Inferring Agent Dynamics from Social Communication

Hung-Ching (Justin)

Network

Malik Magdon-Ismail

Mark Goldberg
Department of Computer
Science, RPI

Chen Department of Computer
Department of Computer Science, RPI
Science, RPI Troy, New York 12180

Troy, New York 12180
chenh3@cs.rpi.edu

magdon@cs.rpi.edu

Troy, New York 12180
goldberg@cs.rpi.edu

William A. Wallace
Department of Decision
Systems and Engineering

Science,

RPI

Troy, New York 12180
wallaw@rpi.edu

ABSTRACT

We present a machine learning approach to discovering thetag
dynamics omicro-lawsthat drives the evolution of the social groups
in a community. We set up the problem by introducing a param-
eterized probabilistic model for the agent dynamics: thts a¢

an agent are determined hyicro-lawswith unknown parameters.
Our approach is to identify the appropriatgcro-lawswhich cor-
responds to identifying the appropriate parameters in theei To
solve the problem we develop heuristic expectation-mazation
style algorithms for determining theicro-lawsof a community
based on either the observed social group evolution, orrebde
set of communications between actors. We present the sesfult
extensive experiments on simulated data as well as somksresu
real communitiese.g, newsgroups.

Keywords
Social Network, Agent-Based Modeling, Machine Learniny) E
Algorithm

1. INTRODUCTION

The social evolution of a community can be captured by thedyn

ics of its social groups. A social group is a collection of ratge or
actors' who share some common context [19]. The dynamics of the
social groups are governed by the actor dynamics — actorgjeha
groups, leave groups and join new groups. An actor's actwas
governed bymicro-lawswhich may be: personal attributes.g.
some people are “social” or “outgoing” and others are nat;ab-
tions of other actors.g.the actor may join a group because his/her

LAn actor generically refers to an individual entity in thetsay.

friend is a member of that group; the social structure in th@-
munity, e.g. the actor may join a group because it is powerful or
“central”. In summary, any reasonable model for an agenedbas
evolving community must necessarily involve complex iatg¢ions
between actors’ attributes and the social group structsetf i

What makes one community different from another? Consiuer t
community of college students versus the community of bdogg
The same sorts of people form a large fraction of both of tbese
munities (young adults between the ages of 16-24), yet thepgr
structure in both of these communities is quite differentr &x-
ample, an actor typically belongs to one college, but magrigeto
many blog-communities. It is intuitively clear why suchrsigcant
differences exist between these two communities. For elathp
process of gaining admission into a social group is conalgr
harder and more selective for the college community thapiaay
online community. Themicro-laws(e.g. actors’ group size pref-
erences) which govern actors’ dynamics are different iseheo
cases, and hence the resulting communities look quitendisti

The explosion of online communities provides an ideal pastun
which to groom and test social science theories, in patictile
most natural question isvhat are the micro-laws which govern a
particular societ® An efficient approach to answering this ques-
tion for a given community yields a powerful tool for a socigist,
that can be used for discovering the dominant factors thataéne
how a community evolves.

There are a number of challenges, the first and foremost lleeng
complex nature of the micro-laws needed to represent evemya v
simple society — actors may have discrete attributes tegetith
continuous parameters, which inevitably leads to a mixditropa-
tion problem, and each actor has his/her own attributes;iwdliso
interact with others’ attributes, suffering from combio@al and
dimensionality curses. Another challenge is that the da@nu
which to answer the question is not available — typicallyigoc
groups (especially online groups) do not announce their loeem
ship and one has to infer groups from observable macro-ijigsnt
such as communication statistics. Given the recent expiosi
online communities, it is now recognized that understagdiow



communities evolve is a task of rising importance. We takeaa m
chine learning approach to these challenges.

Our Contributions. We present a machine learning methodology
(models, algorithms, and experimental data) for detemgirthe
micro-laws of a community based on either the observed kocia
group evolution, or observed set of communications betvaen
tors; most of time, we are only able to collect communication
between actors in a real world. Our approach uses a parameter
ized probabilistic micro-law based modeif social group evolu-
tion, and we develop some algorithms to identify the appaber
micro-laws which corresponds to identifying the approjgripa-
rameters in the model. We identify the appropriate mickeslédy
solving a mixed optimization problem because our modelaiost
discrete parameters as well as continuous parameters.ofavbid

the resulting combinatorial explosion, we appropriatghpraxi-
mate and optimize the objective within a coordinate-wissdgmt
ascent (search) setting. To test the quality of our apprations
and the feasibility of the approach, we present the restikgten-
sive experiments on simulated data as well as some resuttabn
data,e.g, newsgroups.

Related WorkThere is significant literature on modeling of social
networks and social network analysis [2, 5, 7, 8, 10, 11, 4315,

17, 18, 19]. Most of this work focuses on modeling of evolving
social networks. In [17] the authors address model fitting uery
limited setting using very simple models. Our work addredbe
problem using a much more general setting. While we presant o
methodology in the context of a specific model, it can be appro
priately extended to any parameterized model. In [1], thbas
use decision-tree approach to determine some propertibg gb-
cial network. The decision-tree approach is a determmsticess.
This is different from our approach in using the stochastacpss

to determine actors’ behaviors. The reason is that in thialsoet-
work, even under the same environment, actors do not nagessa
possess or reflect the same behaviors.

Paper OrganizationNext, we give an overview of the probabilistic
social group evolution model call@dSAGE  in Section 2.Then,
we present our approach to learning the appropriate paeasnet
the model from given the data of groups evolution in Secticem8l
followed by learning from communications data, which mokt o
time, we can only collect from real communities, in SectioWe
discuss what we are going to predict in Section 5. Then, we giv
experimental results on simulation data and real data itice6
and conclude in Section 7.

2. OVERVIEW OF SOCIAL GROUP MODEL
We give a brief overview of the probabilistic evolving sd@eoup
modelViSAGE , details of which can be found in the appendix ma-
terial . Figure 1 shows the general framework for the steptéy s
evolution in the social group model. In the current modedréhare
actors, groups, thetateof the society which is defined by prop-
erties of the actors and groups, and three kinds of actigog-a
group leave a groupanddo nothing Based on thstateof the so-
ciety, each actor decides which action the actor most likelgts to
execute, which is known as tiNormative ActionNonetheless, un-
der the influence of the present communities, actions ofractie

2A complete description of the model together with its justifion
through social capital theories [14, 16] is beyond the saufghis
presentation.

3The full name ofViSAGE is “Virtual Laboratory for Snulation
and_Analysis of Social ®up Evolution”.

affected. After being influenced, each actor eventualljgoers the
Real Action Depending on the feedbacks from actdiégrmative
ActionandReal Action properties of actors and groups are updated
accordingly.

Decision to
Actors’ Actions

State: Properties of
Actors and Groups

A
Normative
State State Action Actor
update Choice
\ \
Feedback to Process of
Actors Real Action Actors’ Action

Figure 1: Framework for step by step evolution in the social
group model.

2.1 Propertiesof Actorsand Groups

Many parameters govern how actors decide whether to joieavel

a group, or do nothing, and also which group the actor desires
join or leave;i.e., parameters such as the group memberships, how
long each actor has been in a group, the ranks of the actors and
the amount of resources available to an actor (in excess af ish
currently being used to maintain the actor’s current groepniver-
ships). In the following sections, we briefly present sompanant
parameters:

211 Type

Each actor has a private set of attributes, which we refestitsa
type In our current model, the type of an actor simply controks th
actor’s group size preferences and her “ambition” (how kjyiber
rank increases in a group). There are 3 kinds of type in theeotr
model:

1. Leaderwho prefers small groups and is the most ambitious.
2. Socialitewho prefers medium sized groups.

3. Followerwho prefers large groups and is the least ambitious.

We use notatiom; for actor: andtype; for actori’s type.

2.1.2 Rank

Each actor has a rank in each group to present the actor8goosi

in the group. As actors spend more time in a group, their joosih

the group changes. There is a tendency for more senior member
of a group to have a higher position within the group thanguni
members. AlsoLeader have a higher tendency to increase their
position within the group thai'ollower. The definition of rank is

as follow:

timels®
Yjeq, timeld7”
where we use notatiof; for social groug, r! for the rank of actor
a; in group Gy, time! for the amount of time that actémas spent

in group G, ands* indicates how quickly actoi's rank increases
in a group each time step, which depends on actdype ¢ype;).

l
I
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2.1.3 Qualification
Each actor has a qualificatiog ] to represent an actor’s prestige. It
is determined as the average rank of the actor among all thupgr

the actor has been a member, and the rank is weighted to give a

stronger weight to ranks from larger groups. The qualifezatf

the size and qualification of the group during decision mgkifhe
size preference is defined by a function of actor’s type andg’
size,

SizeAffl = Function(types, |Gi), (6)

an actor is used for an actor to determine which group she morewhich indicates the size preference for actdp groupl. Then

likely join or leave. The definition of qualification is as limlv:
g = ZieGl T7IL|GZ|
' ZieGl |Gl| '

where we uséG, | to denote the size of groupand it means how
many actors are in that group.

@)

Similarly, each group has its qualification, defined as theragye
qualification of actors currently participating in the gpouThe
higher a group’s qualification, the more attractive it wiipear to
other actors looking for a group to join. The qualificatiorgobup
G, is defined by the formula

Q=Y ari

i€G,

(©)

2.1.4 Actor Resources

We useR¢; as the available resources for actorand F; as the
initial value of the actor’s resourcesk:, depends on how many
resources an actor needs to maintain a membership in a ghoup.
addition, the actors’ ranks and the number of groups the &to

influences how many resources an actor needs to maintain a mem

bership in a group. Andk%; also influences what kind of action an
actor can complete at next time step, describefPia.

2.2 Actors Normative Actions

At each time step, every actor needs to decide on leavingroupg
joining one group, or remaining in the same groups. The drtis
depends on an actor’s available resourdes), wherei indicates
actori. If R is positive, the actor will tend to use the available
resources in joining another group.Af; is negative, the actor will
tend to leave a group in order to lessen the cost needell; lis
near zero, the actor may decide to remain in all the same group
for the current time step. Based on tR&, we can determine the
probabilities for actof to join, leave, or do nothing, and we use the
notationsP;., Py, andP_ to denote the probabilities, respectively.
And Py + Py + P— = 1. We define théVormative action as

4)

Actnormative = afgma)(Px),

action

whereP, = {Py, Py, P_}.

2.3 Actors Real Actions

Ideally, the actor would always choose to perform Mermative
action, since this creates a state of stability. Howeverassime
that the actors sometimes make non-rational decisionaraksgps
of the amount of available resources they have. An actors#®0
an action she will perform based on a stochastic procesdlas/fo

®)

where random(Py, Py, P-) means randomly choose an action
based on the values %, P, andP_.

Actchoice = random(Py, Py, P_),

After an actor has chosen which action she would like to perfo

the probability of which group the actor decides to join cavie
depends on the qualification of the group and the actor’ss;asike
preference and qualification. The probability actevould like to
select groug to join or leave is defined as follow:

Probability! = Function(r, SizeAffl, q, Q1), @)

wherer; denotes the set of ranks of actgrin all her groups. Then,
if actor s chooses groupto join, groupl can accept or reject actor
i's application based a stochastic process, which is relatéde
group’s qualification and the actor’s qualification. Thekability
of groupl rejecting actot is as follow:

Prob_Reject. = Function(qi, Q1). (8)

2.4 State Update

The final step of the process at each time step is to update the
properties of actors and groups. To update properties @frsact
and groups is based on all actof¥ormative actions and real
actions and the society reward/penalty parameigrs...«. The
reward/penalty parametefis. ...« determine how to update an ac-
tor's resources, and it is summarized heuristically by

. 1
Reward (actzon, R, 0action, gr'ewa'r“d) ,

wheref,.tion indicates some parameters related to actors’ actions.

2.5 Example

Figure 2 gives an illustrative example of an evolving comityun
from timet to ¢ + 1. We use this example to describe the essential
details of the model, which easily extends to an arbitramyiner

of actors and groups.

In this example (Fig. 2), there are five actars, as, as, a4 andas,
and three social grougs:, G2 andGs at timet andt + 1; we use
G for social groupl at timet. Focus on actos; at timet. Some

of the properties of actai; have been indicatectype:, r1, Rk.

As indicated;~; depends onype; through how long the actar;
has been in the grou@ ; it also depends on the ranks of the other
actors,az andag, in the group, through the fact that the sum of all
ranks of actors in a group is 1.

9)

Thusr! indirectly depends otypes andtypes. Based on her prop-
erties,a; decides to join a new group through the stochastic process
denoted byAction() in Fig. 2, which depends on a set of param-
etersfq.tion; tWO Other possible actions are to leave a group or to
do nothing.

Having decided to join a group; must now decide which specific
group to join. This is accomplished by a stochastic handtisga
process in whiclu; decides which group to “apply” taz in this
case, and~; decides whether or not to accept into the group.
This process is indicated b§froup() in Fig. 2 and is governed
by its own set of parameteés...,, together with the properties of

she needs to decide which group to join or leave. Each type of some of the other actorad, a4 in this case) and the group struc-

actors has a size preference; therefore, the actor takeadnbunt

ture. Actora, learns about which other groups are out there to join



Reward (JOIN, 1, R, Oaction, Oreward)

Action ("'1; R};7 eaction)

N\

JOIN

EnterGroup (Q, az, as, Ogroup),

whereQ = {Q2,Qs,|G5], |G|, {r2, 3}, {ra, s}, 71, types }

Tt+1

\ A
Time

Figure2: An exampleof thepraobabilisticsocial group evolution
model

through itsneighborsas, a4 — i.e., the groups they belong to, and
thus only applies to other groups Bferencethe potential joining
groups are&> andG's in this case. Actomr; then decides which
group to apply to based on hgualification as measured by her
average rank in all her groups, and the qualification threshand
sizes of the groups. A group also decides whether to aacept
based on similar properties. In the example applied toG2 and

in this particular case was accepted.

The resources af; now get updated by some reward, through a
stochastic process denoted Byward() in Fig. 2, which addi-
tionally depends on the actual action and some paranters, q-
This process is analogous to society encouragement ortpéoal
doing expected versus unexpected things.

After all actors go through a similar process in batch mod&ian
dependently of each other, the entire state of the societydated
in a feedback loop as indicated in Fig. 1 to obtain the statienat
t+ 1.

3. LEARNING FROM GROUPEVOLUTION

We first introduce some notation. The set of actorsljswe use

i, 4,k to refer to actors. The dat® = {D;}1 is the set of
social groups at each time step, where eBghs a setof groups,
D = {G!}1, Gf C A; we usel, m, n to refer to groups — Fig. 3
shows an example of training data which includes the inféiona
about group evolution. Collect all the parameters whichcgpe
the model a®®,,, which includes all the parameters specific to
an actor é.g. type) and all the global parameters in the model
(e.9. Oaction, Oreward, Ogroup). We would like to maximize the
likelihood

L(®x) = Prob(D|Ow). (10)

We define the path of actér pf = (pi(1),...,p:(T)), as the set

of actions it took over the time steps= 1,...,7T. The actions at
timet, p;(¢), constitute deciding to join, leave or stay in groups, as
well as which groups were left or joined. Givdn, we can con-
structp? for every actori, and conversely, give{vpiT}Lf‘l, we can
reconstruc. Therefore, we can alternatively maximize

L(Oy) = Prob(pf,...,p&‘H@M). (12)

Itis this form of the likelihood that we manipulate. Typicedys to
break up this optimization is to iteratively first improvestbontin-
uous parameters and then the combinatorial (discretejnedeas.
The continuous parameters can be optimized using a grdzisatd
approach, which involves taking derivatives 8{® ;). This is
generally straightforward, though tedious, and we do nalten
the technical details. The main problem we face is an algoiit
one, namely that typically, the number of actdrd| is very large
(thousands or tens of thousands), as is the number of tirps,ste
T, (hundreds). From the viewpoint of actowe break dowr® ,,
into three types of parameter&;, the parameters specific to actor
1, in particular its type and initial capita;, the parameters specific
to other actors; and, the parameters of the society, global to all
the actors. The optimization style is iterative in the fallog sense.
Fixing parameters specific to actors, one can optimize \eispect
to O¢. Since this is a fixed number of parameters, this process is
algorithmically feasible. We now consider optimizationthwie-
spect tod;, fixing 6;, 0. This is the task which is algorithmically
non-trivial, since there ar@(|.A|) such parameters.

In our model, the actors at each time step take independgonsac
At time t, the state of the society: can be summarized by the
group structure, the actor ranks in each group and the astpius
resources. Givefi;, each actor acts independently at titn&hus,
we can write

L(®r) = Prob(pi ',..., pﬂ(‘l |© )%
(12)
[112] Prob(pi(T)|©x, Ir).
Continuing in this way, by induction,
L£©wm) = [[[] Probpi(t)|®n, T1). (13)
7 t

Instead, we maximize the log-likelihodd

(O®n) =Y log Prob(pi(t)|®n,Ls). (14)

i t

Now consider optimization with respect to a particular extoa-
rameters;,

00:;) = 32, log Prob(pi(t)|©, i)+

ZZ;&Z' Zt lOg PrOb(pz(t”@]W? It)

(15)
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Figure3: An example of training data which includestheinformation about group evolution

The actions ofi # i depends ord; only throughZ;, which is a Sometimes, we don't know the probability distributions,iethare
second order dependence, therefore we ignore the secandrter  used in equation (6), for actors’ group size preference. gveldp
optimizing the parameters specific to actor an expectation-maximization (EM) algorithm to learn théoes!
type and also the probability distributions of actors’ graize pref-
07 — argmaxz log Prob(p:(t)|®ar, Zt). (16) erence. We know different type of actor has different prdligb
t distribution of group size preference, and we also know tloeigy

size preference influence which group an actor most likehsjor
leaves. Based on the group evolution, we are able to find oighwh
size of groups an actor joins and leaves, and we can use this in
formation for all actors with same type to determine the greize
preference distribution for that actor’s type.

Thus the maximization over a single actor's parameters only
volves that actors path and is a factor.df more efficient to com-
pute than if we looked at all the actor paths. Therefore, thgee
learning process can be summarized by maximizing over each p
rameter successively, where to maximize over the paramsper-

cific to an actor, we use only that actor's path. Assume the group size preference for each actor type is as@aus

distribution, which is different from our model, then we det®

; determine the means and variances for those Gaussiadiiirs.
3.1 Example of Iearnmg Process We use standard K-means algorithm [12, 4] to cluster actassdb
on the average size of groups each actor joined into 3 chistée,
then, compute the mean and the variance of the average gemup s
for each cluster. This is a simple heuristic based on theroaten
that leaders join small groups, followers large groups,sowilites
median groups. The clustering algorithm is as follow:

We are going to use learning actors’ tyge2(1.1) to illustrate the
learning process. We have a data set which includes thenafor
tion about group evolution. The group evolution gives usithe
formation about actors’ actiongin a group leave a groupor do
nothing and which groups actors join or leave in each time step.
In our model, an actor’s type controls which group she mastyi
joins or leaves{ 2.3), and how quickly an actor’s rank increases in -
a group § 2.2). Therefore, if we have the data of the group evolu- Algorithm 2 Cluster
tion, we can use the path of which groups an actor joins oeleav ~ 1: for each actoi do

to learn the actor’s type. Assume that we know all the valdes o 2:  size; «— the average size of groups acigoined
parameters except the actors’ type, then, based on egsidBpn 3: end for

(7), and (8), we compute the probability of the path for eactiora 4: (:Iuster{sizez-}ﬁ‘1 into 3 clusters using the standard 3-means
with different types. So, what is an actor’s type is based biciv algorithm.

. for each cluster do
te «—— E(sizey) wherek € clusterc
o. < Var(sizer) wherek € clusterc
end for
: return all p. ando.

actor’s type have the highest probability of the path. Tlaerang
algorithm is as follow:

Algorithm 1 Maximum log-likelihood learning algorithm

Input: The set of social groups at each time st®p= {D; }1!

Output: The best value fof;

1: © «—— {Leader, Socialite, Follower} , ) , ) )
2: for each actoi do We use the meang.{'s) and varianceso(.’s) found inAlgorithm 2

3. findp?, the set of actions, to determine which group aétor @S initial means and variances for those Gaussian distritmibf
joinedz z;lnd left. ' group size preference ialgorithm 1 After Algorithm 1 we are

N’

4 for each possible valuefor 6; do able to obtain a new set of clusters, from which we can caleula
5- Prob, «— 3, log Prob(p:(t)|6; = x, @, T1) the new means and variances. Repeat the whole process o obta
6 endfor a set of clusters which have maximum probability for all gaii

7. 0 — argmaxXProb,) actors’ actions. The EM algorithm is &dgorithm 3 and we show

8 end for the results in Section 6.

9: return all ;7




Algorithm 3 EM algorithm for learning actors’ type

T+1

Input: The set of social groups at each time stBp= {D; },

Output: The best value fof;

1: computeu.’'s ando.'s usingAlgorithm 2 Cluster

2: repeat

3 applyp.'s ando.’s to Algorithm 1

4:  calculateu. ando. for eachactor typebased on new;
5: until exceed threshold

6: returnall 67

4. LEARNING FROM COMMUNICATIONS

The challenge with real data is that the groups structuretlaeid
evolution are not known, especially in online communitiestead,
one observes the communication dynamieg,. Fig. 4 presents
an example of training data which only includes the commamic
tion dynamics. However, the communication dynamics aread
tive of the group dynamics, since a pair of actors who are inyma
groups together are likely to communicate often. One coldde
one more probabilistic layer on the model linking the grotrpcs
ture to the communications, however, the state space fehtdi
den Markov model would be prohibitive. We thus opt for a sienpl
approach. The first step in learning is to use the communpicati
dynamics to construct the set of groups and convert the @nokd
one of learning from groups as in Section 3.

Imagine that communications between the actors are aggrega
over some time period to obtain a weighted communication graph
G-. The actors are nodes @, and the edge weight;; between
two actors is the communication intensity (number of comitamn
tions) between andj. The sub-task we would like to solve is to
infer the group structure from the communication gréaph Any
reasonable formulation of this problem is NP-hard, and so&ezl
some efficient heuristic for finding the clusters in a grapt tor-
respond to the social groups. In particular, the clusteosilshbe
allowed to overlap, as is natural for social groups. Thidwaes
most of the traditional clustering algorithms, which p@oti the
graph. We use the algorithms developed by Baumes et al. [3],
which efficiently find overlapping communities in a commuazic
tion graph.

We consider time periods;, 72, ..., 7r+1 and the corresponding
communication graphé:-,,G~,,...,G-.,,. The time periods
need not be disjoint, and in fact we have used the overlappiret
periods to cluster the communication data into groups asya wa
of obtaining more stable and more reliable group structste e
mates for learning on real data since there is consideratike n

in the communications — aggregation, together with the laper
smoothens the time series of communication graphs. This doe
not affect the probabilistic model approximation of indegence
among actor paths, or independence among transitions fnoea t
step to time step. Given a single gra@h,, the algorithms in [3]
output a set of overlapping clusters, which we then use addte

D; (the social group structure at time stgpHowever, in order to
use the learning prescription as in Section 3, one needssircet

ing groups disappeared. In order to find this matching, weause
standard greedy algorithm as follow:

Algorithm 4 Finding matchings

1: LetX = {X1,...,Xn} andy = {Y1,...,Y,} be two col-
lections of sets, and we allow some of the set&’ior ) to be
empty.

2: We use the symmetric set differentfer, y) = 1—|xNy|/|zU
y| as a measure of error between two sets.
3: Then, we consider the complete bipartite grapl{&n)’) and

would like to construct a matching of minimum total weight,
where the weight on the edg&;, Y;) is d(X;, Y;).

This problem can be solved in cubic time using max-flow tech-
niques [9]. However, for our purposes, this is too slow, souse

a simple greedy heuristic. First find the best match, i.e. ptie
(4, 77) which minimizesd(X;, Y;) over all pairs(, j). This pair

is removed from the sets and the process continues. An effiae
plementation of this greedy approach can be don@(in” log n),
afterd(X;,Y;) has been computed for each pgirj). The algo-
rithm is shown as follow:

Algorithm 5 Finding matchings using a simple greedy heuristic
Input: X ={X,,...,X,}andy = {Y1,...,Y,}
Output: Pairs of best matching groups.
S — 0
TM—0
: for X; € X do
forY; € ydo
computed(X;, Y;)
S§—S8u {iy.jv d(X27 1/3)}
end for
. end for
. sortS based onl(X;,Y;)
: whileS # () do
find pair(:*, 7*) which minimizesd(X;, Y;)
M — MU{i",j* d(Xs, Yj)}
S — 8§ —{k,1,d(Xy,Y:)} wherek = i* orl = j*
: end while
: return M

5. PREDICTION

Unlike in a traditional supervised learning task, where doeal-

ity of the learner can be measured by its performance on a test
set, in our setting, the learned function is a stochasticgs®, and

the test data are a realization of the stochastic processciftp
cally, assume we have training da,.., = {D:};-;' and test
dataDiest = {D:}; 1~ ,. We learn the parameters governing the
micro-laws usingD:,.in, and use multi-step prediction to test on
the test data. Specifically, starting from the social growpcsure
Dr41 attimeT + 1, we predict the actions of the actors, i.e. the ac-
tor paths into the future. Based on these paths, we can cohie

the paths of each actor. This means we need the corresp@dencevolving social group structure and compare these pretigraups

between groups of time stémnd¢ + 1, in order to determine the
actions of the actors. Formally, we need a matching between t
groups inD; andD;; fort = 1,2,...,T — 1: for each group in
D;, we must identify the corresponding groupZ®: to which it
evolved. If there are more groups I 1, then some new groups
arose. If there are fewer groups .1, then some of the exist-

with the observed groups on the test data using some metie, H
we use the distribution of group sizes to measure our peence.
Specifically, letN?"**(t) and N{"“(t) be the number of groups
of sizek at timet for the predicted and true societies respectively.
We report our results using the squared error measure (finetdp
between the frequencies as well as the squared error differge-
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where NPre(t) = 32, NP7 (t) and N'™e(t) = 3O, Ni™“(¢t).

E, measures the difference in the shape of the histogramseaser
E; takes into account the actual number of groups.

6. EXPERIMENTS

In our model, the parameters can be learned using the approac
described in Section 3 and Section 4. Here we focus on three pa
rameters, the actor’s typgpe; (see§2.1.1), the initial resource al-
locationE; (see§2.1.4), and the society reward/penalty parameters
Oreward (5€€52.4).

6.1 LearningActors Types
In learning actors’ type, we evaluate the results from 7edéht
algorithms:

Learn: Only useAlgorithm 1with true distributions for group
size preference.

Cluster: Only useAlgorithm 2to classify actors’ type based
on leaders joining small groups, followers large groups, an
socialites median groups.

EM: UseAlgorithm 3with unknown distributions for group
size preference.

Optimal: The ground truth model. (For comparison and only
available on simulated data.)

Leader, Socialite, Follower: benchmarks which assign all
actors to leader, socialite or follower types respectively

To evaluate performance, we use an instance of the modehto ge
erate simulation data for training and testing. Since wenktie
model, we can compare the true type with the learned typerts co
pute the accuracy. And we are also able to collect the infooma
about group evolution which avoid pre-processing the tngidata

The accuracy of learning acotrs type

0.95 T T T
—6— Learn
+ % Cluster
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-9 -EM
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<

o
o
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Figure5: Theaccuracy of learningactors' typeusingalgorithm
Learn, Cluster, and EM

class and simulating for 50, 100, 150, 200 and 250 time s#lbs.
others parameters except types and distributions of griaeppsef-
erence were held fixed.

Figure 5 and Table 1 show the accuracy.efrn, Cluster andEM
algorithms with different time steps of training data setd dor
comparison, the accuracy of randomly assigning type is.0r8@
results tell that the accuracy fdwearn algorithm is the best be-
cause it knows the true distribution of group size prefeeermnd
only need to learn actors’ type. TH&luster algorithm has the
worst result, and ouEM algorithm does improve the results from
the Cluster algorithm, even though we don’t know the true distri-
bution of group size preference. §2.1, we know the type of an
actor governs not only the actor’s preferences for group bixt
also her "ambition.” TheCluster algorithm is only based on the
average size of groups the actor joined which can be detécted
group evolution data. On the other hand, tiearn andEM algo-
rithms can also learn actors’ ambition, which cannot be lesk
from the group evolution data. From the results, we also elin t
when the length of the time period of training data set ineesawe

mentioned in Section 4. We used 50, 100, 150, 200 and 250 time obtain better results from all algorithms. The reason is thare

steps of training data (averaged over 20 data sets). Eaahsdat
was created by randomly assigning about 1/3 of the actoradb e

data points we can learn from, more accuracy of the resultsane
achieve.



Accuracy | Learned Actors Types
61.64% L S F
True L | 68.25| 66.75 2.4
Actors | S| 0.75 | 88.5 | 119.25
Class | F 0.0 2.65 | 151.45
(a) Cluster algorithm

Accuracy | Learned Actors Types
71.59% L S F
True L | 126.05| 11.24| 0.11
Actors | S| 46.55 | 125.2| 36.75
Class | F 3.47 | 43.93| 106.7

—~

b) EM algorithm

Accuracy | Learned Actors Types
90.38% L S F
True L | 137.15| 0.25 0.0
Actors | S 20.1 | 185.75| 2.65
Class | F 8.3 16.8 129

(c) Learn algorithm

Table 1: Confusion matrix in learning types for Cluster, EM
and Learn algorithms. The accuracies are (a) 61.64%, (b)
71.59%, and (c) 90.38% on 250 time steps of training data.

The multi-step predictive performance of the algorithmstest
data according to the metrics in equation (17) is shown in Big
from which it is clear thatearn surpasses all the algorithms be-
cause the prediction frornearn is most close t@ptimal (which

is unattainable in reality), and the worst caseslazader andFol-
lower which assign all actors to leader or follower types.

In a similar fashion, one could leathl; and 0,-c.,qrq, but we do
not give detailed results here. Instead, in the followinctisa, we
consider using the model to determine which parameters atw
learning and which are not based on predictive performance.

6.2 Impact of Learning on Prediction
The learning process is time consuming; for instance, imanco-
nity, there areN actors andK groups. Then, in each time step,
there are z(NK)/K!) possible actors’ combinations to establish
groups. If we have data fdF time steps, the complexity of finding

. . . . NK
the optimal path using dynamic programming$I" x QT) =
O(T x 2K(N=legk)) "Even though, we are able to develop some
approximate and efficient algorithms, but when having tloisi¢
plexity, the learning process is still very time consumirithere-
fore, itis better to know if the parameter has significanthproved
the predictive performance before the learning takes place

From Fig. 6, it is clear that the types of actors significarhy
pact the predictive performance as compares to other fepait
gorithms. While we could leardiE;} and,cwarq, perhaps it is
not useful to learn them if they don’t significantly improveegdic-
tive performance. Figure 7 shows the impact of the optimat pr
dictor (all parameters set to their true values) vs. cha@psiman-
dom0,..ward, and for various choices §fF; } (every actor assigned
some fixedE according to makF; }, min{ £;} or averagéFE;}).

—which might be expected as the effects of initial condiishould
equilibrate out.

6.3 Resultson Real Data

Our results on real data are based on communications beitésise
difficult to collect data that includes the group evolutioarf the
real world. Hence, we need to use the algorithms in Sectian 4 t
obtain the group evolution from communication dynamics ingis
the overlapping clustering algorithm [3] to obtain the grsunfor-
mation in each time step, and then apply the matching alguorit
Algorithm 5 to find out the group evolution. After we have the data
about the group evolution, then apply the technique meatidn
Section 3 to learn the parameters.

We collected the communication data from a movie newsgroup,
which includes 1528 active actors in 206 days. We use each da
as one time step, and have total 103 time steps. Here, we iag go
to show the process of learning actors’ type. We use the itthgos

in Section 4 to obtain the group evolution, and then applyabhm-

ing algorithms Algorithm 2or Algorithm 3in Section 3 to learn the
appropriate values of actors’ type. The results in prevercion
indicate that one can learn types and improve predictivéoper
mance. We apply botEM andCluster algorithms on the real data
set, and the results are shown in Table 2. The results areatéel
because based dBluster algorithms, the majority of actors are
leaders whiclonly mean they prefer joining small groups, a finding
that was made by hand on newsgroups data through sociak@aly
by Butler [6]. It makes sense because it is easy to observehwhi
size of groups an actor is most likely to join by hand; howgiter

is difficult to determine how an actor’s ambition in its adi®s by
hand. Accounting to the results &M algorithm, the number of
Follower increases 30.9%, the number lofaderdecreases 19%,
and the number oBocialitedecreases 11.9%. The results discover
the behavior that a lot of actors are not so ambitious. Its$® al
make sense because in a newsgroup community, the majority of
actors would more like to read news than post news. Our algo-
rithms additionally identify which actors are of which typgoup
size preference and ambition, and are fully automated.

Learned Actors Types
Leader | Socialite | Follower

Number of Actor| 822 550 156
Percentage 53.8% | 36.0% 10.2%

(a) Cluster algorithm

Learned Actors Types
Leader | Socialite | Follower

Number of Actor| 532 368 628
Percentage 34.8% | 24.1% 41.1%

(b) EM algorithm

Table 2: Theresult of learning actors type on a movie news-
group using EM and Cluster algorithms.

7. DISCUSSION

We have presented a parameterized stochastic model foirgar
the micro-laws governing a society’s social group dynamiea-
rameterized stochastic models in machine learning arerneziro-

We compute the average errors from 20 runs. As can be seen, themon, however in the context of learning social laws, theyehav

wrongf..wara does significantly affect the performance, but using
the wrong{F;} does not (which results mixed with the optimal
predictor have the average error around 0.29 in (a) and 0.(08)

scarcely been applied. Our main contributions are the egipbin
of efficient algorithms and heuristics toward learning tlaegme-
ters in the specific application of modeling social groupsir €2-
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sults on simulated data indicate that when the model is weltis
fied, the learning is accurate. Since the model is suffigigggheral
and grounded in social science theory, some instance of diaelim
should be appropriate for any given society. In this sens®st
any general model of this form which is founded in social scée
theory should yield similar results.

Within our model, one of the interesting conclusions fromoa s
cial science point of view is the ability to identify which naane-
ters have a significant impact on the future evolution of tieety.
In particular, the initial resource allocation (a fixed ifgetual re-
source of the actor) does not seem to be a dominant factothéut
actor ambition and size preference, as well as the peraigid
structure for the society have significant impact on the wgvah.
These types of conclusions are exactly the types of infdomat
social scientist is trying to discern from observable détar results
are not completely surprising. A community which excedgipe-
nalizes traitors (say by sever dismemberment), does ratgssee
far fewer changes in its social group structure than onedib@sn’t.
Our observations indicate that learning effort should lmei$ed on
certain parameters and perhaps not as importantly on gthisish
can further enhance the efficiency of the learning. Havingrde

mined what the important parameters are, one can then gal ahea

and learn their values for specific communities.

8. ACKNOWLEDGMENTS
This material is based upon work partially supported by tlze N

tional Science Foundation under Grants No. 0324947 and No.
0634875, and by the ONR Grant No. N00014-06-1-0466. Any

opinions, findings, and conclusions or recommendationsessgd
in this material are those of the author(s) and do not nerbssa
reflect the views of the National Science Foundation or U.&-G
ernment.

9. REFERENCES

[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.
Group formation in large social networks: Membership,
growth, and evolution. I#&KDD '06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data miningrages 44-54, 2006.

[2] J. A. Baum and J. Singh, editofSvolutionary Dynamics of
Organizations Oxford Press, New York, 1994.

[3] J. Baumes, M. Goldberg, and M. Magdon-Ismail. Efficient
identification of overlapping communities. IREE
International Conference on Intelligence and Security
Informatics (1SI) pages 27—-36, 2005.

[4] C. M. Bishop.Neural Networks for Pattern Recognition
Clarendon Press, Oxford, 1995.

[5] H. Bonner.Group DynamicsRonald Press Company, New
York, 1959.

[6] B. Butler. The dynamics of cyberspace: Examining and
modeling online social structure. Technical report, Cgime
Melon University, Pittsburgh, PA, 1999.

[7] K. Carley and M. Prietula, editor€omputational
Organization TheoryLawrence Erlbaum associates,
Hillsdale, NJ, 2001.

[8] K. Chopra and W. A. Wallace. Modeling relationships
among multiple graphical structuréSomputational and
Mathematical Organization Theorgé(4), 2000.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to AlgorithmsMcgraw-Hill, Cambridge, MA,
2nd edition, 2001.

[10] P. Holland and S. Leinhardt. Dynamic model for social
networks.Journal of Mathematical Sociolog$(1):5-20,
1977.

[11] R. Leenders. Models for network dynamics: A Markovian
framework.Journal of Mathematical Sociologg0:1-21,
1995.

[12] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations.Pnoceedings of 5-th
Berkeley Symposium on Mathematical Statistics and
Probability, pages 281-297. University of California Press,
1967.

[13] T. F. Mayer. Paries and networks: Stochastic models for
relationship networkslournal of Mathematical Sociology
10:51-103, 1984.

[14] P. Monge and N. ContractoFheories of Communication
Networks Oxford University Press, 2002.

[15] M. E. J. Newman. The structure and function of complex
networks.SIAM Reviews45(2):167-256, June 2003.

[16] R. D. PutnamBowling alone : the collapse and revival of
American communitySimon and Schuster, 2000.

[17] A. Sanil, D. Banks, and K. Carley. Models for evolvingeik
node networks: Model fitting and model testidgurnal oF
Mathematical Sociology21(1-2):173-196, 1996.

[18] T. Snijders. The statistical evaluation of social etk
dynamics. In M. Sobel and M. Becker, editoggciological
Methodology Dynamicpages 361-395. Basil Blackwell,
Boston & London, 2001.

[19] S. Wasserman and K. FauSbcial Network Analysis
Cambridge University Press, 1994.



