Every American has a dream.

Kilam has some gray hair.
EVERY American has a dream.

Kilam has some gray hair.
Everyone has some gray hair.
Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Quantifiers

EVERY American has a dream.

Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer $n > 2$ is the sum of 2 primes (Goldbach, 1742).
EVERY American has A dream.

Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer $n > 2$ is the sum of 2 primes \textit{(Goldbach, 1742)}.
Someone broke this faucet.
Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer \(n > 2 \) is the sum of 2 primes (Goldbach, 1742).
Someone broke this faucet.
There exists a creature with blue eyes and blonde hair.
Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer \(n > 2 \) is the sum of 2 primes \((\text{Goldbach, 1742})\).
Someone broke this faucet.
There exists a creature with blue eyes and blonde hair.
All cars have four wheels.
Quantifiers

\[\text{EVERY American has A dream.} \]

Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer \(n > 2 \) is the sum of 2 primes \((\text{Goldbach, 1742})\).
Someone broke this faucet.
There exists a creature with blue eyes and blonde hair.
All cars have four wheels.

These statements are more complex because of quantifiers:

\[\text{EVERY; A; SOME; ANY; ALL; THERE EXISTS.} \]
Quantifiers

Kilam has some gray hair.
Everyone has some gray hair.
Any map can be colored with 4 colors with adjacent countries having different colors.
Every even integer \(n > 2 \) is the sum of 2 primes \((\text{Goldbach, 1742})\).
Someone broke this faucet.
There exists a creature with blue eyes and blonde hair.
All cars have four wheels.

These statements are more complex because of quantifiers:

\[\text{EVERY; A; SOME; ANY; ALL; THERE EXISTS.} \]

Compare:

My Ford Escort has four wheels;
ALL cars have four wheels.
ALL cars have four wheels
ALL cars have four wheels

Define predicate $P(c)$ and its domain
ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

$$C = \{c|c \text{ is a car}\} \quad \leftarrow \text{set of cars}$$
ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

\[
C = \{c | c \text{ is a car}\} \quad \leftarrow \text{set of cars}
\]
\[
P(c) = \text{“car } c \text{ has four wheels”}
\]
ALL cars have four wheels

Define *predicate* \(P(c) \) and its *domain*

\[
C = \{c | c \text{ is a car}\} \quad \leftarrow \text{set of cars}
\]

\[
P(c) = \text{“car } c \text{ has four wheels”}
\]

“for all \(c \) in \(C \), the statement \(P(c) \) is true.”

\[
\forall c \in C : P(c).
\]

(\(\forall \) means “for all”)

Creator: Malik Magdon-Ismail

Making Precise Statements: 21 / 25

There EXISTS →
ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

$$C = \{c|c \text{ is a car}\} \quad \leftarrow \text{set of cars}$$

$$P(c) = \text{“car } c\text{ has four wheels”}$$

“for all c in C, the statement $P(c)$ is true.”

$$\forall c \in C : P(c).$$

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
</table>

Predicate Function

Creator: Malik Magdon-Ismail

Making Precise Statements: 21 / 25
Predicticates Are Like Functions

ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

\[C = \{c|c \text{ is a car}\} \quad \leftarrow \text{set of cars} \]

\[P(c) = \text{"car } c \text{ has four wheels"} \]

"for all c in C, the statement $P(c)$ is true."

\[\forall c \in C : P(c). \]

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(c) = \text{"car } c \text{ has four wheels"}$</td>
<td>$f(x) = x^2$</td>
</tr>
</tbody>
</table>
Predicates Are Like Functions

ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

$$C = \{ c | c \text{ is a car} \} \quad \leftarrow \text{set of cars}$$

$P(c) = \text{“car } c \text{ has four wheels”}$

“for all c in C, the statement $P(c)$ is true.”

$$\forall c \in C : P(c).$$

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Input</th>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P(c) = \text{“car } c \text{ has four wheels”}$</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td></td>
<td>parameter $c \in C$</td>
<td>parameter $x \in \mathbb{R}$</td>
</tr>
</tbody>
</table>
Predicates Are Like Functions

ALL cars have four wheels

Define predicate $P(c)$ and its domain

$$C = \{c|c \text{ is a car}\} \quad \leftarrow \text{set of cars}$$

$$P(c) = \text{“car } c \text{ has four wheels”}$$

“for all c in C, the statement $P(c)$ is true.”

$$\forall c \in C : P(c).$$

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(c) = \text{“car } c \text{ has four wheels”}$</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td>Input parameter $c \in C$</td>
<td>parameter $x \in \mathbb{R}$</td>
</tr>
<tr>
<td>Output statement $P(c)$</td>
<td>value $f(x)$</td>
</tr>
</tbody>
</table>
Predicates Are Like Functions

ALL cars have four wheels

Define predicate $P(c)$ and its domain

$C = \{c|c \text{ is a car}\}$ ← set of cars

$P(c) = \text{“car } c \text{ has four wheels”}$

“for all c in C, the statement $P(c)$ is true.”

$\forall c \in C : P(c)$.

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Input</th>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicate</td>
<td>$P(c) = \text{“car } c \text{ has four wheels”}$</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td>Parameter</td>
<td>$c \in C$</td>
<td>parameter $x \in \mathbb{R}$</td>
</tr>
<tr>
<td>Output</td>
<td>statement $P(c)$</td>
<td>value $f(x)$</td>
</tr>
<tr>
<td>Example</td>
<td>$P(\text{Jen’s VW}) = \text{“car ‘Jen’s VW’ has four wheels”}$</td>
<td>$f(5) = 25$</td>
</tr>
</tbody>
</table>
ALL cars have four wheels

Define *predicate* $P(c)$ and its *domain*

\[C = \{c | c \text{ is a car}\} \quad \leftarrow \text{set of cars} \]

\[P(c) = \text{“car } c \text{ has four wheels”} \]

“for all c in C, the statement $P(c)$ is true.”

\[\forall c \in C : P(c). \]

(\forall means “for all”)

<table>
<thead>
<tr>
<th>Input</th>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P(c) = \text{“car } c \text{ has four wheels”}$</td>
<td>$f(x) = x^2$</td>
</tr>
<tr>
<td></td>
<td>parameter $c \in C$</td>
<td>parameter $x \in \mathbb{R}$</td>
</tr>
<tr>
<td>Output</td>
<td>statement $P(c)$</td>
<td>value $f(x)$</td>
</tr>
<tr>
<td>Example</td>
<td>$P(\text{Jen’s VW}) = \text{“car ‘Jen’s VW’ has four wheels”}$</td>
<td>$f(5) = 25$</td>
</tr>
<tr>
<td></td>
<td>$\forall c \in C : P(c)$</td>
<td>$\forall x \in \mathbb{R}, f(x) \geq 0$</td>
</tr>
</tbody>
</table>
Predicates Are Like Functions

ALL cars have four wheels

Define *predicate* \(P(c) \) and its *domain*

\[
C = \{ c | c \text{ is a car} \} \quad \leftarrow \text{set of cars}
\]

\[P(c) = \text{“car } c \text{ has four wheels”} \]

“for all \(c \) in \(C \), the statement \(P(c) \) is true.”

\[
\forall c \in C : P(c).
\]

(\(\forall \) means “for all”)

<table>
<thead>
<tr>
<th>Input</th>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter</td>
<td>(P(c) = \text{“car } c \text{ has four wheels”})</td>
<td>(f(x) = x^2)</td>
</tr>
<tr>
<td>Output</td>
<td>statement (P(c))</td>
<td>(\text{value } f(x))</td>
</tr>
<tr>
<td>Example</td>
<td>(P(\text{Jen’s VW}) = \text{“car ‘Jen’s VW’ has four wheels”})</td>
<td>(f(5) = 25)</td>
</tr>
<tr>
<td></td>
<td>(\forall c \in C : P(c))</td>
<td>(\forall x \in \mathbb{R}, f(x) \geq 0)</td>
</tr>
<tr>
<td>Meaning</td>
<td>For all (c \in C), the statement (P(c)) is T.</td>
<td>For all (x \in \mathbb{R}, f(x)) is (\geq 0).</td>
</tr>
</tbody>
</table>
There **exists** a Creature with Blue eyes and Blonde Hair

Define *predicate* \(Q(a) \) and its *domain*

\[
A = \{ a | a \text{ is a creature} \} \quad \leftarrow \text{set of creatures}
\]
There exists a Creature with Blue eyes and Blonde Hair

Define predicate $Q(a)$ and its domain

$$A = \{a \mid a \text{ is a creature}\} \leftarrow \text{set of creatures}$$

$$Q(a) = "a \text{ has blue eyes and blonde hair}"$$
There EXISTS a Creature with Blue eyes and Blonde Hair

Define predicate $Q(a)$ and its domain

$$A = \{ a | a \text{ is a creature} \} \quad \leftarrow \text{set of creatures}$$

$$Q(a) = \text{“a has blue eyes and blonde hair”}$$

“there exists a in A for which the statement $Q(a)$ is true.”

$$\exists a \in A : Q(a).$$

(\exists means “there exists”)

Creator: Malik Magdon-Ismail
Making Precise Statements: 22 / 25
Negating Quantifiers →
There EXISTS a Creature with Blue eyes and Blonde Hair

Define predicate $Q(a)$ and its domain

\[A = \{ a | a \text{ is a creature} \} \quad \leftarrow \text{set of creatures} \]

$Q(a) = \text{“a has blue eyes and blonde hair”}$

“there exists a in A for which the statement $Q(a)$ is true.”

\[\exists a \in A : Q(a). \]

(\exists means “there exists”)

$G(a) = \text{“a has blue eyes”}$
There EXISTS a Creature with Blue eyes and Blonde Hair

Define *predicate* $Q(a)$ and its *domain*

\[
A = \{a \mid a \text{ is a creature}\} \quad \leftarrow \text{set of creatures}
\]

$Q(a) = \text{“a has blue eyes and blonde hair”}$

“there exists a in A for which the statement $Q(a)$ is true.”

\[
\exists a \in A : Q(a).
\]

(\exists means “there exists”)

\[
G(a) = \text{“a has blue eyes”}
\]

\[
H(a) = \text{“a has blonde hair”}
\]
Define *predicate* \(Q(a) \) and its *domain*

\[
A = \{ a \mid a \text{ is a creature} \} \quad \leftarrow \text{set of creatures}
\]

\(Q(a) = \text{"a has blue eyes and blonde hair"} \)

“there exists \(a \) in \(A \) for which the statement \(Q(a) \) is true.”

\[
\exists a \in A : Q(a).
\]

(\(\exists \) means “there exists”)

\[
G(a) = \text{"a has blue eyes"}
\]

\[
H(a) = \text{"a has blonde hair"}
\]

\[
\exists a \in A : (G(a) \land H(a))
\]

(compound predicate)
There **exists** a Creature with Blue eyes and Blonde Hair

Define *predicate* $Q(a)$ and its *domain*

$$A = \{a | a \text{ is a creature}\} \leftarrow \text{set of creatures}$$

$$Q(a) = \text{“a has blue eyes and blonde hair”}$$

“there exists a in A for which the statement $Q(a)$ is true.”

$$\exists a \in A : Q(a).$$

(\exists means “there exists”)

$$G(a) = \text{“a has blue eyes”}$$

$$H(a) = \text{“a has blonde hair”}$$

$$\exists a \in A : (G(a) \land H(a))$$

(compound predicate)

(When the domain is understood, we don’t need to keep repeating it. We write $\exists a : Q(a)$, or $\exists a : (G(a) \land H(a))$.)
IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)
IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)

Same as: “All creatures don’t have blue eyes and blonde hair”

\[-\left(\exists a \in A : Q(a) \right) \equiv \forall a \in A : \neg Q(a) \]
Negating Quantifiers

IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)

Same as: “All creatures don’t have blue eyes and blonde hair”

\[-\left(\exists a \in A : Q(a)\right) \equiv \forall a \in A : \neg Q(a)\]

IT IS NOT THE CASE THAT (All cars have four wheels)
IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)
Same as: “All creatures don’t have blue eyes and blonde hair”

\[-(\exists a \in A : Q(a)) \equiv \forall a \in A : \neg Q(a)\]

IT IS NOT THE CASE THAT (All cars have four wheels)
Same as: “There is a car which does not have four wheels”

\[-(\forall c \in C : P(c)) \equiv \exists c \in C : \neg P(c)\]
Negating Quantifiers

IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)

Same as: “All creatures don’t have blue eyes and blonde hair”

\[
\neg \left(\exists a \in A : Q(a) \right) \quad \equiv \quad \forall a \in A : \neg Q(a)
\]

IT IS NOT THE CASE THAT (All cars have four wheels)

Same as: “There is a car which does not have four wheels”

\[
\neg \left(\forall c \in C : P(c) \right) \quad \equiv \quad \exists c \in C : \neg P(c)
\]

When you take the negation inside the quantifier and negate the predicate, you must switch quantifiers: \(\forall \rightarrow \exists \), \(\exists \rightarrow \forall \)
Every American Has a Dream

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an American}\}; \]
\[D = \{ d \mid d \text{ is a dream}\}. \]
Define domains and a predicate.

\[A = \{a \mid a \text{ is an American}\}; \]
\[D = \{d \mid d \text{ is a dream}\}. \]

\[P(a, d) = \text{“American } a \text{ has dream } d.” \]
Every American Has a Dream

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an American}\}; \]
\[D = \{ d \mid d \text{ is a dream}\}. \]

\[P(a, d) = \text{“American } a \text{ has dream } d.” \]

- There is some special dream \(d \), and every American \(a \) has that dream.
Every American Has a Dream

Define domains and a predicate.

\[A = \{a \mid a \text{ is an American}\}; \]
\[D = \{d \mid d \text{ is a dream}\}. \]

\[P(a, d) = \text{“American } a \text{ has dream } d.” \]

There is some special dream \(d \), and every American \(a \) has that dream.

\[\exists d \in D : (\forall a \in A : P(a, d)). \]
Every American Has a Dream

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an American} \}; \]
\[D = \{ d \mid d \text{ is a dream} \}. \]

\[P(a, d) = \text{“American } a \text{ has dream } d.\]"

- There is some special dream \(d \), and every American \(a \) has that dream.
 \[\exists d \in D : (\forall a \in A : P(a, d)). \]

- For every American \(a \), they have there own private dream \(d \).
Every American Has a Dream

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an American} \}; \]
\[D = \{ d \mid d \text{ is a dream} \}. \]

\[P(a, d) = \text{“American } a \text{ has dream } d.” \]

- There is some special dream \(d \), and every American \(a \) has that dream.
 \[\exists d \in D : (\forall a \in A : P(a, d)) \]

- For every American \(a \), they have their own private dream \(d \).
 \[\forall a \in A : (\exists d \in D : P(a, d)) \]
Every American Has a Dream

Define domains and a predicate.

\[A = \{ a \mid a \text{ is an American}\}; \]
\[D = \{ d \mid d \text{ is a dream}\}. \]

\[P(a, d) = \text{“American } a \text{ has dream } d.” \]

- There is some special dream \(d \), and every American \(a \) has that dream.
 \[\exists d \in D : (\forall a \in A : P(a, d)). \]

- For every American \(a \), they have their own private dream \(d \).
 \[\forall a \in A : (\exists d \in D : P(a, d)). \]

When quantifiers are mixed, the order in which they appear is important for the meaning. Order generally cannot be switched.
Proofs with Quantifiers

Claim 1. \(\forall n > 2 : \text{IF } n \text{ is even, THEN } n \text{ is a sum of two primes.} \) (Goldbach, 1742)

Claim 2. \(\exists (a, b, c) \in \mathbb{N}^3 : a^2 + b^2 = c^2. \) \((a, b, c) \in \mathbb{N}^3 \text{ means triples of natural numbers})

Claim 3. \(\neg \exists (a, b, c) \in \mathbb{N}^3 : a^3 + b^3 = c^3. \)

Claim 4. \(\forall (a, b, c) \in \mathbb{N}^3 : a^3 + b^3 \neq c^3. \)

Think about what it would take to prove these claims.