,979 327,356 93.55% 0.0573 5.777 2.92
2 142,478 444,457 95.14% 0.0587 5.392 2.68
3 159,436 559,506 96.16% 0.0629 5.268 2.68
4 158,429 550,436 95.60% 0.0631 5.224 2.67
5 156,144 534,917 95.49% 0.0627 5.293 2.72
6 156,301 526,194 95.70% 0.0615 5.338 2.72
7 154,846 523,235 95.44% 0.0622 5.337 2.69
8 156,064 528,363 95.59% 0.0609 5.320 2.69
9 156,362 524,441 95.58% 0.0602 5.377 2.68
10 154,820 523,304 95.48% 0.0593 5.368 2.68
11 155,267 516,280 95.13% 0.0600 5.356 2.68
12 156,872 514,269 95.20% 0.0590 5.367 2.63
13 155,338 510,070 95.42% 0.0601 5.342 2.71
14 155,099 506,892 95.19% 0.0607 5.309 2.73
15 153,440 504,850 95.32% 0.0601 5.303 2.73
16 154,012 512,094 95.34% 0.0599 5.298 2.60
17 151,427 503,802 95.30% 0.0611 5.288 2.75

Table 1: Statistics for observed blogograph: order of
the graph (|V |), graph size (|E|), fraction of vertices
that are part of giant component (GC size), clus-
tering coefficient (C), average separation (d), power
law exponent (α)
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sia. Discussion threads often contain intense and interesting
discussions which encourage communication through com-
menting. Our work is based on data collected during be-
tween December 2007 and April 2008. The basic statistics
about the size of obtained data are presented in Table 1. A
simpler set of statistics on a smaller set of observed data is
presented in [16].

4. STABLE STATISTICS
The observed communication graph has interesting prop-

erties. The graph is very dynamic on the level of nodes and
edges but has stable aggregated statistics. About 75% of
active bloggers will also be active in the next week. Fur-
ther, about 28% of edges that existed in a week will also
be found in the next week. A large part of the network
changes weekly, but a significant part is preserved. The sta-
bility of various statistics of the blogograph is presented in
Table 1. The giant component (GC) is the largest connected
(not necessarily strongly connected) subgraph of the undi-
rected blogograph. A giant component of similar size has
been observed in other large social networks [18], [14]. The
clustering coefficient (C) refers to the probability that the
neighbors of a node are connected. The clustering coeffi-
cient of a node with degree k is the ratio of the number of
edges between it’s neighbors and k(k − 1). The clustering
coefficient of the graph is defined to be the average of the
node clustering coefficients. The observed clustering coeffi-
cient is stable over multiple weeks and significantly different
from the clustering coefficient in a random graph with the
same out-degree distribution, which is 0.00029. The aver-
age separation (d) is the average shortest path between two
randomly selected vertices of the graph. We computed it
by sampling 10,000 random pairs of nodes and finding the
undirected shortest path between them. The observed value
in the blogograph is similar to what has been found in many
other social networks ([18], [23]).

Many large social networks ([2], [14]) display a power law
in the degree distribution, P (k) ∝ ck−α , where P (k) is
the probability a node has degree k. Figure 6 shows the
mean in-degree distribution of the collected blogographs. In
these graphs, we observed power law tail with parameter
α ≈ 2.70 which is stable from week to week. This value was
computed using maximum likelihood method described in
[10] and Matlab code provided by Aaron J. Clauset.

To evaluate the dynamic in the observed communication
we considered the change in the set of links or edges from one
week to another. Figure 4 shows the distribution of num-
ber of weeks a particular pair of bloggers communicated.
It is evident from this plot that vast majority of commu-
nication does not re-occur, yet some links reappear every
week. We also looked at the past relationship between the
bloggers who communicated. We defined the history of the
edge (i, j) that appeared in time cycle t to the the short-
est undirected distance between i and j in the graph of the
time cycle t − 1. Figure 5 presents the distribution of the
edge histories of all observed edges of all time cycles. The
edge history distribution of the particular observed weeks
is very close to the presented distribution (the variation at
each point is less then 2%). As figure suggests, the majority
of communicating vertices were less or at 3 hops away in the
network on the previous time cycle. This provides evidence
for the strong locality of communication that occurs in the
observed network.
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and Apr. 28, 2008
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Figure 7: A size vs density plot for week 5 of the
observed data. The x-axis is a measure of the com-
munity size while the y-axis shows the value of δ.
Each point represents a community.

In addition to looking for stability in structural statistics,
it is also useful to examine stable community behavior. Us-
ing the notion of clusters discussed previously in this text,
we find locally optimal communities using each edge in the
graph as a seed. Once all seeds are optimized, duplicates
and clusters of size 2 are removed. Statistics of the remain-
ing clusters are showing in Table 2. A size vs density plot is
also given in Figure 7. The general shape and scale of this
plot is replicated across all observed weeks.

Since the evolution of communication dynamics is being ex-
amined, it makes sense to also consider the evolution of com-
munities. We define evolution as follows. Initially, the It-
erative Scan algorithm optimizes a set of seed communities.
In this case, we seed using every edge in the graph. After
optimization, communities of size 2 and duplicate commu-
nities are filtered out. The resulting communities are then
placed in the next graph as seeds.

Since a cluster may become disconnected when placed into
the next graph, we begin optimization on the largest con-



week |C| avg size δavg ep

51 19631 10.0183 0.456677 0.253212
52 19520 10.0615 0.453763 0.252101
1 23187 10.0915 0.473676 0.248130
2 20970 9.98412 0.458161 0.251843
3 17986 9.86184 0.448757 0.254203
4 18510 9.71891 0.453578 0.257481
5 18808 9.88255 0.455823 0.254305
6 19318 9.79242 0.454656 0.253901
7 19343 9.80381 0.456364 0.255236
8 19796 9.83113 0.453577 0.252818
9 20136 9.95401 0.473693 0.252607
10 19670 9.71678 0.45449 0.255778
11 20212 9.66842 0.456908 0.256098
12 20415 9.70331 0.461118 0.255819
13 20030 9.78058 0.455676 0.254681
14 19893 9.74936 0.455234 0.254384
15 19392 9.73407 0.455365 0.254687
16 19113 9.74787 0.454531 0.254721
17 18737 9.72333 0.455775 0.255658

Table 2: 19 weeks of communities from the Russian
section of Live Journal. |C| is the number of com-
munities, δavg is the average density, and ep is the
average edge probability within the communities.

lifespan week2 week3 week4
1 0.9895 0.9918 0.9869
2 0.009633 0.007561 0.01156
3 0.0008584 0.0006672 0.001243
4 0.000004768 0 0.0001607
5 0 0 0.0001081
6 0 0 0.00005403

Table 3: A table showing the lifespan in weeks of
communities ”born” in a given week. The values
are a normalized portion of all communities initially
discovered in the indicated week. Lifespan is simply
the number of consecutive weeks the community is
considered to be ”alive”as defined previously in this
text.

nected component in the new graph. We consider a commu-
nity to be alive if

CT ∩ CT+1

CT ∪ CT+1

≥ t

where CT is the optimized community at time-step T and
t is a threshold value. The threshold used for this paper is
1

3
, which corresponds to half of the vertices from time-step

T being in the community at time-step T + 1 if there is no
change in community size. If this threshold is not reached,
the community is considered dead.

In Table 3, we show the lifespan distribution for commu-
nities which are born in 3 weeks of the observed data. From
these results, it can be seen that the number of communities
which persist for longer than a few weeks is quite small. This
relatively expected due to the changes in the node set cov-
ered by the graph on a week to week basis, which, as stated
previously, may result in 25% of the graph being different in
one week from the next.
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Figure 8: Model execution flow

5. MODELING
As previously stated, networks with such strong commu-

nication dynamics have not been well modeled. Much of the
previous work aims to replicate the growth phase of a net-
work’s life-cycle, ignoring the evolution of communication
once the network’s size stabilizes. Models which replicate
these dynamics would be useful as a sand-box within which
social hypotheses on information diffusion, the emergence of
leaders, and group formation and dissolution can be tested.
To be considered useful, any model should create a set of
graphs whose statistics come as close as possible to mirror-
ing the statistics of the observed data presented previously.

Before delving into the creation of a new model, let us
first consider the modification of a previously existing one.
The simplest method of producing a set of evolving graphs
is to grow each week’s graph using a known network growth
algorithm. Vertices can be assigned an out-degree based on
the observed data and connected to each other via prefer-
ential attachment for each of the weeks. If done correctly,
this would yield a set of graphs whose in-degree and out-
degree distributions come close to matching the observed
data’s power law distributions.

Despite this initial positive result, examining the rest of
the statistics demonstrates that the model is insufficient.
Relational statistics such as edge stability, edge history, and
clustering coefficient all significantly depart from the ob-
served values, which we will show in detail further in the
paper. This model’s inability do recreate these statistics is
expected, since it generates each graph independently.

Below, we propose a model which performs its edge con-
nection within some locality in an effort to more closely mir-
ror the edge stability, edge history, clustering coefficient, and
community based statistics of the network.

6. A LOCALITY BASED MODEL
The goal of our model is to produce a sequence of graphs

which simulate the connection and reconnection of vertices.
Our model specifies how nodes update their edges in re-
sponse to the observed communication activity. In specify-
ing this model of evolution, we take as input the out-degree
distribution of the blogograph. The justification for this is
that, while the out-degree distribution would be an interest-
ing object to model, it mainly reflects the individual prop-
erties of the users in the network such as the level of energy



Algorithm 1 Evolution Model.

1: Function Model (T , OutDeg, Area, Prob)
2: // Output: Blogographs G1, . . . , GT .
3: {k1

0 , . . . , kn
0 } ← OutDeg

4: Initialize G0 (e.g. to a random graph)
5: for t = 1 to T do
6: Et ← ∅; {k

1
t , . . . , kn

t } ← OutDeg
7: for i = 1 to n do
8: Ai

t ← Area(i, Gt−1); pi
t ← Prob(i, Ai

t, Gt−1)
9: Ei

t ← Attach(i, , Ai, pi
t, k

i
t); Et ← Et ∪ Ei

t.
10: end for
11: Gt+1 ← (V, Et)
12: end for

Algorithm 2 Edge attachment algorithm.

1: Function Attach (i, Ai
t, pi

t, ki
t)

2: // Output: Ei
t: edges in Gt originating at i

3: while ki
t > 0 do

4: if (
P

v∈Ai
t

pi
t(v) > 0) then

5: Select node v ∈ Ai
t−1 with probability pi

t(v)
6: pi

t(v)← 0; renormalize pi
t

7: else
8: Select node v ∈ V \Ai

t−1 with uniform probability
9: end if

10: ki
t = ki

t − 1
11: Ei

t = Ei
t ∪ (i, v)

12: end while

and involvement of the user. Such quantities tend to be in-
nate to a user. Different people have different social habits;
some manage to communicate with hundreds of people while
others interact with only a small group. Hence, out-degrees
should be specified either ab initio (e.g. from social science
theory) or extracted directly from the observed data. We
will take the latter approach to specifying the out-degree
distribution when it comes to testing our model. An early
version of this model with preliminary results is presented
in [15].

Given the out-degrees for all nodes, the task is now to
specify how to attach the out-edges of the nodes and to ob-
tain the in-degree distribution. It is the in-degree distribu-
tion that characterizes the global communication structure
of the network (for example, who is considered by others
to be important). Clearly, the out-degree distribution of a
graph alone does not determine its in-degree distribution.
Algorithms for generating undirected random graphs with
a prescribed degree distribution are well known (see [9, 13,
24]). However, even if those algorithms are expanded to the
domain of directed graphs, they will still be insufficient for
our purpose of modeling evolution, which requires repeated
generation of the next graph given the previous one.

To summarize, we are interested in models which repro-
duce the observed evolution given the out-degrees of the
nodes. Thus, all our locality models assume that a node
when deciding where to attach its communication links, has
some fixed budget of emanating edges which it can attach.
The main task of our model is to develop an evolution mech-
anism that re-creates an in-degree distribution close to the
observed one.

We will use standard graph theory terminology in describ-
ing our model (see for example [25]). The sequence of blo-
gographs are represented by directed graphs G0, G1, G2, . . .,
where at every time step t, Gt = (V, Et). V is the common
vertex set of all known bloggers, V = {v1, ..., vn}. An edge
(vi, vj) is in the edge set Et if blogger vi commented on a
post by vj during the time period t. One time period covers
one week, which appears to be the natural time scale in the
blogosphere.

The input to the model is the set of out-degrees at time
t for each vertex, {k1

t , . . . , kn
t } and Gt−1, the blogograph at

time t−1. The output of the model is Gt, the blogograph at
time t. Our model is locality based. At time t, every node vi

identifies its area, and assigns it out-edges with destinations
in its area.

More formally, denote the area of vi at time t by Ai
t ⊆ V .

Ai
t represents the locality of node vi at time t. Typically, a

node’s locality at time t will depend on Gt−1, the blogograph
at time t − 1. The attachment mechanism is probabilistic
for each node. Node vi attaches its ki

t out-edges according
to its own probability distribution pi

t, where pi
t(v) specifies

the probability for node vi to attach to node v for v ∈ V .
The probability distribution pi

t may depend on Ai
t and Gt−1

(e.g. higher degree nodes may get higher probabilities). In
particular, we assume that

P

v∈Ai
t

pi
t(v) = 1, which corre-

sponds to the assumption that every nodes expends all its
communication energy within its local area. Since we do
not allow parallel edges, if ki

t > |Ai
t|, it is not possible for

node vi to expend all its communication energy within its
local area Ai

t. In this case, we assume that ki
t − Ai

t edges
are attached uniformly at random to nodes outside its area
and the remaining edges are attached within its area. The
precise algorithm for distributing the edges given the prob-
ability distribution pi

t is given in Algorithm 2.
The evolution model is illustrated in Figure 8. In more de-

tail, the evolution model first obtains the out-degrees (which
are exogenously specified). From Gt−1, it computes Ai

t and
pi

t for all nodes vi ∈ V . For all nodes, it then attaches edges
according to Algorithm 2. This entire process is iterated
for a user specified number of time steps. This process is
given in Algorithm 1. The inputs to the model are the pro-
cedure OutDeg which specifies the out-degrees (assumed
to be exogenous), the procedure Area which identifies the
local areas of the nodes given the previous graph, and the
procedure Prob which specifies the attachment probabili-
ties according to the attachment model. We will now discuss
some approaches to defining the areas and the attachment
probabilities. When testing our model, we will also need
the procedure for obtaining the out-degrees, which will be
discussed in Section 7

6.1 Locality Models
A node expends the majority of it’s communication energy

within it’s local area. This captures the intuition that people
mostly communicate with in a small group that contains
friends, family, colleagues, etc. We propose the following
definitions of an area:

1. Global. Every node vi is aware of the whole network,
the local area of vi is Ai

t = V at every time period t.

2. k-neighborhood. The local area Ai
t of node vi at

time t consists of all vj such that undirected shortest
distance δt(vi, vj) ≤ k.



3. Clusters. Using the definition of a cluster presented
earlier in this paper, we define the local area of a blog-
ger as the union of all clusters which he/she is a mem-
ber of. Intuitively, this restricts a blogger’s activity to
the set of individuals in groups which they have shown
interest in previously.

6.2 Attachment Models
Given the local area Ai

t of the node vi at time t, the attach-
ment model describes the probability pi

t+1(vj) of occurrence
of an edge (vi, vj) at time t + 1 for vj ∈ V . We propose the
following attachment modes:

1. Uniform. Node vi attaches to any vj ∈ Ai
t with equal

probability

pi
t(vj) =

1

|Ai
t|

and for vj /∈ Ai
t, pi

t(vk) = 0.

2. Preferential Attachment. Node vi attaches to any
vj ∈ Ai

t with probability

pi
t(vj) ∝ indegt−1(vj) + γ (3)

where indegt−1(vj) is the in-degree of vertex vj in
graph Gt−1 and γ is a constant.

3. Markov Chain. To obtain the attachment probabil-
ities for vertex vi we simulate the particle traveling
over undirected edges of graph Gt starting from the
node vi and randomly selecting edges to travel over
until it arrives at first node ve /∈ Ai

t. Every time the
particle arrives at some node vj ∈ Ai

t, the counter ci
j

is incremented. After this simulation is repeated with
out resetting the counters ci

j , ∀ vj ∈ Ai
t a number of

times, we determine the attachment probability

pi
t(vj) ∝ ci

j

.

4. Inverse distance. Node vi attaches to some node
vj ∈ Ai

t with probability

pi
t(vj) ∝

1

δρ
t−1(i, j)

(4)

where δt−1(i, j) is the shortest undirected distance be-
tween vertices vi, vj in graph Gt−1 and ρ is a constant.

The combination of the locality model and attachment
model specifies the evolution model that, given the out-
degree distribution, will produce a series of graphs that rep-
resent the blogograph at different time periods.

7. EXPERIMENTS AND RESULTS
In this section we present the results of execution of few

of the models and the evaluation of their performance.
To evaluate the performance of the models, we compare

the sequence of graphs produced by the model to the se-
quence of graphs produced by the observed communication
in LiveJournal. In particular, we compare the clustering co-
efficient, the size of the giant component, average separation

Area Attch GC C d E

Observed 0.9545 0.0613 5.34 0.0289

Global Uniform 0.9867 5.2 × 10−6 7.86 1.075
Global P.A. (in) - - - -
Global P.A. (out) 0.9688 0.00018 5.21 0.427
3-Neighb. uniform 0.8939 0.00045 5.30 0.4331
3-Neighb. P.A.(in) - - - -
3-Neighb. P.A.(out) 0.9776 0.00133 4.53 0.1412
Clusters uniform 0.9646 0.00252 6.73 0.7267
Clusters P.A. (in) 0.9643 0.00149 6.88 0.1713
Clusters P.A. (out) 0.9523 0.03156 6.56 0.5320

Table 4: The stable parameters of graphs generated
by various models compared to the parameters of
the observed data.

between two nodes and in-degree distributions. To compare
the in-degrees, we compute the point-wise difference of the
normalized distributions. Formally, for each graph Gi we
compute the normalized distribution Di(k) = k

|Vi|
, where k

is the degree and |Vi| is the number of vertices in the graph.
The differences between distributions of observed graph Go

and generated graph Gg is

E =
X

d

|Do(d)−Dg(d)|.

Notice, E ∈ [0, 2] and lower value of E corresponds to a
closer match.

To evaluate a particular model we execute enough iter-
ations to let the model stabilize. We determine the sta-
bilization by inspection of plots of the major parameters
(including in-degree distribution, clustering coefficient, etc).
Then, we compare the sequence of the graphs produced by
the model after the stabilization to the sequence mined from
LiveJournal.

Table 4 contains the results of execution of models with
various combinations of local area and attachment mecha-
nisms compared to average parameters of graphs of different
observed weeks. Note, for observed data average parameter
E is computed by comparing distributions of graphs corre-
sponding to various observed weeks. Figure 9 compares the
observed degree distribution to the ones generated by some
of the best area/attachment combinations. As defined in
Section 4, edge history conveys information about how close
the end points of the observed edge were in the previous time
cycle and therefore measures the significance of locality in
the communications. Figure 10 compares the observed edge
history with the edge histories produces by the best models.
The following is the discussion of these results.

7.1 Global Area Model
First, we considered the model with global area where

vertices are aware of and can connect to any other vertex in
the network.

In the case of a uniform attachment, the resulting model
is very similar to the Erdös-Rényi model. The in-degree
distribution and other parameters generated by such model
are predictably very different from the power law degree
distribution in the observed graph.

Global area with preferential attachment strictly propor-
tional to the in-degree of the vertices in the graph of the
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various models

previous iteration results in a formation of a power house -
small set of vertices with very high in-degree that attract all
of out-degree. This effect is caused directly by preferential
attachment; since vertices with zero in-degree will never be
attached to, any vertex that receives no incoming vertices at
some iteration will not receive any incoming vertices in any
of the following iterations. Clearly, the graph with small set
of vertices that attract all of the in-degree is very different
from the observed graph.

The combination of global area and preferential attach-
ment proportional to the out-degree of the vertices in the
graph of the previous iteration produced results that were
more similar to the observed network than the other global
models, but the results were also significantly worse com-
pared to models with other area definitions (k-neighborhood
and union of clusters). Since this model allows for random
selection of the end points of edges from the whole graph,
the edge history (Figure 10) is very different from the one
observed in the real network.

7.2 k-Neighborhood Area Model
We experimented with different values of k (k ∈ {2, 3, 4})

and determined that k = 3 produced the best models.
The combination of 3-neighborhood area and uniform at-

tachment produced a model that showed mediocre results
when compared to the observed parameters. The combi-
nation of 3-neighborhood area and preferential attachment
proportional to the in-degree produced a graph with a small
power house in just a few iterations. 3-neighborhood area
with preferential attachment proportional to the out-degree
produced a model that generated graphs with in-degree dis-
tributions very similar to the observed graph. In particular,
the power law tail resembled the tail of the observed graph.
The edge history of this model was quite different from the
observed, since most of the end points for new edges are
selected such that their distance in the previous iteration’s
graph was 3.

7.3 Union of Clusters Area Model
An area constructed via the union of clusters in combi-

nation with preferential attachment proportional to the in-
degree produced in-degree distributions more similar to the
observed than other attachment mechanisms combined with
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this area definition. This model also produced a sequence of
graphs with an edge history that was closest to the observed
as evident from Figure 10.

Models with this area definition were the only ones that
produced non-trivial edge stability defined as the likelihood
of a repetition of a recently observed edge. To evaluate this
stability, we considered the number of edges that appeared
more then once in 21 iterations of the model after stabiliza-
tion. Models with global and 3-neighborhood area defini-
tions that did not result in the formation of power houses
produced a set of graphs such that less then 1% of edges that
appeared more the once in all of the graphs. Models with
an area defined by the union of clusters produced a set of
graphs in which, on average, 14% of edges appear more then
once in 21 iterations. In particular, a combination of this
area definition with preferential attachment proportional to
the in-degree produced a sequence of graphs with 18% of
edges appear more than once, while in the observed net-
work, 40% of edges (see Figure 4) appear more then once
during 21 observed weeks.

After considering all of the parameters of the models, we
determined the combination of an area defined by the union
of clusters with preferential attachment proportional to the
in-degrees of the vertices to be the best model to describe
the dynamics of communication in the observed network.

8. CONCLUSION
We have presented a set of statistics which display strong

stability even for such a dynamic network as the blogosphere.
Our list of stable statistics is not exhaustive however they
represent a comprehensive set of interesting properties of a
network that any model for communication dynamics should
capture.

Our experiments have shown that the communication dy-
namics of large social networks is best explained as a result
of local communication, where the majority of members com-
municate within their social locality, a relatively small set of
nodes reflective of their interests or communities. The best
approximation to this locality, among the models we eval-
uated on LiveJournal data was the one determined by the
union of clusters a node belonged to. Our notion of a cluster
is a set of nodes which locally maximized a cluster density.
This notion of a cluster has the important property that it



allows clusters to overlap, which is important if a cluster is
to represent a community or coalition.

Many possibilities exist for enhancing the definitions of lo-
cality and the attachment mechanisms. One direction which
we intend to pursue as future research is the combination of
local with global attachment mechanisms.
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