Large-Scale Programming and Testing

Fall 2017 – CSCI 4963/6963 – Week 05
David Goldschmidt – goldschmidt@gmail.com
Office: Amos Eaton 115
Office hours: Mon/Thu 1:00-1:50PM; Wed 1:00-2:50PM

Politeness policies

- Web crawlers adhere to politeness policies
 - In general, a crawler sends a GET request to a specific webserver every few seconds (or minutes)
 - A website might have a robots.txt file, which specifies what crawlers can and cannot crawl
 - Also may specify one or more sitemaps...

Example robots.txt file

User-agent: *
Disallow: /private/
Disallow: /confidential/
Disallow: /other/
Allow: /other/public

User-agent: FavoredCrawler
Disallow:

Sitemap: http://xyz.com/sitemap.xml.gz
Sitemaps

- Default priority is set at 0.5
- Some URLs might not be easily discovered by crawlers...

```xml
<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.company.com/</loc>
    <lastmod>2008-01-15</lastmod>
    <changefreq>monthly</changefreq>
    <priority>0.7</priority>
  </url>
  <url>
    <loc>http://www.company.com/inventory?item=iphone</loc>
    <changefreq>weekly</changefreq>
  </url>
  <url>
    <changefreq>daily</changefreq>
  </url>
  ...
</urlset>
```

Are you connected?

- The Internet (1969) is a network that is:
 - Global
 - Decentralized
 - Redundant
 - Heterarchical
 - Ever-changing
 - Made up of many smaller networks, which in turn are made up of varying numbers of machines
 - Made up of many different types of machines
Weaving the Web

- The World Wide Web (1989) is:
 - Global
 - Decentralized
 - Redundant (sometimes)
 - Heterarchical
 - Ever-changing
 - Made up of many websites, which in turn are composed of varying numbers of webpages
 - Made up of many different types of webpages (static versus dynamic)

Who invented the Web?

- Sir Tim Berners-Lee at CERN
Why are links so important?

- Links (i.e., URLs) are useful to us humans for navigating websites and finding things
- Links are also extremely useful to search engines

 `the latest news`

- Anchor (or link) text helps with ranking
 - Link text summarizes the content of the destination page
 - Link text is succinct, descriptive, and often coincides with query text
 - Link text is often written by a non-biased third party (less spam?)

Links and webgraphs

- The actual links themselves may be useful in describing a target webpage in terms of the target’s:
 - Popularity
 - Importance
 - Authority
 - Incoming link (inlink) count

- Link analysis often focuses on inlinks
 - How can we use inlinks to better rank matching documents?
 - The challenge here is how we actually obtain the inlinks
PageRank

- PageRank is an iterative link analysis algorithm
- Use “the link structure...to calculate a quality ranking for each web page”
- Original Google paper by the original Google guys: http://infolab.stanford.edu/~backrub/google.html

How does PageRank work?

- The PageRank of page A (i.e., PR(A)) is the probability that a “random surfer” visits that page
- Simulate browsing the Web as a random surfer:
 1. Set constant \(\lambda \)
 2. Choose a random number \(r \) between 0 and 1
 3. If \(r < \lambda \) then go to a random page
 4. Otherwise, follow a random link from the current page
 5. Go back to Step 2
- Navigating to a random page avoids getting stuck in pages with no links, with broken links, or that form cycles

PageRank

- PageRank of page C is the probability that a random surfer is viewing page C:
 - Based on both inlinks and outgoing links (outlinks)
 - C(A) is the number of outlinks from page A
 - \(PR(C) = \frac{PR(A)}{C(A)} + \frac{PR(B)}{C(B)} \)

- We assume PR forms an even distribution across all pages
 - Initially, \(PR(A) = PR(B) = PR(C) = 0.333 \)
 - Then, \(PR(C) = \frac{0.333}{2} + \frac{0.333}{1} = 0.500 \)
 - And \(PR(B) = \frac{PR(A)}{C(A)} = \frac{0.333}{2} = 0.166 \)
 - And \(PR(A) = \frac{PR(C)}{C(C)} = \frac{0.500}{1} = 0.500 \)

- For each page \(u \):
 - \(PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L_v} \)
 - Here, \(B_u \) is the set of pages that point to page \(u \)
 - And, \(L_v \) is the number of deduplicated outlinks from page \(v \)

- We can account for the “random jumps” by incorporating constant \(\lambda \) into the equation (and \(N \) is number of pages):
 \[
 PR(u) = \frac{\lambda}{N} + (1 - \lambda) \sum_{v \in B_u} \frac{PR(v)}{L_v}
 \]

 Typically, \(\lambda \) is low, e.g., 0.15
A cycle tends to negate the effectiveness of the PR algorithm.
Ranking and querying

Acquisition and indexing
Document features

- Document features are obtained during text transformation
 - A document feature is some extractable characteristic of the document expressed numerically
 - For example, a topical feature estimates the degree to which the document is about a particular topic
 - As another example, quality features include inlink counts, the number of days since a page was last updated, etc.
- Document features can translate into index terms

Abstract model of ranking

- Regardless of the ranking function, the abstract model below provides an overview of implementation
An index is a data structure designed to make search very fast and efficient.

Text-based search typically requires an inverted index:

- The index is inverted because we associate documents with words rather than identifying words within or as part of a document.
- Each index term is associated with an inverted list that contains:
 - A list of documents
 - A list of word occurrences within each document
 - Word counts and positional information
 - Metadata identifying semantics
Inverted indexes

- Each entry in an inverted index is called a posting
 - The part of the posting that refers to a specific document or location is called a pointer
 - Further, each document within the collection is given a unique document number
- Lists are usually document-ordered
- Sorted by document number

Example document collection

- Assume each sentence below is a separate document

 S_1 Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

 S_2 Fishkeepers often use the term tropical fish to refer only those requiring fresh water, with saltwater tropical fish referred to as marine fish.

 S_3 Tropical fish are popular aquarium fish, due to their often bright coloration.

 S_4 In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.
Example

- Inverted index for given documents S_1, S_2, S_3, and S_4
- Individual word occurrences have been deduplicated and ignored
- What does this structure tell us?
- What is missing?
Example

- Inverted index for given documents S_1, S_2, S_3, and S_4, with specific word positions
- What does this structure tell us?
- What is missing?

Proximity matching

- Proximity matching is a technique used to identify and match multiword phrases

- Proximity matching is also used to match words within a given window of size n
 - e.g., words within five words of “fish” ($n=5$)
Document fields

- A document field is a section of a document that has identifiable additional semantic meaning
 - e.g., date, from:, to:, etc.
 - e.g., title, author, copyright, publisher, isbn, etc.

- Implementation options:
 - Use separate inverted lists for each field
 - Add extra information about fields to postings
 - Use extent lists....

Extent lists

- An extent is defined as a contiguous region of a document (typically with special meaning)
 - We can represent extents using word position ranges
 - The inverted list records all extents for a given field