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ABSTRACT
We present a machine learning approach to discovering the agent
dynamics ormicro-lawsthat drives the evolution of the social groups
in a community. We set up the problem by introducing a param-
eterized probabilistic model for the agent dynamics: the acts of
an agent are determined bymicro-lawswith unknown parameters.
Our approach is to identify the appropriatemicro-lawswhich cor-
responds to identifying the appropriate parameters in the model. To
solve the problem we develop heuristic expectation-maximization
style algorithms for determining themicro-lawsof a community
based on either the observed social group evolution, or observed
set of communications between actors. We present the results of
extensive experiments on simulated data as well as some results on
real communities,e.g., newsgroups.
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1. INTRODUCTION
The social evolution of a community can be captured by the dynam-
ics of its social groups. A social group is a collection of agents, or
actors1 who share some common context [19]. The dynamics of the
social groups are governed by the actor dynamics – actors change
groups, leave groups and join new groups. An actor’s actionsare
governed bymicro-lawswhich may be: personal attributes,e.g.
some people are “social” or “outgoing” and others are not; the ac-
tions of other actors,e.g.the actor may join a group because his/her

1An actor generically refers to an individual entity in the society.

friend is a member of that group; the social structure in the com-
munity, e.g. the actor may join a group because it is powerful or
“central”. In summary, any reasonable model for an agent based
evolving community must necessarily involve complex interactions
between actors’ attributes and the social group structure itself.

What makes one community different from another? Consider the
community of college students versus the community of bloggers.
The same sorts of people form a large fraction of both of thesecom-
munities (young adults between the ages of 16-24), yet the group
structure in both of these communities is quite different. For ex-
ample, an actor typically belongs to one college, but may belong to
many blog-communities. It is intuitively clear why such significant
differences exist between these two communities. For example the
process of gaining admission into a social group is considerably
harder and more selective for the college community than a typical
online community. Themicro-laws(e.g. actors’ group size pref-
erences) which govern actors’ dynamics are different in these two
cases, and hence the resulting communities look quite distinct.

The explosion of online communities provides an ideal pasture on
which to groom and test social science theories, in particular the
most natural question is:what are the micro-laws which govern a
particular society? An efficient approach to answering this ques-
tion for a given community yields a powerful tool for a sociologist,
that can be used for discovering the dominant factors that determine
how a community evolves.

There are a number of challenges, the first and foremost beingthe
complex nature of the micro-laws needed to represent even a very
simple society – actors may have discrete attributes together with
continuous parameters, which inevitably leads to a mixed optimiza-
tion problem, and each actor has his/her own attributes, which also
interact with others’ attributes, suffering from combinatorial and
dimensionality curses. Another challenge is that the data upon
which to answer the question is not available – typically social
groups (especially online groups) do not announce their member-
ship and one has to infer groups from observable macro-quantities
such as communication statistics. Given the recent explosion in
online communities, it is now recognized that understanding how



communities evolve is a task of rising importance. We take a ma-
chine learning approach to these challenges.

Our Contributions. We present a machine learning methodology
(models, algorithms, and experimental data) for determining the
micro-laws of a community based on either the observed social
group evolution, or observed set of communications betweenac-
tors; most of time, we are only able to collect communications
between actors in a real world. Our approach uses a parameter-
ized probabilistic micro-law based model2 of social group evolu-
tion, and we develop some algorithms to identify the appropriate
micro-laws which corresponds to identifying the appropriate pa-
rameters in the model. We identify the appropriate micro-laws by
solving a mixed optimization problem because our model contains
discrete parameters as well as continuous parameters. And to avoid
the resulting combinatorial explosion, we appropriately approxi-
mate and optimize the objective within a coordinate-wise gradient
ascent (search) setting. To test the quality of our approximations
and the feasibility of the approach, we present the results of exten-
sive experiments on simulated data as well as some results onreal
data,e.g., newsgroups.

Related Work.There is significant literature on modeling of social
networks and social network analysis [2, 5, 7, 8, 10, 11, 13, 14, 15,
17, 18, 19]. Most of this work focuses on modeling of evolving
social networks. In [17] the authors address model fitting ina very
limited setting using very simple models. Our work addresses the
problem using a much more general setting. While we present our
methodology in the context of a specific model, it can be appro-
priately extended to any parameterized model. In [1], the authors
use decision-tree approach to determine some properties ofthe so-
cial network. The decision-tree approach is a deterministic process.
This is different from our approach in using the stochastic process
to determine actors’ behaviors. The reason is that in the social net-
work, even under the same environment, actors do not necessary
possess or reflect the same behaviors.

Paper Organization.Next, we give an overview of the probabilistic
social group evolution model calledViSAGE 3 in Section 2.Then,
we present our approach to learning the appropriate parameters of
the model from given the data of groups evolution in Section 3, and
followed by learning from communications data, which most of
time, we can only collect from real communities, in Section 4. We
discuss what we are going to predict in Section 5. Then, we give
experimental results on simulation data and real data in Section 6
and conclude in Section 7.

2. OVERVIEW OF SOCIAL GROUP MODEL
We give a brief overview of the probabilistic evolving social group
modelViSAGE , details of which can be found in the appendix ma-
terial . Figure 1 shows the general framework for the step by step
evolution in the social group model. In the current model, there are
actors, groups, thestateof the society which is defined by prop-
erties of the actors and groups, and three kinds of actions –join a
group, leave a group, anddo nothing. Based on thestateof the so-
ciety, each actor decides which action the actor most likelywants to
execute, which is known as theNormative Action. Nonetheless, un-
der the influence of the present communities, actions of actors are
2A complete description of the model together with its justification
through social capital theories [14, 16] is beyond the scopeof this
presentation.
3The full name ofViSAGE is “Vi rtual Laboratory for Simulation
and Analysis of Social Group Evolution”.

affected. After being influenced, each actor eventually performs the
Real Action. Depending on the feedbacks from actors’Normative
ActionandReal Action, properties of actors and groups are updated
accordingly.

Choice

Actors’ ActionsActors and Groups
State: Properties of Decision toState

State

Normative
Action

Actors
Feedback to Process of

Actors’ ActionReal Action

StateState
update

Actor

Figure 1: Framework for step by step evolution in the social
group model.

2.1 Properties of Actors and Groups
Many parameters govern how actors decide whether to join or leave
a group, or do nothing, and also which group the actor desiresto
join or leave;i.e., parameters such as the group memberships, how
long each actor has been in a group, the ranks of the actors and
the amount of resources available to an actor (in excess of what is
currently being used to maintain the actor’s current group member-
ships). In the following sections, we briefly present some important
parameters:

2.1.1 Type
Each actor has a private set of attributes, which we refer to as its
type. In our current model, the type of an actor simply controls the
actor’s group size preferences and her “ambition” (how quickly her
rank increases in a group). There are 3 kinds of type in the current
model:

1. Leaderwho prefers small groups and is the most ambitious.

2. Socialitewho prefers medium sized groups.

3. Followerwho prefers large groups and is the least ambitious.

We use notationai for actori andtypei for actori’s type.

2.1.2 Rank
Each actor has a rank in each group to present the actor’s position
in the group. As actors spend more time in a group, their position in
the group changes. There is a tendency for more senior members
of a group to have a higher position within the group than junior
members. Also,Leader have a higher tendency to increase their
position within the group thanFollower. The definition of rank is
as follow:

rl
i =

timel
iδ

i

P

j∈Gl
timel

jδ
j
, (1)

where we use notationGl for social groupl, rl
i for the rank of actor

ai in groupGl, timel
i for the amount of time that actori has spent

in groupGl, andδi indicates how quickly actori’s rank increases
in a group each time step, which depends on actori’s type (typei).



2.1.3 Qualification
Each actor has a qualification (qi) to represent an actor’s prestige. It
is determined as the average rank of the actor among all the groups
the actor has been a member, and the rank is weighted to give a
stronger weight to ranks from larger groups. The qualification of
an actor is used for an actor to determine which group she more
likely join or leave. The definition of qualification is as follow:

qi =

P

i∈Gl
rl

i|Gl|
P

i∈Gl
|Gl|

, (2)

where we use|Gl| to denote the size of groupl, and it means how
many actors are in that group.

Similarly, each group has its qualification, defined as the average
qualification of actors currently participating in the group. The
higher a group’s qualification, the more attractive it will appear to
other actors looking for a group to join. The qualification ofgroup
Gl is defined by the formula

Ql =
X

i∈Gl

qir
l
i. (3)

2.1.4 Actor Resources
We useRi

E as the available resources for actorai andEi as the
initial value of the actor’s resources.Ri

E depends on how many
resources an actor needs to maintain a membership in a group.In
addition, the actors’ ranks and the number of groups the actor is in
influences how many resources an actor needs to maintain a mem-
bership in a group. AndRi

E also influences what kind of action an
actor can complete at next time step, described in§2.2.

2.2 Actors’ Normative Actions
At each time step, every actor needs to decide on leaving one group,
joining one group, or remaining in the same groups. The decision
depends on an actor’s available resources (Ri

E), wherei indicates
actor i. If Ri

E is positive, the actor will tend to use the available
resources in joining another group. IfRi

E is negative, the actor will
tend to leave a group in order to lessen the cost needed. IfRi

E is
near zero, the actor may decide to remain in all the same groups
for the current time step. Based on theRi

E, we can determine the
probabilities for actori to join, leave, or do nothing, and we use the
notationsP+, P0, andP− to denote the probabilities, respectively.
And P+ + P0 + P− = 1. We define theNormative action as

Actnormative = argmax
action

(Px), (4)

wherePx = {P+, P0, P−}.

2.3 Actors’ Real Actions
Ideally, the actor would always choose to perform theNormative
action, since this creates a state of stability. However, weassume
that the actors sometimes make non-rational decisions, regardless
of the amount of available resources they have. An actor chooses
an action she will perform based on a stochastic process as follow:

Actchoice = random(P+, P0, P−), (5)

where random(P+, P0, P−) means randomly choose an action
based on the values ofP+, P0, andP−.

After an actor has chosen which action she would like to perform,
she needs to decide which group to join or leave. Each type of
actors has a size preference; therefore, the actor takes into account

the size and qualification of the group during decision making. The
size preference is defined by a function of actor’s type and groups’
size,

SizeAff l
i = Function(typei, |Gl|), (6)

which indicates the size preference for actori to group l. Then
the probability of which group the actor decides to join or leave
depends on the qualification of the group and the actor’s ranks, size
preference and qualification. The probability actori would like to
select groupl to join or leave is defined as follow:

Probabilityl
i = Function(ri, SizeAff l

i , qi, Ql), (7)

whereri denotes the set of ranks of actorai in all her groups. Then,
if actor i chooses groupl to join, groupl can accept or reject actor
i’s application based a stochastic process, which is relatedto the
group’s qualification and the actor’s qualification. The probability
of groupl rejecting actori is as follow:

Prob Rejectl
i = Function(qi, Ql). (8)

2.4 State Update
The final step of the process at each time step is to update the
properties of actors and groups. To update properties of actors
and groups is based on all actors’Normative actions and real
actions and the society reward/penalty parametersθreward. The
reward/penalty parametersθreward determine how to update an ac-
tor’s resources, and it is summarized heuristically by

Reward
`

action, R1
E , θaction, θreward

´

,

whereθaction indicates some parameters related to actors’ actions.

2.5 Example
Figure 2 gives an illustrative example of an evolving community
from timet to t + 1. We use this example to describe the essential
details of the model, which easily extends to an arbitrary number
of actors and groups.

In this example (Fig. 2), there are five actors,a1, a2, a3, a4 anda5,
and three social groupsG1, G2 andG3 at timet andt + 1; we use
Gt

l for social groupl at timet. Focus on actora1 at timet. Some
of the properties of actora1 have been indicated:type1, r1, R

1
E .

As indicated,r1
1 depends ontype1 through how long the actora1

has been in the groupG1; it also depends on the ranks of the other
actors,a2 anda4, in the group, through the fact that the sum of all
ranks of actors in a group is 1.

X

i∈Gl

rl
i = 1 (9)

Thusr1
1 indirectly depends ontype2 andtype4. Based on her prop-

erties,a1 decides to join a new group through the stochastic process
denoted byAction() in Fig. 2, which depends on a set of param-
etersθaction; two other possible actions are to leave a group or to
do nothing.

Having decided to join a group,a1 must now decide which specific
group to join. This is accomplished by a stochastic hand-shaking
process in whicha1 decides which group to “apply” to,G2 in this
case, andG2 decides whether or not to accepta1 into the group.
This process is indicated byGroup() in Fig. 2 and is governed
by its own set of parametersθgroup, together with the properties of
some of the other actors (a2, a4 in this case) and the group struc-
ture. Actora1 learns about which other groups are out there to join



Reward
`

JOIN, r1, R1
E , θaction, θreward

´

Action
`

r1, R1
E , θaction

´

a1
`

type1, r1
1

`

type1, r1
2, r1

4

´

, R1
E

´

a2

a3
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Gt
1

Gt
2
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3

EnterGroup (Q, a2, a4, θgroup),
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˘

Q2, Q3, |Gt
2|, |G

t
3|, {r2, r3}, {r4, r5}, r1, type1

¯
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Figure 2: An example of the probabilistic social group evolution
model

through itsneighborsa2, a4 – i.e., the groups they belong to, and
thus only applies to other groups byreference; the potential joining
groups areG2 andG3 in this case. Actora1 then decides which
group to apply to based on herqualification, as measured by her
average rank in all her groups, and the qualification thresholds and
sizes of the groups. A group also decides whether to accepta1

based on similar properties. In the example,a1 applied toG2 and
in this particular case was accepted.

The resources ofa1 now get updated by some reward, through a
stochastic process denoted byReward() in Fig. 2, which addi-
tionally depends on the actual action and some parametersθreward.
This process is analogous to society encouragement or penalty for
doing expected versus unexpected things.

After all actors go through a similar process in batch mode and in-
dependently of each other, the entire state of the society isupdated
in a feedback loop as indicated in Fig. 1 to obtain the state attime
t + 1.

3. LEARNING FROM GROUP EVOLUTION

We first introduce some notation. The set of actors isA; we use
i, j, k to refer to actors. The dataD = {Dt}

T+1
t=1 is the set of

social groups at each time step, where eachDt is asetof groups,
Dt = {Gt

l}l, Gt
l ⊆ A; we usel, m, n to refer to groups – Fig. 3

shows an example of training data which includes the information
about group evolution. Collect all the parameters which specify
the model asΘM , which includes all the parameters specific to
an actor (e.g. type) and all the global parameters in the model
(e.g. θaction, θreward, θgroup). We would like to maximize the
likelihood

L(ΘM ) = Prob(D|ΘM ). (10)

We define the path of actori, pT
i = (pi(1), . . . , pi(T )), as the set

of actions it took over the time stepst = 1, . . . , T . The actions at
time t, pi(t), constitute deciding to join, leave or stay in groups, as
well as which groups were left or joined. GivenD, we can con-
structpT

i for every actori, and conversely, given{pT
i }

|A|
i=1, we can

reconstructD. Therefore, we can alternatively maximize

L(ΘM ) = Prob(pT
1 , . . . ,pT

|A|‖ΘM ). (11)

It is this form of the likelihood that we manipulate. Typicalways to
break up this optimization is to iteratively first improve the contin-
uous parameters and then the combinatorial (discrete) parameters.
The continuous parameters can be optimized using a gradientbased
approach, which involves taking derivatives ofL(ΘM ). This is
generally straightforward, though tedious, and we do not dwell on
the technical details. The main problem we face is an algorithmic
one, namely that typically, the number of actors,|A| is very large
(thousands or tens of thousands), as is the number of time steps,
T , (hundreds). From the viewpoint of actori, we break downΘM

into three types of parameters:θi, the parameters specific to actor
i, in particular its type and initial capital;θī, the parameters specific
to other actors; and,θG, the parameters of the society, global to all
the actors. The optimization style is iterative in the following sense.
Fixing parameters specific to actors, one can optimize with respect
to θG. Since this is a fixed number of parameters, this process is
algorithmically feasible. We now consider optimization with re-
spect toθi, fixing θī, θG. This is the task which is algorithmically
non-trivial, since there areΩ(|A|) such parameters.

In our model, the actors at each time step take independent actions.
At time t, the state of the societyIt can be summarized by the
group structure, the actor ranks in each group and the actor surplus
resources. GivenIt, each actor acts independently at timet. Thus,
we can write

L(ΘM ) = Prob(pT−1
1 , . . . ,pT−1

|A| |ΘM )×

Q|A|
i=1 Prob(pi(T )|ΘM , IT ).

(12)

Continuing in this way, by induction,

L(ΘM ) =
Y

i

Y

t

Prob(pi(t)|ΘM , It). (13)

Instead, we maximize the log-likelihoodℓ,

ℓ(ΘM ) =
X

i

X

t

log Prob(pi(t)|ΘM , It). (14)

Now consider optimization with respect to a particular actors pa-
rametersθi,

ℓ(θi) =
P

t
log Prob(pi(t)|ΘM , It)+

P

ī 6=i

P

t
log Prob(pī(t)|ΘM , It).

(15)
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Figure 3: An example of training data which includes the information about group evolution

The actions of̄i 6= i depends onθi only throughIt, which is a
second order dependence, therefore we ignore the second term in
optimizing the parameters specific to actori,

θ∗
i ← argmax

X

t

log Prob(pi(t)|ΘM , It). (16)

Thus the maximization over a single actor’s parameters onlyin-
volves that actors path and is a factor of|A| more efficient to com-
pute than if we looked at all the actor paths. Therefore, the entire
learning process can be summarized by maximizing over each pa-
rameter successively, where to maximize over the parameters spe-
cific to an actor, we use only that actor’s path.

3.1 Example of learning process
We are going to use learning actors’ type (§ 2.1.1) to illustrate the
learning process. We have a data set which includes the informa-
tion about group evolution. The group evolution gives us thein-
formation about actors’ actions (join a group, leave a group, or do
nothing) and which groups actors join or leave in each time step.
In our model, an actor’s type controls which group she most likely
joins or leaves (§ 2.3), and how quickly an actor’s rank increases in
a group (§ 2.2). Therefore, if we have the data of the group evolu-
tion, we can use the path of which groups an actor joins or leaves
to learn the actor’s type. Assume that we know all the values of
parameters except the actors’ type, then, based on equations (6),
(7), and (8), we compute the probability of the path for each actor
with different types. So, what is an actor’s type is based on which
actor’s type have the highest probability of the path. The learning
algorithm is as follow:

Algorithm 1 Maximum log-likelihood learning algorithm

Input: The set of social groups at each time step,D = {Dt}
T+1
t=1

Output: The best value forθi

1: x←− {Leader, Socialite, Follower}
2: for each actori do
3: findpT

i , the set of actions, to determine which group actori
joined and left.

4: for each possible valuex for θi do
5: Probx ←−

P

t
log Prob(pi(t)|θi = x,ΘM , It)

6: end for
7: θ∗

i ←− argmax(Probx)
8: end for
9: return all θ∗

i

Sometimes, we don’t know the probability distributions, which are
used in equation (6), for actors’ group size preference. We develop
an expectation-maximization (EM) algorithm to learn the actors’
type and also the probability distributions of actors’ group size pref-
erence. We know different type of actor has different probability
distribution of group size preference, and we also know the group
size preference influence which group an actor most likely joins or
leaves. Based on the group evolution, we are able to find out which
size of groups an actor joins and leaves, and we can use this in-
formation for all actors with same type to determine the group size
preference distribution for that actor’s type.

Assume the group size preference for each actor type is a Gaussian
distribution, which is different from our model, then we need to
determine the means and variances for those Gaussian distributions.
We use standard K-means algorithm [12, 4] to cluster actors based
on the average size of groups each actor joined into 3 clusters. We,
then, compute the mean and the variance of the average group size
for each cluster. This is a simple heuristic based on the observation
that leaders join small groups, followers large groups, andsocialites
median groups. The clustering algorithm is as follow:

Algorithm 2 Cluster
1: for each actori do
2: sizei ←− the average size of groups actori joined
3: end for
4: cluster{sizei}

|A|
i=1 into 3 clusters using the standard 3-means

algorithm.
5: for each clusterc do
6: µc ←− E(sizek) wherek ∈ clusterc
7: σc ←− V ar(sizek) wherek ∈ clusterc
8: end for
9: return all µc andσc

We use the means (µc’s) and variances (σc’s) found inAlgorithm 2
as initial means and variances for those Gaussian distributions of
group size preference inAlgorithm 1. After Algorithm 1, we are
able to obtain a new set of clusters, from which we can calculate
the new means and variances. Repeat the whole process to obtain
a set of clusters which have maximum probability for all paths of
actors’ actions. The EM algorithm is asAlgorithm 3, and we show
the results in Section 6.



Algorithm 3 EM algorithm for learning actors’ type

Input: The set of social groups at each time step,D = {Dt}
T+1
t=1

Output: The best value forθi

1: computeµc ’s andσc’s usingAlgorithm 2, Cluster
2: repeat
3: applyµc’s andσc’s to Algorithm 1
4: calculateµc andσc for eachactor typebased on newθ∗

i

5: until exceed threshold
6: return all θ∗

i

4. LEARNING FROM COMMUNICATIONS
The challenge with real data is that the groups structure andtheir
evolution are not known, especially in online communities.Instead,
one observes the communication dynamics,e.g. Fig. 4 presents
an example of training data which only includes the communica-
tion dynamics. However, the communication dynamics are indica-
tive of the group dynamics, since a pair of actors who are in many
groups together are likely to communicate often. One could place
one more probabilistic layer on the model linking the group struc-
ture to the communications, however, the state space for this hid-
den Markov model would be prohibitive. We thus opt for a simpler
approach. The first step in learning is to use the communication
dynamics to construct the set of groups and convert the problem to
one of learning from groups as in Section 3.

Imagine that communications between the actors are aggregated
over some time periodτ to obtain a weighted communication graph
Gτ . The actors are nodes inGτ and the edge weightwij between
two actors is the communication intensity (number of communica-
tions) betweeni andj. The sub-task we would like to solve is to
infer the group structure from the communication graphGτ . Any
reasonable formulation of this problem is NP-hard, and so weneed
some efficient heuristic for finding the clusters in a graph that cor-
respond to the social groups. In particular, the clusters should be
allowed to overlap, as is natural for social groups. This excludes
most of the traditional clustering algorithms, which partition the
graph. We use the algorithms developed by Baumes et al. [3],
which efficiently find overlapping communities in a communica-
tion graph.

We consider time periodsτ1, τ2, . . . , τT+1 and the corresponding
communication graphsGτ1

, Gτ2
, . . . , GτT+1

. The time periods
need not be disjoint, and in fact we have used the overlappingtime-
periods to cluster the communication data into groups as a way
of obtaining more stable and more reliable group structure esti-
mates for learning on real data since there is considerable noise
in the communications – aggregation, together with the overlap
smoothens the time series of communication graphs. This does
not affect the probabilistic model approximation of independence
among actor paths, or independence among transitions from time-
step to time step. Given a single graphGτt , the algorithms in [3]
output a set of overlapping clusters, which we then use as thedata
Dt (the social group structure at time stept). However, in order to
use the learning prescription as in Section 3, one needs to construct
the paths of each actor. This means we need the correspondence
between groups of time stept andt + 1, in order to determine the
actions of the actors. Formally, we need a matching between the
groups inDt andDt+1 for t = 1, 2, . . . , T − 1: for each group in
Dt, we must identify the corresponding group inDt+1 to which it
evolved. If there are more groups inDt+1, then some new groups
arose. If there are fewer groups inDt+1, then some of the exist-

ing groups disappeared. In order to find this matching, we usea
standard greedy algorithm as follow:

Algorithm 4 Finding matchings

1: LetX = {X1, . . . , Xn} andY = {Y1, . . . , Yn} be two col-
lections of sets, and we allow some of the sets inX or Y to be
empty.

2: We use the symmetric set differenced(x, y) = 1−|x∩y|/|x∪
y| as a measure of error between two sets.

3: Then, we consider the complete bipartite graph on(X ,Y) and
would like to construct a matching of minimum total weight,
where the weight on the edge(Xi, Yj) is d(Xi, Yj).

This problem can be solved in cubic time using max-flow tech-
niques [9]. However, for our purposes, this is too slow, so weuse
a simple greedy heuristic. First find the best match, i.e. thepair
(i∗, j∗) which minimizesd(Xi, Yj) over all pairs(i, j). This pair
is removed from the sets and the process continues. An efficient im-
plementation of this greedy approach can be done inO(n2 log n),
afterd(Xi, Yj) has been computed for each pair(i, j). The algo-
rithm is shown as follow:

Algorithm 5 Finding matchings using a simple greedy heuristic

Input: X = {X1, . . . , Xn} andY = {Y1, . . . , Yn}
Output: Pairs of best matching groups.
1: S ←− ∅
2: M←− ∅
3: for Xi ∈ X do
4: for Yj ∈ Y do
5: computed(Xi, Yj)
6: S ←− S ∪ {i, j, d(Xi, Yj)}
7: end for
8: end for
9: sortS based ond(Xi, Yj)

10: while S 6= ∅ do
11: find pair(i∗, j∗) which minimizesd(Xi, Yj)
12: M←−M∪ {i∗, j∗, d(Xi∗ , Yj∗)}
13: S ←− S − {k, l, d(Xk, Yl)} wherek = i∗ or l = j∗

14: end while
15: returnM

5. PREDICTION
Unlike in a traditional supervised learning task, where thequal-
ity of the learner can be measured by its performance on a test
set, in our setting, the learned function is a stochastic process, and
the test data are a realization of the stochastic process. Specifi-
cally, assume we have training dataDtrain = {Dt}

T+1
t=1 and test

dataDtest = {Dt}
T+K
t=T+2. We learn the parameters governing the

micro-laws usingDtrain, and use multi-step prediction to test on
the test data. Specifically, starting from the social group structure
DT+1 at timeT +1, we predict the actions of the actors, i.e. the ac-
tor paths into the future. Based on these paths, we can construct the
evolving social group structure and compare these predicted groups
with the observed groups on the test data using some metric. Here,
we use the distribution of group sizes to measure our performance.
Specifically, letNpred

k (t) andN true
k (t) be the number of groups

of sizek at timet for the predicted and true societies respectively.
We report our results using the squared error measure (normalized)
between the frequencies as well as the squared error difference be-
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whereNpred(t) =
P

k
Npred

k (t) andN true(t) =
P

k
N true

k (t).
Ep measures the difference in the shape of the histograms, whereas
Ef takes into account the actual number of groups.

6. EXPERIMENTS
In our model, the parameters can be learned using the approach
described in Section 3 and Section 4. Here we focus on three pa-
rameters, the actor’s typetypei (see§2.1.1), the initial resource al-
locationEi (see§2.1.4), and the society reward/penalty parameters
θreward (see§2.4).

6.1 Learning Actors’ Types
In learning actors’ type, we evaluate the results from 7 different
algorithms:

• Learn: Only useAlgorithm 1with true distributions for group
size preference.

• Cluster: Only useAlgorithm 2to classify actors’ type based
on leaders joining small groups, followers large groups, and
socialites median groups.

• EM: UseAlgorithm 3with unknown distributions for group
size preference.

• Optimal: The ground truth model. (For comparison and only
available on simulated data.)

• Leader, Socialite, Follower: benchmarks which assign all
actors to leader, socialite or follower types respectively.

To evaluate performance, we use an instance of the model to gen-
erate simulation data for training and testing. Since we know the
model, we can compare the true type with the learned type to com-
pute the accuracy. And we are also able to collect the information
about group evolution which avoid pre-processing the training data
mentioned in Section 4. We used 50, 100, 150, 200 and 250 time
steps of training data (averaged over 20 data sets). Each data set
was created by randomly assigning about 1/3 of the actors to each
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Figure 5: The accuracy of learning actors’ type using algorithm
Learn, Cluster, and EM

class and simulating for 50, 100, 150, 200 and 250 time steps.All
others parameters except types and distributions of group size pref-
erence were held fixed.

Figure 5 and Table 1 show the accuracy ofLearn, Cluster andEM
algorithms with different time steps of training data set, and for
comparison, the accuracy of randomly assigning type is 0.33. The
results tell that the accuracy forLearn algorithm is the best be-
cause it knows the true distribution of group size preference, and
only need to learn actors’ type. TheCluster algorithm has the
worst result, and ourEM algorithm does improve the results from
theCluster algorithm, even though we don’t know the true distri-
bution of group size preference. In§2.1, we know the type of an
actor governs not only the actor’s preferences for group size but
also her ”ambition.” TheCluster algorithm is only based on the
average size of groups the actor joined which can be detectedfrom
group evolution data. On the other hand, theLearn andEM algo-
rithms can also learn actors’ ambition, which cannot be observed
from the group evolution data. From the results, we also can tell
when the length of the time period of training data set increases, we
obtain better results from all algorithms. The reason is that more
data points we can learn from, more accuracy of the results wecan
achieve.



Accuracy Learned Actors’ Types
61.64% L S F

True L 68.25 66.75 2.4
Actors’ S 0.75 88.5 119.25
Class F 0.0 2.65 151.45

(a)Cluster algorithm

Accuracy Learned Actors’ Types
71.59% L S F

True L 126.05 11.24 0.11
Actors’ S 46.55 125.2 36.75
Class F 3.47 43.93 106.7

(b) EM algorithm

Accuracy Learned Actors’ Types
90.38% L S F

True L 137.15 0.25 0.0
Actors’ S 20.1 185.75 2.65
Class F 8.3 16.8 129

(c) Learn algorithm

Table 1: Confusion matrix in learning types for Cluster, EM
and Learn algorithms. The accuracies are (a) 61.64%, (b)
71.59%, and (c) 90.38% on 250 time steps of training data.

The multi-step predictive performance of the algorithms ontest
data according to the metrics in equation (17) is shown in Fig. 6,
from which it is clear thatLearn surpasses all the algorithms be-
cause the prediction fromLearn is most close toOptimal (which
is unattainable in reality), and the worst cases areLeader andFol-
lower which assign all actors to leader or follower types.

In a similar fashion, one could learnEi andθreward, but we do
not give detailed results here. Instead, in the following section, we
consider using the model to determine which parameters are worth
learning and which are not based on predictive performance.

6.2 Impact of Learning on Prediction
The learning process is time consuming; for instance, in a commu-
nity, there areN actors andK groups. Then, in each time step,
there are (2(NK)/K!) possible actors’ combinations to establish
groups. If we have data forT time steps, the complexity of finding
the optimal path using dynamic programming isO(T × 2NK

K!
) ≈

O(T × 2K(N−logK)). Even though, we are able to develop some
approximate and efficient algorithms, but when having this com-
plexity, the learning process is still very time consuming.There-
fore, it is better to know if the parameter has significantly improved
the predictive performance before the learning takes place.

From Fig. 6, it is clear that the types of actors significantlyim-
pact the predictive performance as compares to other learning al-
gorithms. While we could learn{Ei} andθreward, perhaps it is
not useful to learn them if they don’t significantly improve predic-
tive performance. Figure 7 shows the impact of the optimal pre-
dictor (all parameters set to their true values) vs. choosing a ran-
domθreward, and for various choices of{Ei} (every actor assigned
some fixedE according to max{Ei}, min{Ei} or average{Ei}).
We compute the average errors from 20 runs. As can be seen, the
wrongθreward does significantly affect the performance, but using
the wrong{Ei} does not (which results mixed with the optimal
predictor have the average error around 0.29 in (a) and 0.08 in (b))

– which might be expected as the effects of initial conditions should
equilibrate out.

6.3 Results on Real Data
Our results on real data are based on communications becauseit is
difficult to collect data that includes the group evolution from the
real world. Hence, we need to use the algorithms in Section 4 to
obtain the group evolution from communication dynamics – using
the overlapping clustering algorithm [3] to obtain the groups infor-
mation in each time step, and then apply the matching algorithm,
Algorithm 5, to find out the group evolution. After we have the data
about the group evolution, then apply the technique mentioned in
Section 3 to learn the parameters.

We collected the communication data from a movie newsgroup,
which includes 1528 active actors in 206 days. We use each 2 days
as one time step, and have total 103 time steps. Here, we are going
to show the process of learning actors’ type. We use the algorithms
in Section 4 to obtain the group evolution, and then apply thelearn-
ing algorithms,Algorithm 2or Algorithm 3in Section 3 to learn the
appropriate values of actors’ type. The results in previoussection
indicate that one can learn types and improve predictive perfor-
mance. We apply bothEM andCluster algorithms on the real data
set, and the results are shown in Table 2. The results are interested
because based onCluster algorithms, the majority of actors are
leaders whichonlymean they prefer joining small groups, a finding
that was made by hand on newsgroups data through social analysis
by Butler [6]. It makes sense because it is easy to observe which
size of groups an actor is most likely to join by hand; however, it
is difficult to determine how an actor’s ambition in its activities by
hand. Accounting to the results ofEM algorithm, the number of
Follower increases 30.9%, the number ofLeaderdecreases 19%,
and the number ofSocialitedecreases 11.9%. The results discover
the behavior that a lot of actors are not so ambitious. It is also
make sense because in a newsgroup community, the majority of
actors would more like to read news than post news. Our algo-
rithms additionally identify which actors are of which type, group
size preference and ambition, and are fully automated.

Learned Actors’ Types
Leader Socialite Follower

Number of Actor 822 550 156
Percentage 53.8% 36.0% 10.2%

(a)Cluster algorithm

Learned Actors’ Types
Leader Socialite Follower

Number of Actor 532 368 628
Percentage 34.8% 24.1% 41.1%

(b) EM algorithm

Table 2: The result of learning actors’ type on a movie news-
group using EM and Cluster algorithms.

7. DISCUSSION
We have presented a parameterized stochastic model for learning
the micro-laws governing a society’s social group dynamics. Pa-
rameterized stochastic models in machine learning are not uncom-
mon, however in the context of learning social laws, they have
scarcely been applied. Our main contributions are the application
of efficient algorithms and heuristics toward learning the parame-
ters in the specific application of modeling social groups. Our re-



0 50 100 150 200 250 300

0.5

1

1.5

2

2.5

Time step of prediction

E
rr

or
 E

f(t
)

The difference between the distribution of group size

 

 
Cluster

Learn

Optimal

Leader

Socialite

Follower

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

0.3

0.35

Time step of prediction

E
rr

or
 E

p(t
)

The difference between the distribution of group size (normalized)

 

 
Cluster

Learn

Optimal

Leader

Socialite

Follower

(a)Ef (b) Ep

Figure 6: The predictive error for various algorithms to learn type.

0 50 100 150 200 250 300

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Time Step of Prediction

E
rr

or
 E

f(t
)

The difference between the distribution of group size

 

 

Control

Max Initial Resource

Min Initial Resource

Avg Initial Resource
Random θ

reward

0 50 100 150 200 250 300

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

Time Step of Prediction

E
rr

or
 E

p(t
)

The difference between the distribution of group size (normalized)

 

 

Control

Max Initial Resource

Min Initial Resource

Avg Initial Resource
Random θ

reward

(a)Ef (b) Ep

Figure 7: Impact of using incorrect θreward and {Ei} on predictive error.



sults on simulated data indicate that when the model is well speci-
fied, the learning is accurate. Since the model is sufficiently general
and grounded in social science theory, some instance of the model
should be appropriate for any given society. In this sense almost
any general model of this form which is founded in social science
theory should yield similar results.

Within our model, one of the interesting conclusions from a so-
cial science point of view is the ability to identify which parame-
ters have a significant impact on the future evolution of the society.
In particular, the initial resource allocation (a fixed intellectual re-
source of the actor) does not seem to be a dominant factor, butthe
actor ambition and size preference, as well as the penalty/reward
structure for the society have significant impact on the evolution.
These types of conclusions are exactly the types of information a
social scientist is trying to discern from observable data.Our results
are not completely surprising. A community which excessively pe-
nalizes traitors (say by sever dismemberment), does necessarily see
far fewer changes in its social group structure than one thatdoesn’t.
Our observations indicate that learning effort should be focused on
certain parameters and perhaps not as importantly on others, which
can further enhance the efficiency of the learning. Having deter-
mined what the important parameters are, one can then go ahead
and learn their values for specific communities.
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