

A myth that needs
debunking

•  The Semantic Web needs Ontologies
(true)

•  But Ontologies are
–  Inefficient (slow)
–  Complicated to express (Heavy)
–  Difficult to Build (Hard)
(false)

•  We can build them:
–  Faster, Lighter, Easier!!

Traditional AI ontology

•  cf. US National Center for Biotechnology
Information, "Oncology Metathesaurus"
–  50,000+ classes, ~8 people supporting full time,

monthly updates, mandated for use by NIH-
funded cancer researchers

•  OWL DL rigorously followed
•  Provably consistent

Sem Web use case
•  cf. Friend of a Friend (Foaf)

–  30+ classes, Dan Brickley and Libby Miller made it,
maintained by consensus in a small community of
developers

•  Violates DL rules (undecidable)
•  Used in many unexpected contexts

•  FOAF
–  10s of millions of Foaf people

•  (not necessarily distinct individuals)
–  Exported by a growing number of providers

•  If you use LiveJournal, you have a FOAF file
–  Also flickr, ecademy, tribe, joost, …
–  Apps to export Foaf from Facebook and other soc netw sites

–  Becoming de facto standard for open social networking

A lot more users than the NCI ontology!

Why?
•  NCBI view: Formal properties

–  Based on a decidable subset of KR
•  Description logics

–  For which much scaling research has been happening
•  Ca. 2000 - 10,000 axioms, no facts, 1 day
•  Ca. 2008 - 50,000 axioms, million facts, 10 min.

–  Not just faster computers (but Moore's Law helps), significant
research into optimization, "average case"

–  Moving to parallel (Web server)

–  But still not "Web Scale"

In this view OWL is a formal knowledge representation standard

Ontology: the traditional view

•  Ontology as Barad-
Dur (Sauron's
tower):
–  Extremely powerful!

–  Patrolled by Orcs
•  Let one little hobbit

in, and the whole
thing could come
crashing down

inconsistency

Decidable Logic basis

The argument for this seems
compelling

Which one do you want your
doctor to use?

But the cost is high
•  Formal modeling finds its use cases in verticals and

enterprises
–  Where the vocabulary can be controlled
–  Where finding things in the data is important

•  Example
–  Drug discovery from data

•  Model the molecule (site, chemical properties, etc) as
faithfully and expressively as possible

•  Use "Realization" to categorize data assets against the
ontology

–  Bad or missed answers are money down the drain

•  The modeling is very expensive and the return
on investment must be very high!

Analogy: the pre-Web hypertext book

A better alternative for
Web Development

•  RDFS and OWL are based on RDF, a language designed
for the (Semantic) Web
–  Built with Web architecture in mind

•  Exploits Web infrastructure, respects W3C TAG recommendations
–  Internationalization, accessibility, extensibility

–  Fits the Web culture
•  Open and extensible, supports communities of interest

–  If you don't like my ontology, extend it, change it, or build your own
•  Fits the Web application development paradigm

–  Scales like "databases"

Analogy: HTML

Linked Data Web
•  "Data Web" approach finds its use cases in

Web Applications (at Web scales)
–  Finding anything in the mess can be a win!

•  Which is different because
–  A lot of data, very little semantics
–  Used mainly for query (think Google, not Cyc)

•  not every answer must be right
•  And time = money!

Very simple "reasoning"
•  Twine recommends some people I may

want to connect to
–  What is correctness in this case?

•  If I find some folks I like this way, I use
twine more. Surprises can be fun.

–  I'm only seeing a few of a very large set so
"first" is more important than "there
somewhere"

The linked open data cloud now has billions of assertions,
and is growing rapidly

http://linkeddata.org/

Traditional Web applications

Database

Browser

Dynamic
Content
Engine

HTTP

HTML
Code

Semantic Web applications

Browser

Dynamic
Content
Engine

HTTP (Sparql)

HTML
Code

Do your mashup on the underlying data
instead of presentations thereof

Ontologies?
•  Mostly reuse of a few simple ones (Dbpedia

terms, foaf, doap, etc.)
–  Faster

•  Uses simple parts of language (RDFS and a
very small amount of OWL)
–  Lighter (sometimes called "lightweight ontologies"

•  Mostly small and "local"
–  Easier

Reasoning?

•  Very little
– Mainly just which data in one sphere is

related to another
•  (easy)

– Mainly based on small vocabularies
•  (Light)

– Mainly procedural
•  (fast)

Example LD applications

Dbpedia mobile HealthFinland

Semaplorer

Linked Data (RDF, SPARQL)

Semantic Web (RDFS,OWL)

Web 3.0

Web 2.0

Web 3.0 extends current Web applications using Semantic
 Web technologies and graph-based, open data.

The industrial "meme"

Web 3.0 examples

Semantic Search (Powerset.com)

Web 3.0 examples

Enhanced Social Networks (twine.com)

Web 3.0 examples

Semantic Match (bintro.com)

Web 3.0 examples

Social database (freebase.com)

"Cutting Room Floor"
•  RDF, RDFS data model/details
•  Linked data Web tools

–  http://linkeddata.org/tools
•  RDFa, GRDDL - embedding RDF in (X)HTML
•  Yahoo! Search Monkey

–  http://developer.yahoo.com/searchmonkey/
•  Advantages of RDF/Linked Data over RDBs for Ruby on Rails

development
–  O'reilly: Programming the Semantic Web (coming)

•  http://oreilly.com/catalog/9780596802066/

•  My own research work (http://tw.rpi.edu)
–  Scaling RDFS inference, policy/accountability

Bottom line
•  The "low end Semantic Web, powered by

technologies such as RDFS, SPARQL, and a little bit
of OWL is showing tremendous promise
–  Can embed the power of the Semantic Web in traditional

Web apps
•  Closer to Web 2.0 in look and feel
•  Similar implementation approach

•  Significant and growing industrial interest
–  Web 3.0: the big one is still out there!!!!!

Lighter, Faster, Easier!

