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ABSTRACT

Multilayer neural networks have seen a resurgence under the umbrella of deep learn-

ing. Current deep learning algorithms train the layers of the network sequentially,

improving the algorithmic performance as well as providing some regularization.

While the current algorithms have shown great prediction power in many problems,

disadvantages in model interpretability and training time still exist and may not be

easily overcome under the current framework. In order to solve the problems, we

developed two new training algorithms for deep networks which train each node in

the network sequentially.

The new algorithms are designed to simulate human’s learning process, where fea-

tures for different objects are identified, understood and memorized iteratively. The

main difference between the two new algorithms is the partition function used to

split the input data into subsets. A certain feature will be learned from one subset,

instead of from the whole data set. The Greedy-By-Node (GN) algorithm is based

on an additive-feature assumption which to some extent resembles the boosting al-

gorithms, where the input data is sorted and partitioned based on their distance to

the most common feature learned by the first inner node. The subsets closer to the

common feature will be learned earlier, while harder problems are intrinsically cov-

ered by more inner nodes and learned at later stage. The Greedy-By-Class-By-Node

(GCN) algorithm directly utilizes the data labels and assumes that data in each class

share common features. A special cache mechanism and a parameter called ”am-

nesia factor” are also introduced in order to keep the speed while provide control

over the ”orthogonality” between learned features. Our algorithms are orders of

magnitude faster in training, create more interpretable internal representations at

the node level, while not sacrificing on the ultimate out-of-sample performance.

vi



1. INTRODUCTION

1.1 Multilayer Neural Networks

Multilayer neural networks have gone through ups and downs since their arrival

in [1–3]. The current resurgence in the ”deep” multilayer network owes itself largely

to the efficient greedy layer by layer algorithms for training, as well as the ability to

create hierarchical representations of the data within each layer. In the era of ”big

data” applications in diverse application areas, these two concerns are real: the deep

network should be trained quickly; the internal layers should contain meaningful

representations of the data to provide some insight into what complex features the

nonlinear neurons are capturing. We explore these two dimensions of training a

deep network. Assume a standard machine learning from data setup [4], with N

datapoints (x1, y1), . . . , (xN , yN) representing the task to be learned; xn ∈ Rd and

yn ∈ {0, 1, . . . , c− 1} (multi-class setting).

We refer to [4, e-Chapter 7] for the basics of multilayer neural networks, in-

cluding notation which we very quickly summarize here. In figure 1.1 we show an

example feedforward neural network architecture. Such a network is considered

”deep” because it has many (� 2) layers. Throughout this thesis, we assume that

a neural network architecture as shown in Figure 1.1 has been fixed. The neural

network implements a function whereby in each layer (`), the output of the previous

layer (`− 1) is transformed into the output of the layer ` until one reaches the final

layer on top, which is the output of the network. The function implemented by layer

` is

x(`) = tanh(W(`)x(`−1)),

where x(`) is the output of layer `, and the matrix of weights W(`) (having the

appropriate dimensions to map a vector from layer ` − 1 to a vector in `) is a set

of parameters that have to be learned from the data. Using the data to identify all

the parameters {W(1),W(2), . . . ,W(L)} is the training phase of the neural network.

The backpropagation approach to training a multilayer network [5], which

1
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outputoutput output output

Input Input Input Input

Figure 1.1: Multilayer Neural Network.

was the popular approach to training a neural network, trains all the weights in the

network simultaneously, allowing the network maximum flexibility. The current ap-

proach to training deep networks is layer-by-layer: train the first layer weights W(1);

now train the second layer weights W(2), while keeping the first layer weights fixed ;

and so on until all the weights have been determined. In practice, once all the

weights have been learned in the “greedy” layer by layer manner (often referred to

as pre-training), the best results are obtained by fine tuning all the weights using a

few iterations of backpropagation. This process is illustrated in Figure 1.2.

A question arises as to how one should train each internal layer. There are

two dominant approaches with very similar ideas. The first is as an unsupervised

nonlinear auto-encoder of the data [6]; this approach is appealing to build meaningful
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Learn W(1) Learn W(2) Learn W(3) Fine tuning

Figure 1.2: Layer-by-layer greedy deep learning algorithm.

hierarchical representations of the data in the internal layers. The second is as a

supervised encoder; this approach primarily targets prediction performance. Deep

learning has enjoyed great success in several areas and hence considerable effort has

been expended in optimizing the pre-training. The two main considerations are:

1. Pre-training time and training/test performance of the final solution. There is

no doubt that the greedy layer-by-layer pre-training is significantly more efficient

than full backpropagation, and appears to be better at avoiding bad local min-

ima [7]. Our algorithms will show an order of magnitude speed gain over greedy

layer-by-layer pre-training.

2. Interpretability of the representations learned in the internal layers. From now

on, we will use the USPS digits data (10 classes) as a strawman benchmark to

illustrate our approach. For this strawman dataset, we may look at the internal

representation learned by the first layer of the deep network from the lower layer

weights going into a certain node, since the values of the weights to the corre-

sponding pixel locations can be seen as the high-level features built from the lower

level. Figure 1.3 shows the result for the unsupervised auto-encoder as well as

the supervised encoder. It is not clear what features this internal representation

is capturing.
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Unsupervised auto-encoder Supervised encoder

Figure 1.3: Features of nine nodes in the first internal layer after greedy layer-by-
layer pre-training. There is no clear resemblence to digits, though the supervised
features look slightly better than the unsupervised.

1.2 Our Contribution: Greedy Node-by-Node Pre-Training

The thrust of our approach is to learn the weights into each node of the network

in a sequential greedy manner: greedy-by-node (GN) for the unsupervised version

and greedy-by-class-by-node (GCN) for the supervised version. Figure 1.4 illustrates

the first 5 steps for the network above. The motivation for this approach is to mimic

Learn W
(1)
1 Learn W

(1)
2 Learn W

(1)
3 Learn W

(1)
4 Learn W

(2)
1

Figure 1.4: Node-by-node greedy deep learning algorithm.

a human learner who hardly builds all features (outputs of the internal nodes) at

once from all objects. Instead, features are built one by one while processing the data

in a sequential manner. Our algorithm learns the features in each layer one-by-one,

using a part of the data to learn each feature. Our contributions are
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1. The specific algorithm to train each internal node.

2. How to select the data with which to train each internal node.

The goal of this study is not to improve the accuracy of deep learning, rather,

to improve efficiency and interpretability of the features, while maintaining the

accuracy of the deep learning. The standard deep learning algorithm uses every data

point to process every weight in the network. In our algorithm, only a subset of the

data processes a particular weight, which defines a higher-level feature. Further, by

training node-by-node using ”relevent” data, our algorithm produces features that

are more interpretable. Figure 1.5 shows the features of the first nine nodes of the

first internal layer on the digit classification task. Compared with the features in

Figure 1.3, our algorithm picks up visually more intuitive features. Our algorithms

can be run using the unsupervised auto-encoder setting or the supervised setting.

GN (unsupervised) GCN (supervised)

Figure 1.5: Features of nine nodes in the first internal layer after greedy node-by-
node pre-training. The resemblence to digits is clear. The supervised features look
slightly better than the unsupervised.

1.3 Related Work

To help motivate our approach, it helps to start back at the very begining

of neural networks, with Rosenblatt [1] and Widrow et al. [2]. They introduced

the adaline, the adaptive linear (hard threshold element), and the combination of
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multiple elements came with Hoff [3], the madaline (the precursor to the multi-

layer perceptron). Things cooled off a little because fitting data with multiple hard

threshold elements was a combinatorial nightmare. There is no doubt softening the

hard threshold to a sigmoid and the arrival of a new efficient training algorithm,

backpropagation [5], was a huge part of the resurgence of neural networks in the

1980s/1990s. But, again, neural networks receeded, taking a back seat modern

techniques like the support vector machine [8]. In part, this was due to the facts

that multilayer feedforward networks were still hard to train iteratively due to con-

vergence issues, suffered extensively from local minima [9, 10], and are extremely

powerful [11] and hence easy to overfit to data. For these reasons, and despite the

complexity theoretic advantages of deep networks (see for example the short dis-

cussion in [12]), application of neural networks was limited mostly to shallow two

layer networks. Multi-layer (deep) neural networks are back in the guise of deep

learning/deep networks, and again because of a leap in the methods used to train

the network [13]. In a nutshell, rather that address the full problem of learning

the weights in the network all at once, train each layer of the newtork sequentially.

In so doing, training becomes manageable [12, 13], the local minima problem when

training a single layer is significantly diminished as compared to the whole network

and the restriction to layer by layer learning reigns in the power of the network,

helping with regularizing it [7]. A side benefit has also emerged, which is that each

layer succesively has the potential to learn hierarchical representations [7, 14]. As

a result of these algorithmic advances, deep networks have found a host of mod-

ern applications, ranging from sentiment classification [15], to audio [16], to signal

and information processing [17], to speech [18], and even to the unsupervised and

transfer settings [19]. Optimization of such deep networks is also an active area, for

example [20,21].

Studies have been focused on generating better representations of the input

data. Besides the original deep belief network [13] and autoencoder [12], the stacked

denoising autoencoder [22, 23] has been widely used as a variant to the classic au-

toencoder. The idea is to use a corrupted input data for pre-training to reconstruct

the original one. The resulted autoencoder can be seen as a way to define a man-
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ifold [22]. Sparse coding [24, 25] has been developed to learn features effectively

and prevent system from activating same subset of nodes constantly [25]. It has

been shown that when applying on small image patches, this method is able to

learn local and meaningful features. However the training requires extra steps and

may be slower than classical ones. In learning meaningful features in images, con-

volutional neural network [26] and the deep convolutional neural network [27] are

widely used, however the computation cost and complexity are often much higher

than autoencoder and the feature learning is based on the local filter defined by the

modeler. Since we are trying to explore more general methods, these techniques are

not focused. In addition, we also find that our methods are conceptually similar to

clustering-autoencoder systems, because under some settings, the whole algorithm

can be roughly seen as a clustering method followed by and even embedded in a

deep neural network. A few related studies have been reported. Ref [28] is focused

on utilizing the deep network as a support for unsupervised clustering. Ref [29] pro-

poses a method that an unsupervised learning algorithm is embedded in a classic

deep network, targeted for semi-supervised learning. Ref [30] uses K-means cluster-

ing to preprocess the data and then use the samples from each cluster as the input

to train a deep network. This method trades off the information from unselected

training set for lower computation time, which may not be widely applicable since

labeled data are often scarce and valuable. Besides, while K-means clustering may

have advantages in large-scale system, it has been pointed out that it may not be

an effective way to learn good representations [31].

In this thesis, we are proposing a new algorithmic enhancement to the deep

network which is to consider each node separately. It not only explicitly achieves

the sparsity of node activation but also requires much shorter computation time.

We have found no such approaches in the literature.



2. METHODS

2.1 Greedy Node-by-Node Deep Learning Algorithms

The basic step of the two new algorithms for pre-training the network is to

train a two layer network as illustrated in the Figure 2.1. The red (middle) layer is

being trained (assume it has dimension d2); the inputs to this layer come from the

outputs of the previous layer, having dimension d1. The dimension of the output

layer is also d1, following the settings of autoencoder. We use linear output-nodes

(the algorithm is easy to adapt to a sigmoid output-nodes) and stochastic gradient

descent (SGD) for the optimization of the pre-training.

As mentioned in previous section, the standard layer-by-layer algorithm trains

all the weights at the same time, using the whole data set. The idea of our algorithms

is to only use a fraction of data to learn one feature at a time from the inputs. In

order to do that, the training of each layer is done within multiple stages. At

each stage, we only update the weights corresponding to one inner node using a

similar process as autoencoder–the weights are trained in order to reproduce the

input data and the loss are measured by Euclidean distance between the input and

the output. After all the features are obtained and all the weights learned, a full

forward propagation will be applied to the whole data set just as the standard pre-

training does. Then the same procedure will be done for the next layer. To make

Figure 2.1: Node-by-node training of a basic network.

8
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this greedy learning algorithm work, three questions need to be answered: 1. how

to learn features iteratively from fractions of training data? 2. how to partition the

training data? 3. how to control the orthogonality of the learned features?

To answer the first question, suppose we have already got multiple fractions

of data of size Ssub, naive ideas can be using each fraction for each inner node

independently. This idea is close to using the medoids as the representations for

each fraction, because when using a single inner node for autoencoder, medoids are

the global minimum in terms of the Euclidean distance(in practice, it may instead

learn the first principal component, see next chapter). This idea totally ignores

the information provided by other data and it is very likely the medoids for each

fraction are numerically similar (for example, a large portion of background), so all

the nodes may end up with learning similar features, which will deteriorates the

discriminative power of the model.

To solve the issue mentioned above, one solution seems to be using the first

fraction to train the first node and then using the second fraction on the first two

nodes (for forward propagation) but only updating corresponding weights for the

second node. In this way, the new feature learned relies on the previous knowledge,

thus it can learn the generative representations similar to the standard pre-training

algorithms. However, since for stage i the forward propagation is applied on all

the current i (≤ d2) nodes, the total number of numerical operations in forward

propagations turns out to be
∑d2

i=1 i = O(d22), which makes the computation much

slower, since the standard algorithms only have O(d2) operations.

Our method utilizes the linearity of the transformation from the inner layer

to the output layer. Suppose W is the weight matrix between the inner layer to

the output layer with dimension d1d2 (ignoring the bias node for the inner layer),

and the outcome of the d2 inner nodes is a vector v of length d2, the output af-

ter forward propagation is then W v. From basic linear algebra one can find that

W v =
∑d2

j=1W·jvj, where W·j are the weights coming out of the inner node j and

vj is the outcome value of this node (vj is a scalar value). This equation shows

that the contributions from the inner nodes to the output layer are independent.

Assuming the output layer uses a linear activation function (identity function), the
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output of the network can be seen as the summation of all the d1 dimension vectors

generated from each inner node and in backpropagation they are constrained by the

summation, since the loss function is the Euclidean distance between the output and

the target. Consequently, it is not necessary to forward-propagate through all the

first i nodes at stage i, as the solution mentioned early. One can store the output

layer from stage i − 1 and then add it to the new output only through the node i

to get the same result. This process is equivalent to propagate through i nodes but

only update the weights for the newest one. In this way, for each stage, we only

need to propagate through one inner node, which results in an overall number of

operations of O(d2).

For the second question, we here propose two methods corresponding to the

two new algorithms GN and GCN. For GN, we use the first node to learn the overall

feature (ideally should be close to the first principal component of all data), then

sort all the data (with a total number of N) based on Euclidean distances to the

overall feature. For rest the d2−1 nodes, each node will be used to learn the features

of N/(d2 − 1) data in an increasing order (data with smaller distance will be used

first). In this way, difficult cases are intrinsically covered by more inner nodes. For

GCN, we directly use the class labels to partition the data. Suppose there are nk

data with the label k, for the corresponding nodes, each will use cnk/d2 samples,

where c is the number of classes. In this method, each class has d2/c partitions.

The learning process first iterates all the classes for the first partition, then starts

over for the rest of the partitions.

For the third question, in order to incorporate the information learned by

previous nodes, the output (reconstruction from the output layer) from previous

i− 1 nodes is stored and added to the result from the forward propagation through

the current node. Since back propagation is applied based on the distance between

the input and the summed output, the stored information can be seen as constraints

to the training for node i, which forces the newly learned feature to be orthogonal to

the previous ones. This process is different from the standard pre-training because

at the beginning of stage i, the i− 1 nodes were already trained to encode the input

information, but for the standard pre-training, only the combination of all d2 nodes
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can be used to reconstruct the input. The premature of the learned weights from the

new algorithms may lead to the over-saturation of the output layer and eventually

result in abnormal features and numerical instability. To mitigate this issue, instead

of directly adding the stored output to the new output for back propagation, we

introduce a new parameter called amnesia factor (AF). The usage of this factor

is closely related to the first question on iterative learning. The stored output is

first multiplied by an amnesia factor and then added to the current output. The

AF actually provides control on the ”orthogonality” between new feature and old

features. A high amnesia factor means a strong influence from previous learned

features. A value of zero means no memorization from previous learning at all,

which is equivalent to the idea of using medoids or first principal component in the

first question.

2.2 Algorithm Analysis

The basic step for classic pre-training algorithm is to train a two layer net-

work as illustrated in Figure 1.1. The network is trained to reproduce the input

(unsupervised) or the final target (supervised). The two algorithms are very sim-

ilar in structure. For the conciseness of discussion, we here use the unsupervised

pre-training (auto-encoder) as an example for analysis.

In a classic auto-coder with one hidden layer and trained using stochastic

gradient descent (SGD), the number of operations (fundamental arithmetic opera-

tions) p for one data entry required by training process, with activation function

implemented in inner layer, can be computed as follows:

p = ((d1 + 1) ∗ d2 + d2 + (d2 + 1) ∗ d1)(Forward Propagation)

+ (d1 + (d2 + 1) ∗ d1 + (d1d2 + 2d2) + (d1 + 1) ∗ d2)(Back Propagation)

= 5d1d2 + 3d1 + 5d2,

(2.1)

where d1 is the dimension of the inputs (d1 + 1 takes account of the bias term), d2

is the dimension of the second layer. For a training data set with size N , one epoch

requires Np operations. To facilitate the discussion, in this paper, unless otherwise



12

mentioned, we set the number of epochs needed for training to be a fixed value E,

leading to the total number of operations for SGD (pSGD) of NpE. And in practice,

the overall loss is evaluated several times during training to determine whether the

convergence is reached. If a total of T times of loss computation are made, the

number of operations for loss computation is

ploss = TN((d1 + 1) ∗ d2 + d2 + (d2 + 1) ∗ d1 + 2d1)

1 ≤ T ≤ E
(2.2)

As a result, the total number of operation for a classic auto-encoder training can be

determined as:

pAE = pSGD + ploss

= NE(5d1d2 + 3d1 + 5d2) + TN(2d1d2 + 3d1 + 2d2)
(2.3)

The GN algorithm is directly derived from the classic autoencoder. For each

node i, after E epochs of training, one extra forward propagation is performed

with all data and the results will be stored after added by the previous stored

results. When training with node i, the output will be computed as the sum of the

”memorized value” times the amnesia factor ([0, 1]) and the output from forward

propagation through node i. As a requirement of such algorithm, the inner layer

should not have the bias node, which should not be a problem if data are centralized

beforehand. The number of operations for the first node is

pnode(1) = NE((d1 + 1 + 1 + d1)(Forward Propagation)

+ (d1 + d1 + (d1 + 2) + d1 + 1))(Back Propagation))

= NE(6d1 + 5)

(2.4)
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For ith node (2 ≤ i ≤ d2), the number of operations is

pnode(i) =
NE

d2 − 1
((d1 + 1 + 1 + d1)(Forward Propagation)

+ d1(Add the stored output from pervious nodes)

+ (4d1 + 3))(Back Propagation)

=
NE

d2 − 1
(7d1 + 5)

(2.5)

After the first node, the Euclidean distance (loss) of each sample will be sorted, it

will take an extra O(N log(N)) operations. We here assume that for each node, T

times of loss computation are made to check the convergence.

ploss = TN(2d1 + 2 + 2d1) +
d2∑
i=2

TN

d2 − 1
((d1 + 1) ∗ 1 + 1 + 1 ∗ d1 + 2d1)

= TN(8d1 + 4)

(2.6)

And for each node, one extra forward propagation with the whole data set will

be performed, the results will be stored and used in equation 2.5. The number of

operation here is:

pextra = N((d1 + 1) ∗ 1 + 1 + 1 ∗ d1) ∗ d2

= N(2d1 + 2)d2
(2.7)

The total operation for this design is:

pGN = pnode(1) +
d2∑
i=2

pnode(i) + ploss + pextra + O(N log(N))

= NE(13d1 + 10) + TN(8d1 + 4) + N(2d1d2 + 2d2) + O(N log(N))

(2.8)

The conceptual basis for this algorithm is that the features for a certain data

set are additive: the most basic feature is learned in the first node, and the newer

features can add to the older ones. Similarly, for each inner node, a new feature

can be learned from the new fraction of training data since the old knowledge is

used to constrain the training and force the learning to be performed in a different
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direction.

The GCN algorithm extends from the GN algorithm but in an supervised

flavor. Instead of using the results from the first node and a partition function, we

directly make each node learn from a proportion of data in a single class. The number

of operations for this algorithm can be easily computed based on equation 2.5, 2.6

and 2.7:

pGCN = NE(7d1 + 5) + TN(4d1 + 2) + N(2d1d2 + 2d2) (2.9)

To facilitate the comparison, we here also show the total number of operations

for classic unsupervised auto-encoder with the same setting (d1 + 1 input nodes, d2

hidden nodes and d1 output nodes):

pAE = NE(5d1d2 + d1 + 5d2) + TN(2d1d2 + 2d1 + 2d2) (2.10)

Comparing equations 2.8, 2.9 and 2.10, it can be observed that the speed-up

for the two new algorithms increases with a larger d2, which indicates that they

may show larger boost in terms of speed for high-dimensional problems. However a

large size (N) of data set will slow down the GN algorithm due to the extra sorting

routine.

Figure 2.2, Figure 2.3, Figure 2.4 shows the simulated results for the running

time with other parameter set in typical value range(N = 10000, E = 1000, T =

100). Based on the simulation, one can find that the speed-up remains constant

with the change of d1 but increases with d2. This result implies that the new

algorithms can achieve significant speed-up for high dimension problems, in which

the dimension of the inner layer d2 should be proportional to d1 so as to be able to

handle the complexity. Figure 2.4 shows the comparison when the ratio between d1

and d2 are fixed to be 0.75. In this case, we can observe that the speed-up of the

two algorithm eventually converges to a certain value.
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Figure 2.2: The number of operations change with the input dimension d1, autoen-
coder, GN and GCN, with d2 set to be 100.

2.3 Pseudocode

The pseudocode for the GN algorithm to train one inner layer is as follows:

The pseudocode for GCN algorithm is similar. The only difference is that the

partition function is not used and for the whole dataset S, each class will be splitted

into d2/c partitions.
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Figure 2.3: The number of operations change with the input dimension d2, autoen-
coder, GN and GCN, with d1 set to be 10000.

Figure 2.4: The number of operations change with the input dimension d2, autoen-
coder, GN and GCN, with the d2/d1 set to be 0.75.
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Algorithm 1: GN algorithm

Function GN(S,weights 0 intial)
Data: dataset S, stored values, weights 0, weights 1
Result: weights 0, weights 1
initialize weights 1, stored values, amnesia factor;
foreach node index in 0:d 2 do

Epoch = 0;
if node index == 0 then
E = indexes for whole dataset S;

else
E = indexes of data selected by partition rule;

end
while True do

foreach i in E do
single node output computed from Forward Propagation;
output = single node output + stored values[i] *
amnesia factor;
Back Propagation based on output;
Update the corresponding parts of weights 0, weights 1;

end
if Epoch > Epoch limit then

break;
end

end
Forward Propagation for whole dataset;
Store the result from Forward Propagation to stored values;
if node index == 0 then

Apply partition rule to data;
/* in this paper, the partition rule is to rank the

losses based on the Forward Propagation */

end

end



3. COMPARISON TO PRINCIPAL COMPONENT

ANALYSIS

3.1 Principal Component Analysis

As one of the most classic dimension reduction method, Principal component

analysis (PCA) [32] has already been invented for more 100 years. However the

resemblance of PCA to the unsurpervised autoencoder (AE) is still important for

us to gain a deep understanding on autoencoder and how the dimension reduction

should be done in order to capture the most relevant information. In this section

we will briefly review the fundamental concept of PCA and show that at least in

the conceptual level, PCA and AE are very similar. The goal of PCA analysis is to

find an orthonormal matrix W , so that columns in W transform the original data X

into a new coordinate system. The new coordinate system is chosen in the following

process: direction for the largest variance of X will be the first column, also called

first principal component (first PC), and of all directions that orthogonal to the first

PC, the one with largest variance is chosen as the second PC. The process continues

until all d (the dimension of X) PC’s are found. Each column in W is called a PCA

loading. As shown in the equation below:

T = XW (3.1)

Since the columns in W can be ranked by the percentage of variance that explained

in each direction (the corresponding eigenvalue of the covariance matrix) , it is

possible to ”encode” the information in T by less dimensions. This idea is the basis

of PCA. Suppose only the first L components are used, the matrix used to project

X is not W but WL, resulting in TL which only has dimension of L instead of d, it

is very similar to the concept of AE when using L inner nodes for reconstruction.

TL = XWL (3.2)
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For reconstruction, the TL can be easily reconstructed to get the approximation of

X by multiplying a W T
L

Xrecon = XWLW
T
L (3.3)

From the equation above, one can see that WL can be regarded as the lower weights

in the AE network and if the activation functions in the inner nodes are linear, W T
L is

actually the upper weights used to ”decode” the information and reconstruct inputs.

Baldi [33] has discussed the autoencoder with linear activation function with more

rigorous analysis. However, in practical use the linear activation function can not

handle any nonlinearity and sigmoidal function is widely used. How much the AE

resembles PCA and how the new algorithms related to them are important points

to study.

3.2 Comparison between PCA, AE and GN

As people have noticed and mentioned, especially if the activation function

is linear, AE and PCA are very similar [33]. But very few discussions have been

made when the activation function is nonlinear, such as sigmoid function, which is

actually widely used in practice. Furthermore, since the new algorithms implement

quite different fundamental ideas, it is also interesting to investigate whether the

new algorithms can provide a different dimension reduction from the two classical

algorithms. In this study, only GN (the unsupervised version) is considered since

the experiments are in general unsupervised and no labels are considered. We here

consider two data sets: iris and swiss roll. The iris data sets are simple and can

be considered as in linear manifold and the swiss roll data set is a typical nonlinear

manifold example. For iris data set, we first consider a network with only one inner

nodes, as shown in Figure 3.1. After training the network as the classic autoencoder

on the original data set X, we obtain the reconstructed data Xrecon, then we plot

2D PCA on both X and XL. As shown in Figure 3.2, the Xrecon contain almost no

other information but the first principal component. Then instead of using only one

inner nodes, we use two and directly plot the outcomes of the inner nodes for each

data points (after the nonlinear activation transformation). Figure 3.3 shows that

the actual outcomes of the two inner nodes are very similar to those from 2D PCA.
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Figure 3.1: Network with one inner node

Figure 3.2: 2D PCA of original data (red) and reconstructed data (blue) using one
inner node

It is clear that for the iris data set, the AE and PCA are almost the same

and the d2 inner nodes corresponds to the first d2 principal components. A similar

result of the two inner nodes’ outcomes can also be seen for the swiss role data

set. Figure 3.4 shows the original data set and it can be observed from Figure 3.5

that the outcomes from the inner nodes are still similar to the 2D PCA but not
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Figure 3.3: Encoding iris data set using two inner nodes.

necessarily capturing the nonlinear manifold structure. Additionally, it should be

noted that the bias terms in the inner layer does not change such behavior and the

plots are very similar (results not shown).

GN algorithm builds up the encoding using only part of the data. Figure 3.6

shows the outcomes of inner nodes in a two-inner-node network for both data sets.

It can be observed that under this setting, the results are less similar to that of AE

and PCA. Since all data are used for the first nodes and the system is just like in

Figure 3.1, this result indicates that the partial data (half of the data set) used for

the second node can still almost capture the information for the second PC.

A special feature about the GN algorithm is that the size of inner nodes can

be set to be larger than the input layer without any risk of learning trivial solutions.

It is due to the fact that each node will only work on certain subset of the data,

so that it is impossible for the inner layer to learn an trivial encoding (in classic

AE, it is possible that the system learns an identity function when the size of the

inner layer is larger or equal to the input layer). Figure 3.7 shows the outcomes

of the first two nodes when the size of inner layer is 10 (the input data only has

three dimensions). What surprises us is that the system learns the correct nonlinear

manifold, which has never been reported in similar researches for AE. It should

be noted that the since the first node encode identical information as normal AE
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Figure 3.4: Swiss roll data set.

with one inner nodes, this result indicates that a smaller part of the data actually

provide a better information for the encoding. The reason seems to be that the

smaller amount of data provide a local information which reveals a feature that may

not gain consensus within larger amount of data. Further analysis for this behavior

is definitely needed.

From the comparison between PCA, AE and GN, we observe that AE and

PCA are very similar to each other, even with nonlinear activation function, in

contrast, GN algorithm seems to encode and learn feature from the data sets in a

different way, and may be able to reveal more localized features.
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Figure 3.5: 2D PCA(top) and AE(bottom) for swiss roll data set.
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Figure 3.6: Outcomes of two inner nodes using GN algorithm with a two-inner-node
network. Top: iris. Bottom: swiss roll.
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Figure 3.7: Outcomes of first two inner nodes using GN algorithm with a ten-inner-
node network on the swiss roll data set.



4. RESULTS AND DISCUSSION

4.1 Speed-up and Preliminary Performance Results

From the chapter 2 we proved in theory that the two new algorithms will

provide a speed-up for a relatively large network. The driving force behind is the

partition of the training task on inner nodes. We here compare the running time and

performance of supervised pre-training, unsupervised pre-training, GN and GCN al-

gorithms for the USPS digit data set. To facilitate comparison and obtain reasonable

results, we used a fixed iteration of 300 for pre-training with an initial learning rate

0.001, 500 iterations of output layer with logistic regression, with an initial learning

rate 0.002 and 20 iterations of fine-tuning with fixed learning rate 0.001. It should be

noted that for supervised pre-training, the extra logistic regression is skipped since

the pre-training for the final layer is exactly a logistic regression. The shrinkage of

the learning rate is set to be rather small - decrease to half after 1000 epochs after

the first 100 epochs:

r =
r0

1 + epoch/1000.0
(4.1)

A L2 regularization term is applied on all the learning process with the coefficient

1.0. It should be noted that this ”weight decaying” regularization term is not

always necessary in deep learning, but we found it may help in the training with

single inner node. In this paper, we are not trying to optimize all hyperparameters

to get the highest possible test performance for certain data sets, instead we try to

compare the four algorithm with one predefined set of parameters, as long as the

test performance is reasonable and training is numerically stable. Table 4.1 shows

the results for running time. Note that the network column only shows the inner

nodes and for each entry the input layer has 257 nodes and the output layer has 10

nodes. RT and PT are for the whole running time and pre-training time (running

time minus the time for fine-tuning and data pre-processing), respectively. 7291

data are in training and 2007 data in test. All the experiment was done using a

26
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Table 4.1: Running-time and preliminary performance for supervised pre-training,
unsupervised pre-training, GN and GCN

Type Network RT (s) PT (s) Training score Test score

Supervised 200, 150 1363 1293 1.000 0.939
Unsupervised 200, 150 4112 4042 0.999 0.933
GN 200, 150 674 604 0.999 0.931
GCN 200, 150 409 339 0.998 0.923

single Intel i-7 3370 3.4GHz CPU.

According to the experiment, the GN algorithm shows a comparable prediction

performance comparing to unsupervised pre-training algorithm. It gains a speed-up

of 6.7 against unsupervised algorithm and 2.1 against supervised algorithm. The

GCN algorithm shows the worst performance but gains a speed-up of 12 against un-

supervised algorithm and 3.8 against the supervised algorithm. The algorithms are

all implemented in python, which may unavoidably include some overhead compar-

ing to compiling language like C++. However, the four algorithms are implemented

using very similar code structure to ensure the running time is comparable. In the

experiment above, the amnesia factor has been set to be 1.0, which may not be the

optimal value. In the next section, we show that a better choice of the amnesia

factor can significantly improve the prediction performance.

4.2 Amnesia Factor

In the algorithms developed in this study, the amnesia factor plays a very im-

portant role. It is also a new parameter that does not exist in the classic algorithms.

Understanding the effect and behavior of the amnesia factor will help us to fully

investigate and utilize the new algorithms.

The amnesia factor (AF) is used to control the influence of the results from

the previous forward propagation when training the system with the node i. Dur-

ing the training, the data propagate through node i and then added by the result

from a scaled previous output. In other words, the output when training node i is

not directly compared to the input for backpropagation as classic autoencoder does.
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Instead, it is compared to the input data minus the previous result with a scaling

factor. The previous output can be analogized to the ”memory” of previous learned

knowledge/feature. In this way, the node i should learn the new feature with the

previous information ”in mind”. The scaling factor used here is the amnesia factor.

The amnesia factor can also be seen as a measure of the preassumption of the con-

tribution of each node to the final model. In this sense, the traditional autoencoder

can be seen as having an amnesia factor of 1/d2, where d2 is size of the hidden layer.

According to our study, this factor is very important for both of the new algorithms.

We here do a preliminary study of its effect on GCN algorithm.

Figure 4.1 shows the training loss of each node in the first hidden layer for

a GCN algorithm in a 256-200-150-10 network. As mentioned previously, this loss

is computed as the Euclidean distance between the input and the summed output

(the summation of the scaled previous output and the output from the current

inner node). It was found that that loss with amnesia factor 1.0 (which means no

loss of memory) drifted to high value as more nodes are used, and resulting in less

meaningful features and worse prediction accuracy. A large error means that with

the previous knowledge, there is no new feature can be obtained using the current

node and partition of the input data. This may be due to the fact that, as the number

of nodes getting larger, it becomes increasingly harder to train a sub-network since

there are a lot of constraints existed. Consequently it seems like a better learning

setting (a better choice of learning rate) will solve this problem. However the learned

features are likely to have extreme values-in order to compensate the some peaks and

holes caused by a strong influence of previous information, which may eventually

lead to the numeric instability. A smaller amnesia factor can be used to mitigate

this issue. Every time instead of adding the whole ”memorized information” onto

the new output, we shrink the ”memorized value” by an amnesia factor in order to

give some ”space” for the new features. This treatment allows some overlap between

learned features, and the extent of the overlap is actually controlled by the AF. As

shown in figure 4.1, a smaller AF can effectively control the drifting.

Table 4.2 shows the result of a 256-200-150-10 network with learning rate 0.001

and amnesia factor 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4 and 0.0. All the other settings are
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Figure 4.1: Final loss after 300 epochs for each inner node in the first layer using
GCN algorithm with 256-200-150-10 network. AF denotes amnesia factor

Table 4.2: Effect of the amnesia factor

Learning rate Amnesia Factor Training score Test score

0.001 1.0 0.998 0.923
0.001 0.9 0.999 0.922
0.001 0.8 0.999 0.926
0.001 0.7 0.999 0.932
0.001 0.6 0.999 0.927
0.001 0.5 0.999 0.931
0.001 0.4 0.999 0.934
0.001 0.0 0.974 0.915

the same as in section 4.1. It is clear that some optimal value exists between 1.0

and 0.0.

The result agrees with our analysis that a too large amnesia factor could lead

to worse performance since it will be hard to optimize given strong constraints.

And we also found that amnesia factor of zero was not ensured to give a good

performance, it can be explained by the intrinsic duplicated features. In addition

to that, if the amnesia factor is zero, each node essentially represents the medoid or
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the first principal component of corresponding training data. This scenario can be

compared to using K-means, where the local representation of data, instead of the

generative one, will be used. In that case, the fine structure of the input data may

not be learned and it is also against the whole idea behind deep learning. Using a

non-zero amnesia factor can be seen as applying a balance between the two types

of representations. A higher AF will lead to generative model of inputs but induce

numerical issue for training. A lower AF will lead to local model of inputs but result

in loss of information. However the optimal amnesia factor may be highly depending

on size of certain layer. Further study will be needed in order to understand the

intrinsic meaning of this parameter and its relation to different partition scheme.

4.3 Other Datasets

Three data sets obtained from UCI machine learning repository [34] were also

used to compare the algorithms. The MUSK (version 2) data set describes molecules

that are judged by experts as musks and non-musks [34] with 166 attributes. 4618

data was used for training and 1980 data was used for test. ISOLET data set

contains the audio information for 26 letters spoken by human speakers [34] with

617 attributes. 4366 data was used for training and 1872 data was used for test. For

ISOLET data set, we used a smaller learning rate of 0.0001. CNAE-9 contains 1080

documents of text business descriptions of Brazilian companies categorized into 9

categories [34]. 864 data were used for training while 216 data were used for test.

Different from the other two data sets, the data matrix for CNAE-9 is highly sparse.

We found that a learning rate up to 0.1 can produce a reasonable performance for

all the new algorithms while the classical algorithms use a learning rate of 0.01,

even though better performance can be easily obtained if we use different learning

rates for each algorithm (for example, GCN with learning rate of 0.15 has the test

score of 0.935). For the three data sets, the GCN algorithm uses an amnesia factor

of 0.4. Note that since GCN requires the number of nodes in each hidden layer

to be divisible by the number of class, the network for all the algorithms were set

accordingly (that is why the first layer for CNAE-9 is set to be 594, not 600).

Table 4.3 shows the comparison between supervised, unsupervised, GN and GCN
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Table 4.3: Comparison between algorithms in extra data sets

Data Set Method Network Training score Test score

MUSK Supervised 120-80 1.000 0.991
MUSK Unsupervised 120-80 1.000 0.993
MUSK GN 120-80 1.000 0.984
MUSK GCN 120-80 1.000 0.989
ISOLET Supervised 260-78 0.997 0.946
ISOLET Unsupervised 260-78 0.999 0.953
ISOLET GN 260-78 1.000 0.944
ISOLET GCN 260-78 1.000 0.935
CNAE-9 Supervised 594-396 1.000 0.954
CNAE-9 Unsupervised 594-396 0.996 0.944
CNAE-9 GN 594-396 0.995 0.940
CNAE-9 GCN 594-396 0.994 0.921

algorithm. The results are in general consistent with the USPS handwriting data

set we used previously. It shows that GCN algorithm has 1 2% decrease in accuracy

for ISOLET and CNAE-9 , which has also been observed for the USPS data, but

it performs very well for MUSK dataset. Whether the performance is dependent

on the intrinsic data structure or the parameter tuning or both requires further

analysis.



5. CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we developed two novel deep learning algorithms that origin from the

idea of simulating human’s learning process. A significant difference between clas-

sical deep learning algorithms and human’s learning process is that deep learning

always tries to obtain the hierarchical features of all the objects at the same time

(train all inner nodes at the same time), while a human learner learns one or few ob-

jects at one time and capable of learning new features with memorization. Based on

this understanding, we develop two methods, corresponding to supervised learning

(GCN) and unsupervised learning (GN), that learn one feature of one certain group

of training data at a time. Such design helps to construct more human-recognizable

features with a significant speed-up. In addition to that, we introduce the new

concept of ”amnesia factor” in combination with an algorithm design of caching.

”Amnesia factor” is used to control the memorization effect and the ”orthogonal-

ity” between the learned features. With the utilization of caching, the running time

of the algorithm is also well controlled and has a speed-up up to ten times. Mean-

while, as tested on several benchmark datasets, the prediction accuracy of the new

algorithms only decreased slightly.

In the future, we would like to investigate three subproblems. First, we will

look into the training parameter tuning and try to find a systematic way to choose

hyper-parameters such as the learning rate and amnesia factors. Several questions

need to be answered here: Is there a better way to partition the data? How the

choose the optimal amnesia factor? Should the learning rate be adjusted differently

for each inner node and each layer? What is the factor behind the difference on

the prediction performance? Second, we will investigate the higher-level features

and see if they can provide extra informations on the problems. Third, as the

most important feature of the new algorithms, learning in an iterative way actually

makes the scaling of the methods to large datasets with parallel computing difficult.

In classical methods, the matrix-vector and matrix-matrix multiplication can be

easily implemented for multicore or GPU computing. In the new methods, since
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one feature depends on the feature developed previously, it is in nature an iterative

process. One way to handle such difficulty could be to learn several features at the

same time in different CPU but exchange information (as a memorization constraint)

every few epochs (to simulate a group of human learners). The adaption of the

algorithm to parallel computing will surely requires certain amount of changes in

the algorithm design. And how to ”keep the spirits” while run the algorithm in

parallel will be an interesting yet difficult problem to solve in the next stage.
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