Today: Induction, Proving “...for all...”

1. What is induction.

2. Why do we need it?

3. The principle of induction. Toppling the dominoes. The induction template.

4. Examples.

5. Induction and Well-Ordering.
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>

Perseverance is a virtue when tinkering.
Perseverance is a virtue when tinkering.

<table>
<thead>
<tr>
<th></th>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>21¢</td>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>

Creator: Malik Magdon-Ismail

Induction: Proving “For All . . .”: 4 / 18

Why Induction? →
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>

Perseverance is a virtue when tinkering.

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
<th>24¢</th>
<th>25¢</th>
<th>26¢</th>
<th>27¢</th>
<th>28¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>–</td>
<td>7,7,5,5</td>
<td>5,5,5,5,5</td>
<td>7,7,7,5</td>
<td>5,5,5,5,7</td>
<td>7,7,7,7</td>
</tr>
</tbody>
</table>

Can every postage greater than 23¢ can be dispensed?
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>

Perseverance is a virtue when tinkering.

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
<th>24¢</th>
<th>25¢</th>
<th>26¢</th>
<th>27¢</th>
<th>28¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>–</td>
<td>7,7,5,5</td>
<td>5,5,5,5,5</td>
<td>7,7,7,5</td>
<td>5,5,5,5,7</td>
<td>7,7,7,7</td>
</tr>
</tbody>
</table>

Can every postage greater than 23¢ can be dispensed?

Intuitively yes.
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>

Perseverance is a virtue when tinkering.

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
<th>24¢</th>
<th>25¢</th>
<th>26¢</th>
<th>27¢</th>
<th>28¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>–</td>
<td>7,7,5,5</td>
<td>5,5,5,5,5</td>
<td>7,7,7,5</td>
<td>5,5,5,5,7</td>
<td>7,7,7,7</td>
</tr>
</tbody>
</table>

Can every postage greater than 23¢ can be dispensed?

Intuitively yes.

Induction is the formalization of that intuition.
Why Do We Need Induction?

Predicate Claim

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $P(n) = \text{“Can make postage } n \text{ with } 5\text{¢ and } 7\text{¢ stamps.”} \ \ \ \ \forall n \geq 24 : P(n)$</td>
<td></td>
</tr>
<tr>
<td>(ii) $P(n) = \text{“} n^2 - n + 41 \text{ a prime number.”} \ \ \ \ \forall n \geq 1 : P(n)$</td>
<td></td>
</tr>
<tr>
<td>(iii) $P(n) = \text{“} 4^n - 1 \text{ is divisible by 3.”} \ \ \ \ \forall n \geq 1 : P(n)$</td>
<td></td>
</tr>
</tbody>
</table>
Why Do We Need Induction?

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $P(n) = \text{“Can make postage } n \text{ with 5¢ and 7¢ stamps.”}$</td>
<td>$\forall n \geq 24 : P(n)$</td>
</tr>
<tr>
<td>(ii) $P(n) = \text{“}n^2 - n + 41 \text{ a prime number.”}$</td>
<td>$\forall n \geq 1 : P(n)$</td>
</tr>
<tr>
<td>(iii) $P(n) = \text{“}4^n - 1 \text{ is divisible by } 3.$</td>
<td>$\forall n \geq 1 : P(n)$</td>
</tr>
</tbody>
</table>

TINKER!
Why Do We Need Induction?

Predicate Claim
(i) $P(n) = \text{"Can make postage } n \text{ with 5¢ and 7¢ stamps."} \quad \forall n \geq 24 : P(n)$
(ii) $P(n) = \text{"} n^2 - n + 41 \text{ a prime number."} \quad \forall n \geq 1 : P(n)$
(iii) $P(n) = \text{"} 4^n - 1 \text{ is divisible by 3."} \quad \forall n \geq 1 : P(n)$

TINKER!

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^2 - n + 41$</td>
<td>41✓</td>
<td>43✓</td>
<td>47✓</td>
<td>53✓</td>
<td>61✓</td>
<td>71✓</td>
<td>83✓</td>
<td>97✓</td>
<td>...</td>
</tr>
<tr>
<td>$(4^n - 1)/3$</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>...</td>
</tr>
</tbody>
</table>
Why Do We Need Induction?

Predicate

(i) \(P(n) = \text{“Can make postage } n \text{ with 5¢ and 7¢ stamps.”} \) \(\forall n \geq 24 : P(n) \)

(ii) \(P(n) = \text{“} n^2 - n + 41 \text{ a prime number.”} \) \(\forall n \geq 1 : P(n) \)

(iii) \(P(n) = \text{“} 4^n - 1 \text{ is divisible by 3.”} \) \(\forall n \geq 1 : P(n) \)

TINKER!

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 - n + 41)</td>
<td>41✓</td>
<td>43✓</td>
<td>47✓</td>
<td>53✓</td>
<td>61✓</td>
<td>71✓</td>
<td>83✓</td>
<td>97✓</td>
<td>\cdots</td>
<td>1601✓</td>
<td>1681✗</td>
</tr>
<tr>
<td>((4^n - 1)/3)</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>\cdots</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why Do We Need Induction?

Predicate Claim
(i) \(P(n) = \text{“Can make postage } n \text{ with 5¢ and 7¢ stamps.”} \) \(\forall n \geq 24 : P(n) \)
(ii) \(P(n) = \text{“} n^2 - n + 41 \text{ a prime number.”} \) \(\forall n \geq 1 : P(n) \)
(iii) \(P(n) = \text{“} 4^n - 1 \text{ is divisible by 3.”} \) \(\forall n \geq 1 : P(n) \)

TINKER!

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>(\cdots)</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 - n + 41)</td>
<td>41✓</td>
<td>43✓</td>
<td>47✓</td>
<td>53✓</td>
<td>61✓</td>
<td>71✓</td>
<td>83✓</td>
<td>97✓</td>
<td>(\cdots)</td>
<td>1601✓</td>
<td>1681✘</td>
</tr>
<tr>
<td>((4^n - 1)/3)</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>(\cdots)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How can we prove something for all \(n \geq 1 \)? Verification would take too long!
Why Do We Need Induction?

Predicate Claim

(i) \(P(n) = \) “Can make postage \(n \) with 5¢ and 7¢ stamps.”
\(\forall n \geq 24 : P(n) \)

(ii) \(P(n) = \) “\(n^2 - n + 41 \) a prime number.”
\(\forall n \geq 1 : P(n) \)

(iii) \(P(n) = \) “\(4^n - 1 \) is divisible by 3.”
\(\forall n \geq 1 : P(n) \)

TINKER!

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>(\cdots)</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 - n + 41)</td>
<td>41 ✓</td>
<td>43 ✓</td>
<td>47 ✓</td>
<td>53 ✓</td>
<td>61 ✓</td>
<td>71 ✓</td>
<td>83 ✓</td>
<td>97 ✓</td>
<td>(\cdots)</td>
<td>1601 ✓</td>
<td>1681 x</td>
</tr>
<tr>
<td>(4^n - 1)/3</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>(\cdots)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How can we prove something for all \(n \geq 1 \)? Verification would take too long!
Prove for general \(n \). Can be tricky.
Why Do We Need Induction?

Predicate Claim

(i) $P(n) = \text{“Can make postage } n \text{ with 5¢ and 7¢ stamps.”}$
\[\forall n \geq 24 : P(n)\]

(ii) $P(n) = \text{“}n^2 - n + 41\text{ a prime number.”}$
\[\forall n \geq 1 : P(n)\]

(iii) $P(n) = \text{“}4^n - 1\text{ is divisible by 3.”}$
\[\forall n \geq 1 : P(n)\]

TINKER!

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>⋯</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^2 - n + 41$</td>
<td>(41\✓)</td>
<td>(43✓)</td>
<td>47✓</td>
<td>53✓</td>
<td>61✓</td>
<td>71✓</td>
<td>83✓</td>
<td>97✓</td>
<td>⋯</td>
<td>1601✓</td>
<td>1681✗</td>
</tr>
<tr>
<td>((4^n - 1)/3)</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>⋯</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How can we prove something for all $n \geq 1$? Verification would take too long!

Prove for general n. Can be tricky.

Induction. Systematic.
Is $4^n - 1$ Divisible by 3 for $n \geq 1$?

$P(n) = "4^n - 1$ is divisible by 3."
Is $4^n - 1$ Divisible by 3 for $n \geq 1$?

$P(n) = "4^n - 1$ is divisible by 3."

We proved:

\[\text{IF } 4^n - 1 \text{ is divisible by 3, THEN } 4^{n+1} - 1 \text{ is divisible by 3.} \]

\[P(n) \quad P(n+1) \]

\textit{Proof.} We prove the claim using a direct proof.

1: Assume that $P(n)$ is T, that is $4^n - 1$ is divisible by 3.
2: This means that $4^n - 1 = 3k$ for an integer k, or that $4^n = 3k + 1$.
3: Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that
\[4^{n+1} = 4 \cdot (3k + 1) = 12k + 4. \]

Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 ($4k + 1$ is an integer).
4: Since $4^{n+1} - 1$ is a multiple of 3, we have shown that $4^{n+1} - 1$ is divisible by 3.
5: Therefore, $P(n + 1)$ is T.
Is $4^n - 1$ Divisible by 3 for $n \geq 1$?

$P(n) = "4^n - 1 \text{ is divisible by 3}."

We proved:

IF $4^n - 1$ is divisible by 3, **THEN** $4^{n+1} - 1$ is divisible by 3.

Proof. We prove the claim using a direct proof.

1. Assume that $P(n)$ is T, that is $4^n - 1$ is divisible by 3.
2. This means that $4^n - 1 = 3k$ for an integer k, or that $4^n = 3k + 1$.
3. Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that

 $4^{n+1} = 4 \cdot (3k + 1) = 12k + 4$.

 Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 ($4k + 1$ is an integer).
4. Since $4^{n+1} - 1$ is a multiple of 3, we have shown that $4^{n+1} - 1$ is divisible by 3.
5. Therefore, $P(n + 1)$ is T.

$P(n) \rightarrow P(n + 1)$
Is $4^n - 1$ Divisible by 3 for $n \geq 1$?

$P(n) = "4^n - 1 \text{ is divisible by } 3."$

We proved:

IF $4^n - 1$ is divisible by 3, **THEN** $4^{n+1} - 1$ is divisible by 3.

\[
P(n) \\ P(n+1)
\]

Proof. We prove the claim using a direct proof.

1: Assume that $P(n)$ is T, that is $4^n - 1$ is divisible by 3.
2: This means that $4^n - 1 = 3k$ for an integer k, or that $4^n = 3k + 1$.
3: Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that
 \[4^{n+1} = 4 \cdot (3k + 1) = 12k + 4.\]
 Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 ($4k + 1$ is an integer).
4: Since $4^{n+1} - 1$ is a multiple of 3, we have shown that $4^{n+1} - 1$ is divisible by 3.
5: Therefore, $P(n+1)$ is T.

\[
P(n) \rightarrow P(n + 1)
\]

What use is this? We can’t answer the question. (Reasoning in the absense of facts.)
$4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = \text{“}4^n - 1 \text{ is divisible by 3.”}$

$P(n) \rightarrow P(n + 1)$
$4^n - 1$ is Divisible by 3 for $n \geq 1$

\[
P(n) = "4^n - 1 \text{ is divisible by 3.}"
\]

\[
P(n) \rightarrow P(n + 1)
\]

From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$ \hspace{2cm} \leftarrow \text{divisible by 3 (new fact)}

$P(1)$
$4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = "4^n - 1$ is divisible by 3."

$P(n) \rightarrow P(n+1)$

From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$ \leftarrow divisible by 3 (new fact)

$P(1) \rightarrow P(2)$
4^n - 1 is Divisible by 3 for n ≥ 1

\[P(n) = \text{“}4^n - 1 \text{ is divisible by 3.”} \]

\[P(n) \rightarrow P(n + 1) \]

From tinkering we know that \(P(1) \) is T: \(4^1 - 3 = 3 \) divisible by 3 (new fact)

\[P(1) \rightarrow P(2) \]
4^n - 1 is Divisible by 3 for \(n \geq 1 \)

\[P(n) = \text{"}4^n - 1 \text{ is divisible by 3."} \]

\[P(n) \rightarrow P(n+1) \]

From tinkering we know that \(P(1) \) is T: \(4^1 - 3 = 3 \) \(\leftarrow \) divisible by 3 (new fact)

\[P(1) \rightarrow P(2) \rightarrow P(3) \]
$4^n - 1$ is Divisible by 3 for $n \geq 1$

\[P(n) = "4^n - 1 \text{ is divisible by 3.}" \]

\[P(n) \rightarrow P(n + 1) \]

From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$ ← divisible by 3 (new fact)

\[P(1) \rightarrow P(2) \rightarrow P(3) \]
$4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = \text{“}4^n - 1 \text{ is divisible by 3.”}$

$P(n) \rightarrow P(n + 1)$

From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$ \hspace{1cm} \leftarrow \text{divisible by 3 (new fact)}

$\checkmark \quad \checkmark \quad \checkmark \quad \checkmark$

$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4)$
$4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = \text{"}4^n - 1 \text{ is divisible by 3."}$

$P(n) \rightarrow P(n + 1)$

From tinkering we know that $P(1)$ is T: $4^1 - 3 = 1 \rightarrow$ divisible by 3 (new fact)

$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4)$
$4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = "4^n - 1$ is divisible by 3."

$P(n) \rightarrow P(n + 1)$

From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3 \leftarrow$ divisible by 3 (new fact)

$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n - 1)$
$4^n - 1$ is Divisible by 3 for $n \geq 1$

\[P(n) = "4^n - 1 \text{ is divisible by 3.}" \]

\[P(n) \rightarrow P(n+1) \]

From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3 \quad \leftarrow \text{divisible by 3 (new fact)}$

$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n-1) \rightarrow P(n)$
$4^n - 1$ is Divisible by 3 for $n \geq 1$

\[P(n) = \text{“} 4^n - 1 \text{ is divisible by 3.”} \]

\[P(n) \rightarrow P(n + 1) \]

From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$ \hspace{1cm} \leftarrow divisible by 3 (new fact)

$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n - 1) \rightarrow P(n) \rightarrow \cdots$
By Induction, $4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = "4^n - 1 \text{ is divisible by 3.}"

1. $P(1)$ is T.✓
2. $P(n) \rightarrow P(n+1)$ is T.✓

By induction, $P(n)$ is T for all $n \geq 1$.
By Induction, $4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = "4^n - 1$ is divisible by 3."

1. $P(1)$ is T. ✓
2. $P(n) \rightarrow P(n + 1)$ is T. ✓

By induction, $P(n)$ is T for all $n \geq 1$.

$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$

Practice. Exercise 5.2.

$P(n)$ form an infinite chain of dominos. Topple the first and they all fall.
Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.
Induction to prove: \(\forall n \geq 1 : P(n) \).

Proof. We use induction to prove \(\forall n \geq 1 : P(n) \).

1: Show that \(P(1) \) is T. ("simple" verification.) [base case]
Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. Show that $P(1)$ is T. (“simple” verification.)
 [base case]
2. Show $P(n) \rightarrow P(n+1)$ for $n \geq 1$
 [induction step]
Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. Show that $P(1)$ is T. ("simple" verification.)
2. Show $P(n) \rightarrow P(n + 1)$ for $n \geq 1$

<table>
<thead>
<tr>
<th>Prove the implication using direct proof or contraposition.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Contraposition</td>
</tr>
<tr>
<td>Assume $P(n)$ is T. (valid derivations)</td>
<td>Assume $P(n + 1)$ is F. (valid derivations)</td>
</tr>
<tr>
<td>must show for any $n \geq 1$</td>
<td>must show for any $n \geq 1$</td>
</tr>
<tr>
<td>must use $P(n)$ here</td>
<td>must use $\neg P(n+1)$ here</td>
</tr>
<tr>
<td>Show $P(n + 1)$ is T.</td>
<td>Show $P(n)$ is F.</td>
</tr>
</tbody>
</table>

[base case]

[induction step]
Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1: Show that $P(1)$ is T. ("simple" verification.)

2: Show $P(n) \rightarrow P(n+1)$ for $n \geq 1$

<table>
<thead>
<tr>
<th>Prove the implication using direct proof or contraposition.</th>
<th>Contraposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Contraposition</td>
</tr>
<tr>
<td>Assume $P(n)$ is T. (valid derivations)</td>
<td>Assume $P(n+1)$ is F. (valid derivations)</td>
</tr>
<tr>
<td>must show for any $n \geq 1$</td>
<td>must show for any $n \geq 1$</td>
</tr>
<tr>
<td>must use $P(n)$ here</td>
<td>must use $\neg P(n+1)$ here</td>
</tr>
<tr>
<td>Show $P(n+1)$ is T.</td>
<td>Show $P(n)$ is F.</td>
</tr>
</tbody>
</table>

3: Conclude: by induction, $\forall n \geq 1 : P(n)$.

\qed
Induction to prove: \(\forall n \geq 1 : P(n) \).

Proof. We use induction to prove \(\forall n \geq 1 : P(n) \).

1. Show that \(P(1) \) is T. ("simple" verification.)
2. Show \(P(n) \rightarrow P(n+1) \) for \(n \geq 1 \)

 Prove the implication using direct proof or contraposition.

 Direct
 - Assume \(P(n) \) is T.
 - (valid derivations)
 - must show for any \(n \geq 1 \)
 - must use \(P(n) \) here
 - **Show** \(P(n+1) \) is T.

 Contraposition
 - Assume \(P(n+1) \) is F.
 - (valid derivations)
 - must show for any \(n \geq 1 \)
 - must use \(\neg P(n+1) \) here

3. Conclude: by induction, \(\forall n \geq 1 : P(n) \).

- Prove the *implication* \(P(n) \rightarrow P(n+1) \) for a *general* \(n \geq 1 \). (Often direct proof)
 Why is this easier than just proving \(P(n) \) for general \(n \)?
- Assume \(P(n) \) is T, and reformulate it mathematically.
- Somewhere in the proof you *must* use \(P(n) \) to prove \(P(n+1) \).
- End with a statement that \(P(n+1) \) is T.
1 + 2 + 3 + \cdots + (n - 1) + n = ?
The GREAT Gauss (age 8-10):

\[
S(n) = 1 + 2 + 3 + \cdots + (n - 1) + n \\
\]

\[
S(n) = n + n - 1 + \cdots + 1 \\
\]

\[
2S(n) = (n + 1) + (n + 1) + \cdots + (n + 1) \\
= n \times (n + 1)
\]
The GREAT Gauss (age 8-10):

\[S(n) = 1 + 2 + \cdots + n \]
\[S(n) = n + n - 1 + \cdots + 1 \]
\[2S(n) = (n + 1) + (n + 1) + \cdots + (n + 1) \]
\[= n \times (n + 1) \]

\[S(n) = 1 + 2 + 3 + \cdots + (n - 1) + n = \frac{1}{2}n(n + 1) \]
Proof: \[\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \]

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \)

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly true.
Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: **[Base case]** \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly \(\top \).

2: **[Induction step]** We show \(P(n) \to P(n + 1) \) for all \(n \geq 1 \), using a direct proof.

 Assume (induction hypothesis) \(P(n) \) is \(\top \): \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

 Show \(P(n + 1) \) is \(\top \): \(\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1) \).
Proof: $\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1)$

Proof. (By Induction) $P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1)$.

1: **[Base case]** $P(1)$ claims that $1 = \frac{1}{2} \times 1 \times (1 + 1)$, which is clearly T.

2: **[Induction step]** We show $P(n) \rightarrow P(n + 1)$ for all $n \geq 1$, using a direct proof.

Assume (induction hypothesis) $P(n)$ is T: $\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1)$.

Show $P(n + 1)$ is T: $\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1)$.

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1)
\]

Key step
Proof: \[\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \]

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly \(T \).

2: [Induction step] We show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \), using a direct proof.

Assume (induction hypothesis) \(P(n) \) is \(T \): \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

Show \(P(n + 1) \) is \(T \): \(\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1) \).

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) \quad \text{Key step}
\]
\[
= \frac{1}{2}n(n + 1) + (n + 1) \quad \text{[by the induction hypothesis} \ P(n) \text{]}]
\]
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \)

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly T.

2: [Induction step] We show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \), using a direct proof.
 Assume (induction hypothesis) \(P(n) \) is T: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).
 Show \(P(n + 1) \) is T: \(\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1) \).

\[
\begin{align*}
\sum_{i=1}^{n+1} i &= \sum_{i=1}^{n} i + (n + 1) \\
&= \frac{1}{2}n(n + 1) + (n + 1) \quad \text{[by the induction hypothesis \(P(n) \)]} \\
&= (n + 1)\left(\frac{1}{2}n + 1\right) \\
&= \frac{1}{2}(n + 1)(n + 2) = \frac{1}{2}(n + 1)(n + 1 + 1).
\end{align*}
\]
Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly true.

2: [Induction step] We show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \), using a direct proof. Assume (induction hypothesis) \(P(n) \) is true: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

Show \(P(n + 1) \) is true: \(\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1) \).

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) \\
= \frac{1}{2}n(n + 1) + (n + 1) \\
= (n + 1) \left(\frac{1}{2}n + 1 \right) \\
= \frac{1}{2}(n + 1)(n + 2) = \frac{1}{2}(n + 1)(n + 1 + 1).
\]

This is exactly what was to be shown. So, \(P(n + 1) \) is true.
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \)

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly true.

2: [Induction step] We show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \), using a direct proof.

Assume (induction hypothesis) \(P(n) \) is true:\n\[\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \].

Show \(P(n + 1) \) is true:\n\[\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1) \].

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) = \frac{1}{2}n(n + 1) + (n + 1) = (n + 1)\left(\frac{1}{2}n + 1\right) = \frac{1}{2}(n + 1)(n + 2) = \frac{1}{2}(n + 1)(n + 1 + 1).
\]

This is exactly what was to be shown. So, \(P(n + 1) \) is true.

3: By induction, \(P(n) \) is true for all \(n \geq 1 \).

\[\blacksquare \]
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 =? \]

Where’s the GREAT Gauss when you need him?
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n-1)^2 + n^2 =? \]

Replace Gauss with TINKERING: \textit{method of differences}.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n))</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
<tr>
<td>1st difference</td>
<td>(S'(n))</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>2nd difference</td>
<td>(S''(n))</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3rd difference</td>
<td>(S'''(n))</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) \rightarrow \]
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 =? \]

Replace Gauss with TINKERING: method of differences.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(n)</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
<tr>
<td>1st difference</td>
<td></td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>2nd difference</td>
<td></td>
<td></td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>3rd difference</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

3’rd difference constant is like 3’rd derivative constant.
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 =? \]

Replace Gauss with TINKERING: \textit{method of differences}.

\[\begin{array}{c|cccccccc}
 n & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \hline
 S(n) & 1 & 5 & 14 & 30 & 55 & 91 & 140 \\
 1st difference & S'(n) & 4 & 9 & 16 & 25 & 36 & 49 \\
 2nd difference & S''(n) & & 5 & 7 & 9 & 11 & 13 \\
 3rd difference & S'''(n) & & & 2 & 2 & 2 & 2 \\
\end{array} \]

3’rd difference constant is like 3’rd derivative constant. So guess:

\[S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3. \]
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 =? \]

Replace Gauss with TINKERING: \textit{method of differences}.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n))</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
<tr>
<td>1st difference (S'(n))</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2nd difference (S''(n))</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd difference (S'''(n))</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3’rd difference constant is like 3’rd derivative constant. So guess:

\[S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3. \]

\[
\begin{align*}
a_0 + a_1 + a_2 + a_3 &= 1 \\
a_0 + 2a_1 + 4a_2 + 8a_3 &= 5 \\
a_0 + 3a_1 + 9a_2 + 27a_3 &= 14 \\
a_0 + 4a_1 + 16a_2 + 64a_3 &= 30
\end{align*}
\]

\[
a_0 = 0, \ a_1 = \frac{1}{6}, \ a_2 = \frac{1}{2}, \ a_3 = \frac{1}{3}
\]

\[\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) \to \]
\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 =? \]

Replace Gauss with TINKERING: \textit{method of differences}.

\begin{align*}
\begin{array}{c|cccccccc}
 n & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
S(n) & 1 & 5 & 14 & 30 & 55 & 91 & 140 \\
\text{1st difference} & S'(n) & 4 & 9 & 16 & 25 & 36 & 49 \\
\text{2nd difference} & S''(n) & & 5 & 7 & 9 & 11 & 13 \\
\text{3rd difference} & S'''(n) & & & 2 & 2 & 2 & 2 \\
\end{array}
\end{align*}

3′rd difference constant is like 3′rd derivative constant. So guess:

\[
S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3.
\]

\[
\begin{array}{c|cccccccccc}
 n \frac{1}{6} n + \frac{1}{2} n^2 + \frac{1}{3} n^3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
a_0 & 0 & \frac{1}{6} & 1 & \frac{1}{2} & \frac{1}{3} \\
a_1 & \frac{1}{6} & 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\
a_2 & \frac{1}{12} & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\
a_3 & \frac{1}{24} & \frac{1}{12} & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\
\end{array}
\]

\[
\begin{align*}
\sum_{i=1}^{n} i^2 &= \frac{1}{6} n(n + 1)(2n + 1) \\
a_0 + a_1 + a_2 + a_3 &= 1 \\
a_0 + 2a_1 + 4a_2 + 8a_3 &= 5 \\
a_0 + 3a_1 + 9a_2 + 27a_3 &= 14 \\
a_0 + 4a_1 + 16a_2 + 64a_3 &= 30 \\
a_0 &= 0, \ a_1 = \frac{1}{6}, \ a_2 = \frac{1}{2}, \ a_3 = \frac{1}{3}
\end{align*}
\]
Proof: \[S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n + 1)(2n + 1) \]

Proof. (By induction.) \[P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1). \]
Proof: \[S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n + 1)(2n + 1) \]

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1). \)

1. [Base case] \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly T.
Proof. (By induction.) $P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$.

1: [Base case] $P(1)$, claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

2: [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \geq 1$. Direct proof. Assume (induction hypothesis) $P(n)$ is T: $\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$. Show $P(n+1)$ is T: $\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$.

Proof: $S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$
Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

1. **[Base case]** \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly \(T \).

2. **[Induction step]** Show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \). Direct proof.

 Assume (induction hypothesis) \(P(n) \) is \(T \): \(\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

 Show \(P(n + 1) \) is \(T \): \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(n + 2)(2n + 3) \).

 \[
 \sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2 \quad \text{Key step}
 \]
Proof: \(S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6} n + \frac{1}{2} n^2 + \frac{1}{3} n^3 = \frac{1}{6} n(n + 1)(2n + 1) \)

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6} n(n + 1)(2n + 1) \).

1: \textbf{[Base case]} \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly \(\top \).

2: \textbf{[Induction step]} Show \(P(n) \implies P(n + 1) \) for all \(n \geq 1 \). Direct proof. Assume \(\text{(induction hypothesis)} P(n) \) is \(\top \): \(\sum_{i=1}^{n} i^2 = \frac{1}{6} n(n + 1)(2n + 1) \).

Show \(P(n + 1) \) is \(\top \): \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6} (n + 1)(n + 2)(2n + 3) \).

\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2 \quad \text{Key step}
\]

\[
= \frac{1}{6} n(n + 1)(2n + 1) + (n + 1)^2 \quad \text{[by the induction hypothesis } P(n) \text{]}
\]
Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

1. **[Base case]** \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly true.

2. **[Induction step]** Show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \). Direct proof.

Assume (induction hypothesis) \(P(n) \) is true: \(\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

Show \(P(n + 1) \) is true: \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(n + 2)(2n + 3) \).

\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2 \\
= \frac{1}{6}n(n + 1)(2n + 1) + (n + 1)^2 \\
= \frac{1}{6}(n + 1)(n + 2)(2n + 3)
\]

This is exactly what was to be shown. So, \(P(n + 1) \) is true.
Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6} n(n + 1)(2n + 1) \).

1: [**Base case**] \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly \(T \).

2: [**Induction step**] Show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \). Direct proof. Assume (induction hypothesis) \(P(n) \) is \(T \): \(\sum_{i=1}^{n} i^2 = \frac{1}{6} n(n + 1)(2n + 1) \).

Show \(P(n + 1) \) is \(T \): \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(n + 2)(2n + 3) \).

\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2 \\
= \frac{1}{6} n(n + 1)(2n + 1) + (n + 1)^2 \\
[\text{by the induction hypothesis } P(n)] \\
= \frac{1}{6}(n + 1)(n + 2)(2n + 3)
\]

This is exactly what was to be shown. So, \(P(n + 1) \) is \(T \).

3: By induction, \(P(n) \) is \(T \ \forall n \geq 1. \)

\[\square\]
Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.
Well Ordering Principle

Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering.
Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \rightarrow P(n + 1)$ be true.
Well Ordering Principle

Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \rightarrow P(n + 1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).
Well Ordering Principle

Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \rightarrow P(n + 1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).

\[
\begin{align*}
P(1) & \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n_* - 1) \rightarrow P(n_*) \rightarrow \cdots
\end{align*}
\]
Well Ordering Principle

Well-ordering Principle.
Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \rightarrow P(n + 1)$ be T.

Suppose $P(n_*)$ fails for the smallest counter-example n_* (well-ordering).

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n_* - 1) \rightarrow P(n_*) \rightarrow \cdots$$

Now how can $P(n_* - 1) \rightarrow P(n_*)$ be T?
Well Ordering Principle

Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \rightarrow P(n + 1)$ be true.

Suppose $P(n_*)$ fails for the *smallest* counter-example n_* (well-ordering).

\[
P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n_* - 1) \rightarrow P(n_*) \rightarrow \cdots
\]

Now how can $P(n_* - 1) \rightarrow P(n_*)$ be true?

Any induction proof can also be done using well-ordering.
Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

Proof. [Induction] \(P(n) : n < 2^n \).
Proof. [Induction] \(P(n) : n < 2^n \).

Base case. \(P(1) \) is true because \(1 < 2^1 \).
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is t because $1 < 2^1$.

Induction. Assume $P(n)$ is t: $n < 2^n$. and show $P(n + 1)$ is t: $n + 1 < 2^{n+1}$.

\[n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}. \]
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Induction. Assume $P(n)$ is T: $n < 2^n$. and show $P(n + 1)$ is T: $n + 1 < 2^{n+1}$.

\[
n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]

Therefore $P(n + 1)$ is T and, by induction, $P(n)$ is T for $n \geq 1$.

\[\blacksquare\]
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Induction. Assume $P(n)$ is T: $n < 2^n$. and show $P(n + 1)$ is T: $n + 1 < 2^{n+1}$.

$$n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.$$

Therefore $P(n + 1)$ is T and, by induction, $P(n)$ is T for $n \geq 1$.

Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Induction. Assume $P(n)$ is T: $n < 2^n$. and show $P(n + 1)$ is T: $n + 1 < 2^{n+1}$.

$$n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.$$

Therefore $P(n + 1)$ is T and, by induction, $P(n)$ is T for $n \geq 1$.

Assume that there is an $n \geq 1$ for which $n \geq 2^n$.

Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

Proof. [Induction] \(P(n) : n < 2^n \).

Base case. \(P(1) \) is T because \(1 < 2^1 \).

Induction. Assume \(P(n) \) is T: \(n < 2^n \) and show \(P(n + 1) \) is T: \(n + 1 < 2^{n+1} \).

\[
n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]

Therefore \(P(n + 1) \) is T and, by induction, \(P(n) \) is T for \(n \geq 1 \).

Proof. [Well-ordering] Proof by contradiction.

Assume that there is an \(n \geq 1 \) for which \(n \geq 2^n \).

Let \(n^* \) be the minimum such counter-example, \(n^* \geq 2^{n^*} \).
Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

Proof. [Induction] \(P(n) : n < 2^n \).

Base case. \(P(1) \) is T because \(1 < 2^1 \).

Induction. Assume \(P(n) \) is T: \(n < 2^n \). and show \(P(n+1) \) is T: \(n + 1 < 2^{n+1} \).

\[
n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]

Therefore \(P(n+1) \) is T and, by induction, \(P(n) \) is T for \(n \geq 1 \).

Proof. [Well-ordering] Proof by **contradiction**.

Assume that there is an \(n \geq 1 \) for which \(n \geq 2^n \).

Let \(n_* \) be the **minimum** such **counter-example**, \(n_* \geq 2^{n_*} \).

Since \(1 < 2^1 \), \(n_* \geq 2 \). Since \(n_* \geq 2 \), \(\frac{1}{2} n_* \geq 1 \) and so,

\[
n_* - 1 \geq n_* - \frac{1}{2} n_* = \frac{1}{2} n_* \geq \frac{1}{2} \times 2^{n_*} = 2^{n_*-1}.
\]
Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

Proof. [Induction] \(P(n) : n < 2^n \).

Base case. \(P(1) \) is T because \(1 < 2^1 \).

Induction. Assume \(P(n) \) is T: \(n < 2^n \) and show \(P(n + 1) \) is T: \(n + 1 < 2^{n+1} \).

\[
 n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]

Therefore \(P(n + 1) \) is T and, by induction, \(P(n) \) is T for \(n \geq 1 \).

Proof. [Well-ordering] Proof by **contradiction**.
Assume that there is an \(n \geq 1 \) for which \(n \geq 2^n \).
Let \(n^*_\) be the **minimum** such **counter-example**, \(n^*_i = 2^{n^*_i} \).
Since \(1 < 2^1 \), \(n^*_i \geq 2 \). Since \(n^*_i \geq 2 \), \(\frac{1}{2} n^*_i \geq 1 \) and so,

\[
 n^*_i - 1 \geq n^*_i - \frac{1}{2} n^*_i = \frac{1}{2} n^*_i \geq \frac{1}{2} \times 2^{n^*_i} = 2^{n^*_i-1}.
\]

So, \(n^*_i - 1 \) is a **smaller** counter example. **FISHY!**
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Induction. Assume $P(n)$ is T: $n < 2^n$. and show $P(n + 1)$ is T: $n + 1 < 2^{n+1}$.

\[
n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]

Therefore $P(n + 1)$ is T and, by induction, $P(n)$ is T for $n \geq 1$.

Proof. [Well-ordering] Proof by **contradiction**.

Assume that there is an $n \geq 1$ for which $n \geq 2^n$.

Let n_* be the **minimum** such **counter-example**, $n_* \geq 2^{n_*}$.

Since $1 < 2^1$, $n_* \geq 2$. Since $n_* \geq 2$, $\frac{1}{2}n_* \geq 1$ and so,

\[
n_* - 1 \geq n_* - \frac{1}{2}n_* = \frac{1}{2}n_* \geq \frac{1}{2} \times 2^{n_*} = 2^{n_*-1}.
\]

So, $n_* - 1$ is a **smaller** counter example. **FISHY!**

The **method of minimum counter-example** is very powerful.
Practice. Problems 5.*