MACHINE LEARNING
IN COMPUTATIONAL FINANCE
By
Victor Boyarshinov

A Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the

Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Malik Magdon-Ismail, Thesis Adviser

Costas Busch, Member

Mark Goldberg, Member

Mukkai Krishnamoorthy, Member

John E. Mitchell, Member

Rensselaer Polytechnic Institute
Troy, NY

April 2005
(For Graduation May 2005)

MACHINE LEARNING
IN COMPUTATIONAL FINANCE

By

Victor Boyarshinov

An Abstract of a Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
Major Subject: Computer Science

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library.

Approved by the
Examining Committee:

Malik Magdon-Ismail, Thesis Adviser
Costas Busch, Member

Mark Goldberg, Member

Mukkai Krishnamoorthy, Member
John E. Mitchell, Member

Rensselaer Polytechnic Institute
Troy, NY

April 2005
(For Graduation May 2005)

Contents

1 Introduction and Motivation

2 Collecting Training Dataset Using Optimal Trading Strategies

2.1
2.2
2.3
2.4

2.5

2.6

2.7

3.1

3.2

3.3

3.4

Introduction and Basic Definitions
Related Work Lo
Contribution Summary
Collecting Training Dataset: Return-Optimal Trading Strategies
2.4.1 Unconstrained Return-Optimal Trading Strategies
2.4.2 Constrained Return-Optimal Strategies
Collecting Training Dataset: Sterling-Optimal Trading Strategies
2.5.1 Unconstrained Sterling-Optimal Strategies
.. Cr
2.5.2 Maximizing —o

2.5.3 Constrained Sﬁcerling—Optimal Strategies
Collecting Training Dataset: Sharpe Optimal Trading Strategies
2.6.1 Maximizing the Simplified Sharpe Ratio S'.
2.6.2 Maximizing Shrpyo oL o
2.6.3 Approximation Ratio for Shrpyo
2.6.4 Maximizing Shrp; oL oo
2.6.5 Approximation Ratio for Shrp;o
Conclusion and Discussion

Learning: Optimal Linear Separation

Introduction and Basic Definitions
3.1.1 ConvexHulls
3.1.2 Linear Separators.
Related Work
321 ConvexHulls
3.2.2 Separable Sets
3.2.3 Unseparable Sets
Contribution
3.3.1 Optimal Linear Separator for Non-Separable Sets
3.3.2 Leave-One-Out Error
Discussion and Open Questions

ii

11
12
12
13
15
16
19

22
32
32
33
38
39
40
40

4 Avoiding Overfitting: Isotonic and Unimodal Regression 55

4.1 Introduction and Basic Definitions 55
4.2 Previous Work e 57
4.3 Contribution e 58
4.3.1 Lj-Isotonic Regression 58
4.3.2 Lq-Isotonic Regression: Algorithms 63
4.3.3 Loo-Prefix-Isotonic Regression L. 64
4.3.4 Loo-Prefix-Isotonic Regression: Algorithms 67
4.3.5 Lo Unimodal Regression 68
4.4 Conclusion and Discussion 69

iii

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

Constructing training set from optimal strategies. 4
Possible entry and exit points.o 17
Upper-touching point from p to the convex hull of the set of points P/,. 20
Mirrored-radial coordinates. 49
Case of two perfect predictors. e 53
Optimal boosting of two classifiers., 54

v

Acknowledgements

During the development of my graduate studies in the Rensselaer Polytechnic Institute several
persons and institutions collaborated directly and indirectly with my research. Without their
support it would be impossible for me to finish my work.

I want to start expressing a sincere acknowledgement to my advisor, Dr. Malik Magdon-Ismail
because he gave me the precious opportunity to research under his guidance and supervision. I
received motivation and encouragement form him during all my studies.

I gratefully acknowledge the example, motivation, inspiration and support I received from Dr. Mark
Goldberg.

I owe special thanks to Terry Hayden for her never ended support.

As well as that singular votes of thanks I also like to mention the debt that I owe to the department of
Computer Science for providing the funding and the resources for the development of this research.

Abstract

We focus on constructing efficient algorithms for problems arising in applications of machine
learning in the field of computational finance, in particular pricing and trading. One generally
should consider three different facets of designing an algorithm for an artificial intelligence appli-
cation:

(i) Constructing a training dataset
(i) Developing a training algorithm for discovering patterns
(i4i) Using side information for avoiding overfitting the training data.

The first part of this thesis addresses (i). Specifically, we consider the problem of finding
optimal trading strategies with respect to the total cumulative return, Sterling ratio and two
variants of the Sharp Ratio. Knowing what the optimal trades are is necessary for constructing the
training dataset for a supervised learning algorithm The contribution in this work is to give efficient
(low order polynomial time) algorithms to compute the optimal trading strategy for various profit
objectives, and under constraints on the number of trades that can be made. The heart of our
algorithms is a new general algorithm for maximizing quotients over intervals, which we solve by
relating this one-dimensional optimization problem to convex hull operations on the plane.

The second part of this thesis addresses (4i). The problem of learning - discovering hidden pat-
terns in the collected data - often can be considered as the problem of finding a linear separator for
two sets of points in multidimensional space. When the sets are not separable, we are interested in
finding a subset of points such that after removing these points, the remaining points are separable.
Such a set is called a separator set. If we assign a positive weight to every point (its fidelity), then
we wish to find a separator set with the minimum possible weight. We provide a combinatorial
deterministic algorithm for computing such a minimum separator set in 2 dimensions. The con-
structed algorithm also addresses the statistical properties of the resulting separator by providing
leave-one-out error simultaneously.

The problem of overfitting training data is well recognized in the machine learning community.
Standard approach to deal with this threat is the early stopping of the training algorithm iterations.
Important question is when the iterations should be stopped. Usually one monitores another error
measure and stops iterations when the associated error starts growing. The associated error can
be same error function measured on separate set of datapoints (validation set) or even completely
different error function. Since the associated error measure is somewhat different from the primary,
it does not necessary shows monotinical behavior but often appears as random fluctuations around
unknown function. In order to pinpoint the exact location of the critical point, one can perform
shape constrained optimization to fit function to the ibserved values of the associated error. An-
other application of the shape constrained regression arise in the pricing of financial instruments, for
example the american put option. Isotonic and unimodal regression are both examples of nonpara-
metric shape constrained regression. In the third part of this work we present efficient algorithms
for computing for L., L1 isotonic and unimodal regressions.

Chapter 1

Introduction and Motivation

We focus on constructing efficient algorithms for problems arising in applications of machine learn-
ing in the field of computational finance, in particular pricing and trading. A trader has in mind
the task of developing a trading system that optimizes some profit criterion, the simplest being the
total return. A more conservative approach is to optimize a risk adjusted return. Widely followed
measures of risk adjusted returns are the Sterling Ratio and Sharpe Ratio. In an enviroment where
markets exhibit frequent crashes and portfolios encounter sustained periods of losses, the Sterling
ratio and the Sharpe ratio have emerged as the leading performance measures used in the industry.
Given a set of instruments, a trading strategy is a switching function that transfers the wealth from
one instrument to another.

One generally should consider three different facets of designing an algorithm for an artificial
intelligence application:

(i) Constructing a training dataset
(i) Developing a training algorithm for discovering patterns
(i4i) Using side information for avoiding overfitting the training data.

The first part of this thesis addresses (7). Specifically, we consider the problem of finding opti-
mal trading strategies with respect to the total cumulative return, Sterling ratio and two variants of
the Sharp Ratio. The motivations for constructing such optimal strategies are: (i) Knowing what
the optimal trades are is necessary for constructing the training dataset for a supervised learning
algorithm (ii) The optimal performance modulo certain trading constraints can be used as a bench-
mark for real trading systems. (iii) Optimal trading strategies (with or without constraints) can
be used to quantitatively rank various markets (and time scales) with respect to their profitability
according to a given criterion. A brute force approach to obtaining such optimal trading strategies
would search through the space of all possible trading strategies, keeping only the one satisfying
the optimality criterion. Since the number of possible trading strategies grows exponentially with
time, the brute force approach leads to an exponential time algorithm.

All the reasearch on optimal trading falls into two broad categories. The first group is on the
more theoretical side where researchers assume that stock prices satisfy some particular model, for
example the prices are driven by a stochastic process of known form; the goal is to derive closed-
form solutions for the optimal trading strategy, or a set of equations that the optimal strategy must

follow. Representative approaches from this group include single-period portfolio optimization [69],
representation of optimal strategies as a solution of free-boundary problem [74] and characterization
of optimal strategies in terms of a nonlinear quasi-variational stochastic inequality [9]. The main
drawbacks of such theoretical approaches is that their prescriptions can only be useful to the extent
that the assumed models are correct. The second group of research which is more on the practical
side is focused on exploring learning methods for the prediction of future stock prices moves.
Intelligent agents are designed by training on past data and their performance is compared with
some benchmark strategies. Examples from this group include work of Zakamouline [77] where he
characterize optimal strategy as function of the investor’s horizon, current market state and the
composition of the investor’s wealth. He also provides numerical method for finding the optimal
strategies.

The Sharpe ratio was introduced in [65], [66] and since then became a popular and widespread
risk-sensitive measure of a portfolio performance. Faugere et al. in [68] used Sharpe ratio as one of
performance measures to compare effectiveness of different decision-making criteria. Pedersen et al.
in [63] performed empirical comparison of many performance measurement methodologies for the
global financial services sector and documented strong evidence in support of using Sharp-Ratio
based measures. It was also pointed out that correlation of the Sterling ratio with other measures
is usually small and dips below 5% in some instances. Surprisingly, there is little previous research
on portfolio optimization with respect to the Sharpe ratio or Sterling ratio, partially because of the
intristic difficulty of these non-linear optimization criteria. Usually one employs heuristic methods
to obtain a locally optimal trading strategy [32] or uses other learning methods where training
dataset is not necessary [34].

The contribution in this work is to give efficient (low order polynomial time) algorithms to compute
the optimal trading strategy for various profit objectives, and under constraints on the number of
trades that can be made. The heart of our algorithms is a new general algorithm for maximizing
quotients over intervals, which we solve by relating this one-dimensional optimization problem to
convex hull operations on the plane.

The second part of this thesis addresses (4i). The problem of learning - discovering hidden pat-
terns in the collected data - often can be considered as the problem of finding a linear separator for
two sets of points in multidimensional space. When the sets are not separable, we are interested in
finding a subset of points such that after removing these points, the remaining points are separable.
Such a set is called a separator set. If we assign a positive weight to every point (its fidelity), then
we wish to find a separator set with the minimum possible weight. Optimal linear separator also
can be used for optimal boosting of two classifiers (see section 3.4). Popular approaches here are
combinatorial heuristics, reduced convex hulls [5] and interior point techniques for combinatorial
optimization [49, 11, 33, 40, 35]. We provide a combinatorial deterministic algorithm for computing
such a minimum separator set in 2 dimensions with time complexity O(n%log n). An important
issue in the design of efficient machine learning systems is the estimation of the accuracy of learn-
ing algorithms, in particular its sensitivity to noisy inputs. One classical estimator is leave-one-out
error, which is commonly used in practice. Intuitively, the leave-one-out error is defined as the
average error obtained by training a classifier on n — 1 points and evaluating it on the point left
out. Our algorithm also addresses the statistical properties of the resulting separator by providing
leave-one-out error simultaneously.

The problem of overfitting training data is well recognized in the machine learning community.
Standard approach to deal with this threat is the early stopping of the training algorithm iterations.

Important question is when the iterations should be stopped. Usually one monitores another error
measure and stops iterations when the associated error starts growing. The associated error can
be same error function measured on separate set of datapoints (validation set) or even completely
different error function. Since the associated error measure is somewhat different from the primary,
it does not necessary shows monotinical behavior but often appears as random fluctuations around
unknown function. In order to pinpoint the exact location of the critical point, one can perform
shape constrained optimization to fit function to the ibserved values of the associated error. An-
other application of the shape constrained regression arise in the pricing of financial instruments,
for example the american put option. A futher example of application of isotonic regression is
epidemiologic studies, where one may be interested in assessing the relationship between dose of
a possibly toxic exposure and the probability of an adverse response. In characterizing biologic
and public health significance, and the need for possible regulatory interventions, it is important to
efficiently estimate dose response, allowing for flat regions in which increases in dose have no effect.
In such applications, one can typically assume a priori that an adverse response does not occur
less often as dose increases, adjusting for important confounding factors, such as age and race. It
is well known that incorporating such monotonicity constraints can improve estimation efficiency
and power to detect trends. Isotonic and unimodal regression are both examples of nonparametric
shape constrained regression.

It is known that Lo isotonic regression can be performed efficiently in linear time [1, 61]. For
L, isotonic regression, algorithms in the efficiency class O(nlogn) are known [13, 57, 62]. While
O(nlogn) is optimal for L, prefix-isotonic regression [72], it is not known whether the apparently
simpler isotonic regression problem can be performed faster than O(nlogn). We take a first step
in this direction by obtaining a linear bound in terms of the size of the output (K). In the third
part of this work we present efficient algorithms for computing for L., L1 isotonic and unimodal
regressions.

Chapter 2

Collecting Training Dataset Using
Optimal Trading Strategies

2.1 Introduction and Basic Definitions

A trader has in mind the task of developing a trading system that optimizes some profit criterion,
the simplest being the total return. A more conservative approach is to optimize a risk adjusted
return. Widely followed measures of risk adjusted returns are the Sterling Ratio and Sharpe Ratio.
In an enviroment where markets exhibit frequent crashes and portfolios encounter sustained periods
of losses, the Sterling ratio and the Sharpe ratio have emerged as the leading performance measures
used in the industry. Given a set of instruments, a trading strategy is a switching function that
transfers the wealth from one instrument to another. In this chapter, we consider the problem of
finding optimal trading strategies, i.e., trading strategies that maximize a given optimality criterion.

The knowledge of what the optimal trading strate-
gies are is necessary for constructing a training dataset
for a supervised learning algorithm. One popular ap-
proach to the predicting the future stock prices moves
is training an automated intelligent agent that discover
patterns in the stock prices dynamic right before a ma-
jor market move. During the exploitation stage, the
agent observes current state of market. If a pattern v v
recognized that was seen before, agent gives a buy /sell M N N 3 time
signal. If we have an optimal ex-post trading strategy,
we know when it was the best time to buy or sell an
asset. Then we can investigate the short interval of Figure 2.1: Constructing training set from
time that preceeds the optimal entry/exit point and optimal strategies.
extract a set of features that describe market condition during the interval. Examples of com-
monly considered features include market volatility, total volume and amount of open interest.
The features vector that was extracted from an interval preceeding the optimal entry point become
a training point with value +1 and features extracted from an interval preceeding the optimal exit
point become training point with value —1 (see Fugure 2.1 above).

In this work we consider optimal strategies with respect to the total cumulative return, as well

Stock price

as with respect to various risk adjusted measures of return (the Sterling ratio and variants of the
Sharpe ratio). A brute force approach to obtaining such optimal trading strategies would search
through the space of all possible trading strategies, keeping only the one satisfying the optimality
criterion. Since the number of possible trading strategies grows exponentially with time, the brute
force approach leads to an exponential time algorithm!, which for all practical purposes is infeasible
— even given the pace at which computing power grows. The contribution in this work is to give
efficient (polynomial time) algorithms to compute the optimal trading strategy for various profit
objectives, and under constraints on the number of trades that can be made.

The motivations for constructing such optimal strategies are: (i) Knowing what the optimal
trades are, one can one can try to learn to predict good trading opportunities by using market
and/or technical indicators as features on which to base the prediction. A host of such activity
goes under the name of financial engineering. (i) The optimal performance modulo certain trading
constraints can be used as a benchmark for real trading systems. For example, how good is a trading
system that makes ten trades with a Sterling ratio of 4 over a given time period? One natural
comparison is to benchmark this trading strategy against a Sterling-optimal trading strategy that
makes at most ten trades over the same time period. (iii) Optimal trading strategies (with or
without constraints) can be used to quantitatively rank various markets (and time scales) with
respect to their profitability according to a given criterion. So for example, one could determine
the optimal time scale on which to trade a particular market, or given a set of markets, which is
the most (risk adjusted) profit-friendly.

In order to make the preceeding discussion more precise and to more accurately state our results,
lets introduce a few definitions. Assume that we have two instruments, for concreteness, a stock S
and a bond B with price histories {Sy,...,S,} and {By,...,B,} over n consecutive time periods,
ti, i € {1,...,n}. Thus, for example, over time period ¢;, the price of stock moved from S;_; to S;.
We denote the return sequence for the two instruments by {s1,...,s,} and {b1,..., b, } respectively:
s; = log %, and correspondingly, b; = log Bjil' We assume that one of the instruments is the
benchmark instrument, and that all the equity is held in the benchmark instrument at the begining
and end of trading. The bond is usually considered the benchmark instrument, and for illustration,
we will follow this convention. The trivial trading strategy is to simply hold onto bond for the
entire duration of the trading period. It is useful to define the excess return sequence for the stock,
§; = s; — b;. When the benchmark instrument is the bond, the excess return as we defined it is the
conventionally used one. However, one may want to measure performances of a trading strategy
with respect to the S&P 500 as benchmark instrument, in which case the excess return would be
determined relative to the S&P 500 return sequence. The excess return sequence for the bond
is just the sequence of zeros, b; = 0. Conventionally, the performance of a strategy is measured
relative to some trivial strategy, so the excess return sequence will be the basis of most of our
performance measures.

Definition 2.1.1 (Trading Strategy) A trading strategy 7 is a boolean n-dimensional vector
indicating where the money is at the end of time period t;:

Tl =

1 if money is in stock at the end of t;,
0 if money is in bond at the end of t;.

The asymptotic running time of an algorithm is measured in terms of the input size n. If the input is a time
sequence of n price data points, then polynomial time algorithms have run time that is bounded by some polynomial
in n. Exponential time algorithms have running time greater than some exponentially growing function in n [17].

We assume that T[0] = T[n] = 0, i.e., all the money begins and ends in bond. A trade is entered
at time t; if T[i] =0 and T[i + 1] = 1. A trade is exited at time t; if T[i] =1 and T[i+ 1] = 0.
The number of trades made by a trading strategy is equal to the number of trades that are entered.

Note that we make the following assumptions regarding the trading:

A1 [All or Nothing/: The position at all times is either entirely bond or entirely stock.

A2 [No Market Impact]: Trades can be placed without affecting the quoted price.

A3 [Fractional Market]: Arbitrary amounts of stock or bond can be bougnt or sold at any time.

A4 [Long Strategies]: We assume that we can only hold long positions in stock or bond.
These assumptions are rather mild and quite accurate in most liquid markets, for example foreign
exchange. A1 implies (for example) that one can not leg into a trade. For some optimality criteria,
legging into a trade may be beneficial, however, in most circumstances, an all-or-nothing optimal
strategy can be chosen. A3 is a consequence of A1, since if all the money should be transfered
to a stock position, this may necessitate the purchase of a fractional number of shares. Note that
if 7[i — 1] # T1i], then at the begining of time period t;, the position was transfered from one
instrument to another. Such a transfer will incur an instantaneous per unit transaction cost equal
to the bid-ask spread of the instrument being transfered into. We assume that the bid-ask spread
is some fraction (fp for bond and fg for stock) of the bid price.

We denote the equity curve for a trading strategy 7 by the vector &7, i.e., E7[i] is the equity
at the end of time period t;, with £7[0] = 1. Corresponding to the equity curve is the excess return
sequence r7 for the trading strategy 7, i.e., for i > 1

Erli]

il (2.1)

rT [Z] = log

If we ignore the bid-ask spread, then the excess return in time period t; is given by
rrli] = §7T[i| = (s; — b;)7T[i]. (2.2)

The bid-ask spread affects the return, reducing it by an amount depending on 7 [i — 1]. Denoting
this transactions cost attributable to 7[i] by A[é], we have that

Ali] = =T[i = 1J(1 = Tl fp - (1 = T[i =)T [i]fs, (2.3)

where fg = log(1+ fs) and fg = log(1+ f5). Thus, the bid-ask spread can be viewed as introducing
an instantaneous return of — f or — fg whenever the position is switched. To exactly which time
period this transactions cost is applied may depend on the nature of the market, i.e., it may be
applied to rrl[i], rr[i — 1] or r7[i + 1]. The nature of the results will not change significantly
for either of these options, so in our algorithms, we will generally make the choice that offers the
greatest technical simplicity. For a trading strategy 7, we define the total return u(7), the sum of
the squared returns s?(7), the sum of squared deviations of the returns ¢%(7) and the maximum

drawdown M DD(T) as follows,
WT) = Sorrlil 2.4)
S(T) = Y rrlif, (2.5)

n 2
AT = X (rrll - 2u(D)) = (T) - (D) (26

1=1

l
MDD(T) = | Jpax — ; rli. (2.7)

When it is clear from the context what trading strategy we are talking about, we will generally
suppress the explicit dependence on 7. The performance measures that we consider in this chapter
are derived from these statistics. In particular, we are interested in the total return p, the Sterling
ratio Strl, and variants of the Sharpe ratio, Shrp; and Shrpy:

u(7T) w(7)

Sl(T) = 3/ p 57y Ships (7) = 7 Shrpy(T) = 20 (9

Shrp; is the conventionally used Sharpe ratio. Shrp, is a more risk averse performance measure, as
it is more sensitive to the variance in the returns. Often, Strl as we have defined it is refered to as
the Calmar ratio in the literature [31], and the Sterling ratio adds a constant (for example 10%) to
the M DD in the denominator [53]. Such a constant can easily be accomodated by our algorithms,
and so we will maintain this simpler definition for the Sterling ratio.

We will use standard O() notation in stating our results: let n be the length of the returns
sequences; we say that the run time of an algorithm is O(f(n)) if, for some constant C, the runtime
is < C'f(n) for any possible return sequences. If f(n) is linear (quadratic), we say that the runtime
is linear (quadratic).

Next, we discuss the existing related work, followed by a detailed discussion of the algorithms,
along with all necessary proofs.

2.2 Related Work

The body of literature on optimal trading is so enormous that we only mention here some represen-
tative papers. All the reasearch on optimal trading falls into two broad categories. The first group
is on the more theoretical side where researchers assume that stock prices satisfy some particular
model, for example the prices are driven by a stochastic process of known form; the goal is to
derive closed-form solutions for the optimal trading strategy, or a set of equations that the optimal
strategy must follow. We highlight some of this research below.

Lobo et al. in [69] consider the problem of single-period portfolio optimization. They consider
the maximization of the expected return subject to different types of constraints on the portfolio
(margin, diversification, budget constraints and limits on variance or shortfall risk). Under the
assumption that the return on asset ¢ at the end of period is the random variable a; and both first
and second moments of the joint distribution of the random variables are known, this optimization
problem can be represented as a convex optimization problem and thus can be efficiently solved by
a numerical methods (eq. by Karmarkar’s interior-point method [38]).

Thompson in [74] considered the problem of maximizing the (expected) total cumulative return
of a trading strategy under the assumption that the asset price satisfies a stochastic differential
equation of the form dS; = dB; + h(X})dt, where B, is a Brownian motion, A is a known function
and X; is a Markov Chain independent of the Brownian motion. In this work, he assumes fixed
transaction costs and imposes assumptions Al, A2, A4 on the trading. He also imposes a stricter
version of our assumption A3: at any time, trader can have only 0 or 1 unit of stock. He proves that
the optimal trading strategy is the solution of a free-boundary problem, gives explicit solutions for
several functions h and provides bounds on the transaction cost above which it is optimal never to
buy the asset at all.

Pliska et al. in [8] considered the problem of an optimal investment for a continuous-time
market consisting of the usual bank account, a rolling horizon bond and a discount bond whose
maturity coincides with the planning horizon. They assume interest rates to be stochastic (driven
by a stochastic differential equation) and derive an equation satisfied by the trading strategy that
maximizes the HARA utility wealth function.

Bielecki in [9] considered the problem of maximizing the risk sensitive expected exponential
growth rate of the investor’s portfolio in a economy model consisting of a bank account and a risky
security (stock) with a stochastic interest rate. The optimal trading strategy is characterized in
terms of a nonlinear quasi-variational inequality and he developed a numerical approach to solving
this equation.

Berkelaar and Kouwenberg in [7] considered asset allocation in a mean versus downside-risk
framework. Downside-risk measures penalize only negative returns relative to a given benchmark.
Investors have a trade-off between mean and downside-risk. Closed-form solutions for the optimal
asset allocation are derived for the case where asset prices follow geometric Brownian motions with
constant interest rate.

The main drawbacks of such theoretical approaches is that their prescriptions can only be useful
to the extent that the assumed models are correct. The second group of research which is more on
the practical side is focused on exploring learning methods for the prediction of future stock prices
moves. Intelligent agents are designed by training on past data and their performance is compared
with some benchmark strategies.

Liu in [42] consider the optimal investment policy of a constant absolute risk aversion (CARA)

investor who faces fixed and proportional transaction costs when trading multiple risky assets. He
show that when asset returns are uncorrelated, the optimal investment policy is to keep the dollar
amount invested in each risky asset between two constant levels and upon reaching either of these
thresholds, to trade to the corresponding optimal targets.

Zakamouline in [77] studies the optimal portfolio selection problem for a constant relative risk
averse investor who faces fixed and proportional transaction costs and maximizes expected utility
of the investor’s end-of-period wealth. The author applies the method of the Markov chain approxi-
mation to numerically solve for the optimal trading strategy. The numerical solution indicates that
the portfolio space is divided into three disjoint regions (Buy, Sell and No-Transaction), and four
boundaries describe the optimal strategy. If a portfolio lies in the Buy region, the optimal strategy
is to buy the risky asset until the portfolio reaches the lower (Buy) target boundary. Similarly, if
a portfolio lies in the Sell region, the optimal strategy is to sell the risky asset until the portfo-
lio reaches the upper (Sell) target boundary. All these boundaries are functions of the investor’s
horizon and the composition of the investor’s wealth.

Choi and Liu in [41] considered trading tasks faced by an autonomous trading agent. An au-
tonomous trading agent works as follows. First, it observes the state of the environment. According
to the environment state, the agent responds with an action, which in turn influences the current
environment state. In the next time step, the agent receives a feedback (reward or penalty) from
the environment and then perceives the next environment state. The optimal trading strategy for
the agent was constructed in terms of the agent’s expected utility (expected accumulated reward).

Cuoco et al. in [36] considered Value at Risk as a tool to measure and control the risk of the
trading portfolio. The problem of a dynamically consistent optimal porfolio choice subject to the
Value at Risk limits was formulated and they proved that the risk exposure of a trader subject to
a Value at Risk limit is always lower than that of an unconstrained trader and that the probability
of extreme losses is also decreased. They also prove that another risk measure - Tail Conditional
Expectation - is equivalent to the Value at Risk. In particular, they showed that in a dynamic
setting it is always possible to transform any given Tail Conditional Expectation limit into an
equivalent Value at Risk limit and conversely.

Dammon and Spatt in [70] explored the optimal trading and pricing of taxable securities with
asymmetric capital gains taxes and transaction costs. Under current U.S. tax law, gains on capital
assets are not taxed until the investor sells the asset and the tax rate that applies to capital gains
and losses may be a function of the investor’s holding period. These features give investors the
incentive to time their asset sales so as to minimize the tax burden of owning taxable securities.
In this work the optimal trading strategy is derived in the presence of capital gains taxes and
transaction costs and the implications of the optimal trading strategy for asset pricing is explored.

Mihatsch and Neuneier in [46] considered problem of optimization of a risk-sensitive expected
return of a Markov Decision Problem. Based on an extended set of optimality equations, risk-
sensitive versions of various well-known reinforcement learning algorithms were formulated and
they showed that these algorithms converge with probability one under reasonable conditions.

The Sharpe ratio was introduced in [65], [66] and since then became a popular and widespread
risk-sensitive measure of a portfolio performance. Faugere et al. in [68] used Sharpe ratio as one of
performance measures to compare effectiveness of different decision-making criteria. Pedersen et al.
in [63] performed empirical comparison of many performance measurement methodologies for the
global financial services sector and documented strong evidence in support of using Sharp-Ratio
based measures. It was also pointed out that correlation of the Sterling ratio with other measures

is usually small and dips below 5% in some instances.

A number of authors associated with BARRA (a major supplier of analytic tools and databases)
have used the terms information ratio [29] or Appraisal ratio instead [10]. Goodwin in [29] considers
the relationship between the Sharpe ratio and other performance measures, compares four methods
of annualizing an information ratio, and presents the empirical evidence on the distribution of
information ratios by style, which provides a context in which to examine manager performance.

Surprisingly, there is little previous research on portfolio optimization with respect to the Sharpe
ratio or Sterling ratio, partially because of the intristic difficulty of these non-linear optimization
criteria.

Moody and Saffell in [64] presented methods for optimizing portfolios, asset allocations and
trading systems based on a direct reinforcement approach. In this approach, investment decision
making is viewed as a stochastic control problem and the need to build forecasting models is elim-
inated. An adaptive algorithm called recurrent reinforcement learning for discovering investment
policies was proposed and they demonstrated how it can be used to optimize risk-adjusted invest-
ment returns like the Sterling Ratio or Sharpe Ratio, while accounting for the effects of transaction
costs.

Liu et al. in [32] proposed a learning-based trading strategy for portfolio management, which
aims at maximizing the Sharpe Ratio by actively reallocating wealth among assets. The trading
decision is formulated as a non-linear function of the latest realized asset returns, and the function
cam be approximated by a neural network. In order to train the neural network, one requires a
Sharpe-Optimal trading strategy to provide the supervised learning method with target values. In
this work they used heuristic methods to obtain a locally Sharp-optimal trading strategy. The
transaction cost was not taken into consideration. Our methods can be considerably useful in the
determination of target trading strategies for such approaches.

Tasche and Tibiletti in [73] explored ways to speed up the online computation of the Sharpe
ratio of a current portfolio and how the Sharpe ratio will change if a candidate new asset will be
incorporated into the portfolio. Approximation formulae were derived that are based on certain
derivatives of the Value-at-Risk.

Hellstrom in [34] formulates an alternative formulation of the stock prediction problem based
on a statistical investigation of the stock’s ranks. In this work a single perceptron neural network
is trained to find the parameter vector that maximizes the Sharpe ratio. Due to the lack of the
Sharpe-optimal trading decisions that can be supplied as target values, a special technique for
optimization without derivatives is utilized [59].

Our work does not make any assumptions about the price dynamics to construct ex-post optimal
trading strategies. Obtained results furnish (i) optimal strategies on which to train intelligent agents
and (ii) benchmarks with which to compare their performance.

10

2.3 Contribution Summary

The contribution in this work is to give efficient (polynomial time) algorithms to compute the
optimal trading strategy for various profit objectives, and under constraints on the number of
trades that can ber made. A main component in presented algorithms is the ability to efficiently
maximize quotients over intervals. Consider following optimization problem:

Definition 2.3.1 Given two sequences of real numbers {c;}icr, {d;}icr, ¢ > 0, di > 0, find a
single continuous subinterval of indeces J C I such that

D i Ci > > ic Ci

., VvJcCI
1+Ziejdi_1+ZiEJ’di -

This problem is relevant because problems of finding the Sterling optimal trading strategy,
Sharpy and Sharps optimal trading strategies can be solved by solving a sequence of corresponding
optimization problems of type 2.3.1.

We relate this one-dimensional optimization problem to convex hull operations on the plane,
that allowed us to constructed an efficient O(NlogN) algorithm that solves problem 2.3.1. Using
this algorithm as a starting point, we can then prove the following theorems.

Theorem 2.3.2 (Return Optimal Trading Strategies) A total return optimal trading strat-
eqy can be computed in linear time. Specifically,

i. Unconstrained Trading. A trading strategy T, can be computed in O(n) such that for any other
strategy T, (7)) > (7).

7. Constrained Trading. A trading strategy ’Z;f(making at most K trades can be computed in
O(K -n) such that for any other strategy T™ making at most K trades, ,u(’ZLK) > u(THK).

Theorem 2.3.3 (Sterling Optimal Trading Strategies) A Sterling optimal trading strategy
can be computed in near linear time. Specifically,

i. Unconstrained Trading. A trading strategy Tsy can be computed in O(nlogn) such that
for any other strategy T, Strl(Zsyy) > Strl(T).

71. Constrained Trading. A trading strategy 7—Slt{rl making at most K trades can be computed in
O(nlogn) such that for any other strategy T™ making at most K trades, Strl(7d)) > Strl(TK).

Theorem 2.3.4 (Sharpe Optimal Trading Strategies) A Sharpe optimal trading strategy can

be computed in near quadratic time. Specifically, trading strategies Tspyp, and Ishyp, can be found in
O(n?logn) such that for any other strategy T, Strly (Zshrp,) > Strli(T) and Strla(Zshrp,) > Strla(7)

11

2.4 Collecting Training Dataset: Return-Optimal Trading Strate-
gies

We use the notation [t;, ;] to denote the set of time periods {¢;,t;11,...,t;}. In order to compute
the return optimal strategies, we will use a dynamic programming approach to solve a more general
problem. Specifically, we will construct the return optimal strategies for every prefix of the returns
sequence. First we consider the case when there is no restriction on the number of trades, and
then the case when the number of trades is constrained to be at most K. Although we maintain
assumptions A1-A4 for simplicity, A1, A3 and A4 can be relaxed without much additional effort.

2.4.1 Unconstrained Return-Optimal Trading Strategies

First we give the main definitions that we will need in the dynamic programming algorithm to
compute the optimal strategy. Consider a return-optimal strategy for the first m time periods,
[t1,tm]. Define S[m,0] (S[m,1]) to be a return-optimal strategy over the first m periods ending
in bond (stock) at time t,,. For ¢ € {0,1}, let u[m,£] denote the return of S{m, | over [t1,ty,],
ie., ulm,l] = u(S[m,¥]). Let PREV|m, {] denote the penultimate position of the optimal strategy
S[m, £] just before the final time period t,,.

The optimal strategy S[m,¢] must pass through either bond or stock at time period m — 1.
Thus, S[m,] must be the extension of one of the optimal strategies {S[m — 1,0],S[m — 1,1]} by
adding the position ¢ at time period t,,. More specifically, S[m, ¢] will be the extension that yields
the greatest total return. Using (2.2) and (2.3), we have that

N({S[m - 170]76}) = N[m - 170] + 8ml — f:Sga
p({SIm = L1],0}) = plm = 1, 1] + 8l — fp(1 = £).

Since p[m,] is the maximum of these two values, we have the following recursion,
p[m, {] = max {u[m —1,0) + 8l — fst, plm —1,1] + 8l — fp(1 — f)} :

The position of the optimal strategy S[m,¢] just before time period m is given by the ending
position of the strategy that was extended. Thus,

0 if pfm — 1,0] + 8l — fsl > plm — 1,1 + &l — fp(1 = 0),

1 otherwise.

PREV[m, (] = {

If we already know p[m —1,0] and p[m — 1,1], then we can compute p[m,{] and PREV[m, {] for
¢ € {0,1} in constant time. Further, we have that u[1,0] = 0 and p[l,1] = §; — fs, and so, by a
straight forward induction, we can prove the following lemma.

Lemma 2.4.1 PrREV|m, (] for all ¢ € {0,1} and m < n can be computed in O(n).

The optimal strategy 7,, is exactly S[n,0]. PREV[n,0] gives the position at ¢,_;, and the optimal
way to reach PREV[n,0] at t,_1 is given by optimal strategy S[n — 1, PREV[n,0]]. Continuing
backward in this fashion, it is easy to verify that we can reconstruct the full strategy 7, using the
following backward recursion:

%[n] = 0,
T,m] = PrREVim+1,7,/m+1]], for 1 <m <n.

12

Thus, a single backward scan is all that is required to compute 7,[i] for all ¢ € {1,...,n}, which
is linear time, and so we have proved the first part of Theorem 2.3.2. Further, it is clear that the
algorithm requires memory that is linear in n to store PREV|m, ¢]. While we have assumed that
the algorithm works with excess returns, the optimal strategy does not depend on this assumption,
thus the algorithm works correctly even with the actual return sequences. The generalization of
this algorithm to IV > 2 instruments is straightforward by suitably generalizing a trading strategy.
S[m, £] retains its definition, except now £ € {0,..., N —1}. To compute u[m, ¢] will need to take a
maximum over N terms depending on p[m — 1,¢'], and so the algirithm will have runtime O(Nn).

One concern with the unconstrained optimal strategy is that it may make too many trades. It
is thus useful to compute the optimal strategy that makes at most a given number of trades. We
discuss this next.

2.4.2 Constrained Return-Optimal Strategies

We suppose that the number of trades is constrained to be at most K. It is more convenient to
consider the number of jumps k, which we define as the sum of the number of trades entered and
the number exited. For a valid trading strategy, the number of trades entered equals the number
of trades exited, so k = 2K. Analogous to S[m, ¢] in the previous section, we define S[m, k, ¢] to be
the optimal trading strategy to time period t,, that makes at most k£ jumps ending in instrument
0. Let u[m,k, €] be the return of strategy S[m,k,], and let PREV|m, k,!] store the pair (k’,¢'),
where ¢ is the penultimate position of S[m, k,{] at t,,—; that leads to the end position ¢, and &’
is the number of jumps made by the optimal strategy to time period t,,_1 that was extended to
S[m, k, £].

The algorithm once again follows from the observation that the the optimal strategy S[m, k, /]
must pass through either bond or stock at ¢,,,_1. A complication is that if the penultimate position
is bond and ¢ = 0, then at most k& jumps can be used to get to thhe penultimate position, however,
if £ =1, then only at most £ — 1 jumps may be used. Similarily if the penultimate position is stock.
We thus get the following recursion,

,u[m,k:,O] = max{,u[m—l,k‘,O], M[m_Lk_lvl]_fB}?
plm, 1] = masc{plm = 1,k — 1,01+ 8 — fo, plm — 1,5, 1]+ 5

This recursion is initialized with p[m, 0,0] = 0 and p[m,0,1] = NULL for 1 < m < n. Once p[m, k, /]
is computed for all m, ¢, then the above recursion allows us to compute u[m,k + 1, /] is computed
for all m,¢. Thus, the computation of u[m,k,¢] for 1 <m <n, 0 <k < 2K and ¢ € {0,1} can be
accomplished in O(nK). Once again, the strategy that was extended gives PREV[m, k, /],

k if —1,k ~Lk-1,1-f
Previm k0] = 4 &0 ifulm = LEO]> pfm — Lk~ 11] - fp,
(k—1,1) otherwise.
k—1 if —1,k—-1 Am—A —1,k1 Sms
PREV[m, k,1] = (,0) if p[m T 0+ 3 fs > pulm]+ 3
(k,1) otherwise.

Since computing u[m, k, £] immediately gives PREV[m, k, £], we have the following lemma,

Lemma 2.4.2 PrREV[m, k,{] for all ¢ € {0,1}, m <n and k < 2K can be computed in O(nkK).

13

T f is given by S[n,2K,0], and the full strategy can be reconstructed in a single backward scan
using the following backward recursion (we introduce an auxilliary vector k),

Tl = 0,
(k[n — 1],’2;1([71 —1]) = PRrEV[n,2K, ’ZLK[n]),
(ﬂ[m],’]}f[m]) = PREV[m+1,/1[m+1],’];f{[m+1]), for1<m<n-—1.

Since the algorithm needs to store PREV[m, k, ¢] for all m, k, the memory requirement is O(nk).
Once again, it is not hard to generalize this algorithm to work with IV instruments, and the resulting
run time will be O(nNK).

14

2.5 Collecting Training Dataset: Sterling-Optimal Trading
Strategies

It will first be useful to discuss some of the M DD properties of the return-optimal strategy 7, as
these properties will have implications on our algorithm to determine Sterling-optimal strategies.
For a strategy 7, it is useful to define the cumulative return series, C'7[i] as the sum of the returns,
Crli] = Z;Zl rr[j]. Note that u(7,) = Cg,[n] > Cr[n] = u(7) for any strategy 7. The equity
curve is given by Er[i] = exp <C’T[i] + 22':1 bj>.

First, we will upper bound M DD(7,), because this in turn serves as an upper bound for the
MDD of the Sterling-optimal strategy,

Lemma 2.5.1 MDD (7syn) < MDD(T,).

Proof: By definition, M%(gs(%)m) > M%(g()T) for any 7. Thus, MDD (Tsy) < %MDD(T) for

any 7. Choosing 7 = 7, and noting that ;1(Zs¢) < p(7,), we obtain the desired result. [

Since the cost (in terms of the cumulative return) of entering and exiting a trade is —(fs + f5), no
segment of the optimal trading strategy 7, should lose more than this in return.

Lemma 2.5.2 For any i < j, Cr,[j] — Cr,[i] > —(fs+ fB).

Proof: Suppose, for contradiction, that for some i < j, O, [j] — Cr,[i] < —(fs+ fB). By setting
Tuli+1],...,7,[j] to be all equal to 0, it is easy to verify that the cumulative return of the strategy
must increase, which contradicts the optimality of 7,,. [|

For technical convenience, we will assume that the transactions cost when entering a trade is
assigned to the time period prior to the entry, and the transactions cost when exiting a trade is
assigned to the time period after the trade. Note that just prior to entering, the position is 0 and
so it will now have a return of — fs, and just after exiting, the position is 0, and will now have a
return of —fB.

Let fqp = fs + f p. From Lemma 2.5.2, no segment of the optimal strategy can lose more than
fsp, and so this immediately gives an upper bound on MDD(7,). For the trivial strategy that
makes no trades, the MDD is 0. If a strategy makes exactly one trade, then there is a drawdown
of at least fs at the begining, and of at least fB at the end. If at least two trades are made, then
there is a drawdown of at least f, between the exit of one trade and the entry of another, and since
the drawdown cannot exceed fs,, the M DD must therefore equal f,. We thus have the following
lemma.

Lemma 2.5.3 (MDD of T,) If 7, makes no trades, MDD(7,) = 0. If 7, makes one trade,
max{fs, fe} < MDD(T,) < fop. If T, makes at least two trades, MDD(T,) = fsp.

Note that if we relax assumption A1, then by legging into a trade, it may be possible to decrease
the drawdown, in which case Lemma 2.5.3 would no longer be valid. We are now ready to discuss
the O(nlogn) algorithms to obtain Sterling-optimal trading strategies. First we will consider
unconstrained Sterling optimal strategies, and then we will require number of trades < K.

15

2.5.1 Unconstrained Sterling-Optimal Strategies

For a degenerate trading system with all returns equal to zero, we define its Sterling ratio as 1. The
only trading system with a M DD of 0 is a degenerate trading system, so with this definition, the
Sterling ratio is defined for all possible trading systems. The computation of the Sterling-optimal
trading system breaks down into three cases, according to the number of trades its makes:

i. Sterling-optimal that makes zero trades. In this case Sterling Ratio is 1.

ii. Sterling-optimal that makes one trade. Then optimal trading strategy contains a single interval
of 1’s.

iii. Sterling-optimal that makes at least two trades. Any trading system that makes at least two
trades has an MDD > f,,. Since MDD(7,) < fsp (Lemma 2.5.3), 7, has the smallest M DD
among all such systems. Since it also has the highest total return, we conclude that if the
Sterling-optimal system makes at least two trades, then 7sy = 7,,.

The first case is trivially computed. The third case, i.e., the Sterling optimal strategy that makes
at least two trades can be computed in linear time using the dynamic programming algorithm to
compute 7,,. If we also compute the Sterling-optimal system that makes exactly one trade, then, we
solve our problem by taking the case with the maximum Sterling ratio. We now focus on finding
the trading strategy that makes only one trade and has greatest Sterling Ratio among all such
strategies.

Let 7 be a strategy that makes exactly one trade. The trade interval is the interval of time
periods, [t;,t;] on which 7 = 1, i.e., the trade interval is an interval of 1’s in the trading strategy.
An elementary algorithm that considers all the O(n?) possible trade intervals, picking the best is
a quadratic time algorithm. The remainder of this section is devoted to providing an algorithm
which computes such a strategy in O(nlogn) time, which will complete the proof of the first part
of Theorem 2.3.3. In fact the algorithm that we present is a much more general algorithm that
computes the single interval that optimizes a general class of optimality criteria. This algorithm
will be useful when we discuss the Sharpe-optimal strategy.

Consider a consecutive sequence of time periods ¢;, t;+1, . .., t;1, where k > 1, with all the excess
returns non-negative and the last one positive, i.e., §; > 0,8;41 > 0,...,8;41 > 0.

Lemma 2.5.4 Fither the optimal single trade interval does not intersect these time periods, or an
optimal single interval can be chosen to contain this interval.

Proof: Suppose that 7[i + j] = 1 and 7[i + j + 1] = 0 for some 0 < j < k. Extend the trading
interval by setting 7[i+j+1] = 1,...,7[i+ k] = 1, which adds positive return, without increasing
the M DD, contradicting the optimality of the original interval. On the other hand, suppose that
Tli+jl=1and T[i+j—1] = 0 for some 0 < j < k. Once again, by extending the trading interval,
setting T[i] = 1,...,7[i+j] = 1, we add non-negative returns, without increasing the M DD hence

this new interval is at least as good as the previous interval. [|
A similar result holds for a sequence of consecutive negative time periods, t;,t;11,...,t;+r Where
k>1, with §; < 0,841 <0,...,8.1r < 0. If an optimal trading interval only intersects part of

these time periods, this intersection can be removed without decreasing the Sterling ratio. Thus,
by Lemma 2.5.4, any sequence of time periods with all returns non-negative (non-positive) can be

16

condensed into a single time period, ¢, = t; + -+ + t;yk, with 8, = §; + -+ + §;1,. Further, this
operation can be performed in linear time on the entire excess return sequence, so from now on
we assume without loss of generality that the excess return sequence consists of alternating time
periods of strictly positive and negative excess returns. If §; < 0, then ¢; cannot be the first 1 of
a trade, since by entering one time period later, we exclude only this negative return and do not
increase the M DD. Similarily, it cannot be the last 1 of a trade.

Lemma 2.5.5 The first 1 and the last 1 of the optimal trade interval must occus at time periods
ty and t; for which 57 > 0 and 3, > 0.

The pictorial illustration of this lemma is given below on Figure 2.2 where we show the cumulative
return curve. The time instants a; are the possible entry points, and the time instants b; are the pos-
sible exit points. Let the alternating sequence of entry and exit points be {a1,b1, a2, b, ..., ax,bi}
(a; are the entry points, and b; are the exit points). Note that after the preprocessing into alter-
nating intervals, k < [n/2]. Notice that without loss of generality, we can throw away the first
interval if it has a negative return, as it can never be an entry point, and the last interval if it has
a negative return, for a similar reason. The optimal trade interval will be of the form (at, b4y),
r > 0.

Our algorithm for finding the Sterling-optimal in-
terval will be to consider every possible starting point
a;, and find the Sterling-optimal interval with this .
point as starting point (i.e. we have to find the end .
point of this interval). As the algorithm proceeds, we
keep track of the best entry point (and its correspond-
ing exit point). The entry points a; are processed from
right to left. After processing a new entry point a;, we
will modify the alternating sequence to facilitate faster
processing of the remaining points. More specifically,
we will delete the processed entry point and add a
weight to the edge between b;_1 and b; to preserve all Figure 2.2: Possible entry and exit points.
the necessary information — we cannot simply delete
the entry point a;, since we have to keep track of maximum MDD that occurs in our activity inter-
val. Since between b;_1 and a; we have a drawdown of b;_1; — a;, we need to keep this information
in an edge weight connecting b;_1 to b;. Please note that at any stage of algorithm edge weight
connecting by to by will be equal to the MDD of the interval [b;_1,b;] and this MDD is realized
on prefix of [b;_1,b], i.e. MDD([bs—1,b]) = C(by—1) — C(x), for some z € [bs—1,b:] - Invariant
(*). We will show this weight attached to b; in parentheses, (w;)b;, where the value of w; appearing
in parentheses indicates the weight.

We start our backward scan at the last entry point, ap, for which there is only one pos-
sible interval (ag,br). We update the weight wy < br_1 — ai, store the current best interval
(ak, by, Strl), and delete the possible start point aj from the sequence to give the processed se-
quence {a,by,...,ak_1,bk_1, (wr)br}. Note that (ag, by, Strly) is a one-step trade, but we keep it
here for simplicity. We now proceed to a;_; and so on.

In the general case, suppose we have processed (backwards) all the entry points up to (including)
the entry point a;11, and are currently processing entry point a;. The weighted exit sequence is
{a1,b1, ey ap, by (Wit 1)bpg1y - ooy (Wb)bt }- bty - o, by are the possible exit points — note that

Cumulative Return

17

t + m may not equal k due to possible deletion of points which we discuss below. Assume that
{bi41 < ... < by }: this is true after we have processed the first start point (since the sequence
consists only of one point), and we will maintain this condition by induction. If b; < b11, then the
entire sequence of exit points is monotonically increasing. On the other hand, if by > by41, byy1 need
not be considered as an exit point for any optimal interval with entry point a; or earlier, because
by stopping earlier at b;, we do not decrease the cumulative return, nor increase the M DD. Hence,
we can delete the possible exit point b;41. However, we must now update the weight in (w¢42)bi12
to store the new drawdown between by and b2 as follows w9 «— max{wi+1, Wit + by — bt}

Lemma 2.5.6 If by > byy1, the weighted exit sequence is updated as follows:

at, by, (Wis1)ber1s -+ o (Wi)berm — ag, by, (max{wiy 1, were + b — b1 })beaa, -+ o5 (Wem)beym

The correctness of the weight updating rule above follows from the Invariant (*). Please note that
the transformation above preserves the Invariant (*).

This process is continued until the next exit point after b; is either above b; or there are no
remaining exit points after b;. In either event, the new sequence of exit points available for a; is
strictly monotonically increasing (by the induction hypothesis). Observe that any deletion of a
possible exit point is a constant time operation. Further, since each deletion drops a point from the
set {b1,...,bt}, there can be at most k£ — 1 such deletions during the course of the entire algorithm.
We thus have the following lemma.

Lemma 2.5.7 When a; is processed by the algorithm, the exit points by < byyq < --- are monoton-
ically increasing. The cost of maintaining this condition for the entire algorithm is O(k) operations.

When processing a;, the weighted exit sequence is {a1, b1, ..., a¢, bg, (Wes1)bts1,y - - -5 (Wit)bt }-
Suppose that wips < wpys < ... < Wy Initially this sequence is the empty sequence and so this
condition holds, and once again, by induction we will ensure that this condition will always hold. If
Wy41 > Wito, then no optimal interval can have entry point a; or earlier, and exit at b.y1, because
otherwise by exiting at b9, since byyo > b1 (Lemma 2.5.4), the M DD is not increased, however
the total return is increased. Thus if wy+1 > w2, we can remove the possible exit point by41 from
the weighted exit sequence and update w10 < wyr1. Please note that this transformation also
preserves the Invariant (*).

Lemma 2.5.8 If w11 > wyto, the weighted exit sequence is updated as follows:

ag, b, (Wit 1)big1s - -+ s (Wepm)bt — @, by, (Wi 1)bg25 - -+ 5 (Wepm)bt

We continue removing exit points in this way until either there is only one weight left in the weighted
exit sequence, or all the weights are strictly monotonically increasing (by induction).

Suppose that wyr1 < f. In this case, we observe that b, cannot be the exit of an optimal interval
with entry a;_., where r > 0. To see this note that if by — a;_, — fs < 0, then the return of this
interval is negative and this interval cannot be an optimal interval. If b; — a;_, — fs > (then since
the interval already has M DD of at least f, so by continuing to b;+1, we do not increase the M DD
but strictly increase the return, hence it cannot be optimal to exit at b;.

Lemma 2.5.9 Let

at, by, (Wi 1)ber1, - - o (Werm)berm
be the weighted exit sequence and let T € [t,...,t+m]| be such an index that wr < f and wr, > f.
Then no Sterling-optimal interval that starts at a; or earlier can exit at {by,...,br_1}.

18

Lemma 2.5.10 When a; is processed by the algorithm, the weights w1 are monotonically in-
creasing. The cost of mainitaining this condition for the entire algorithm is O(k) operations.

We thus assume from now on that when processing entry point a;, the weighted exit sequence
{a1,b1, ..y ap, by, (Wit 1)bps1y - oy (Wb)bim b with m > 0 satisfies the conditions of Lemmas 2.5.7
and 2.5.10. The first available exit gives the trade interval (a¢, br). If by —ar — fsp <0, i.e., if the
return is not positive, then this cannot possibly be an optimal interval. Otherwise, the Sterling
Ratio is
bT — Gt — fsp

f

where f,, = fs + fB and f = max{fg, fB}. Now consider the exit points bpy,, 7 > 0, and suppose
that by —wry1 < a;. No trade with entry at a;, exiting at b, with r > 0 can possibly be optimal,
since we could always enter later at by —wp41, exit at by, and strictly increase the return without
increasing the drawdown. We are thus done with processing the entry point a;, and we can proceed
to a;—1 after updating weight w; and comparing breai=/e with the current champion. Similarly,
if by — w1 < a¢ for some t € [t,...,T — 1], we are done with the starting point a;, and we can
proceed to a;_q after updating weight w;. We assume that at any stage of the algorithm we keep
the value of mingey, . 7_1)bf — wiy; and thus this check can be done in constant time for any given
point a;. Thus, without loss of generality, we can assume that by — wry1 > a; and by — wgy 1 > a4
for all ¢ € [t,..., T —1]. Since wpi1 > f, we conclude that by — a; > f. A trade, entering at a;
and exiting at bry,, 7 > 0 has total return by, — a; — fsp. The next lemma gives the M DD.

Stl’lt =

Lemma 2.5.11 Assume that by — wri1 > ap and by — wiyy > ay for allt € [t,..., T —1]. The
trade (at,br4y), >0, has MDD = wry,.

Proof: The local maxima of the cumulative return sequence for this trade are {0,b; — a; —
fg,,...,bT—at—fs,...,bT+r—at—fg}. Since by —wj 1 —ay > 0Vt € [t,..., T —1], MDD of the
interval [as, br] is equal to fg.

Since by —a; — fg > 0 and since the sequence of exit points is strictly increasing, M DD(lat, br4r]) =
maz(MDD([ag, br]), MDD(Jbp,bpyr])) = max(fs, MDD([br,brsr)), f5) where fp is the draw
down after the last point bpy,.

Since the drawdown at any time in a trade is given by the the diffenence between the previous
maximum and the current cumulative return, M DD([br, b)) is at most max;c(,) wey4. Since
the weights are monotonically increasing, we see that this drawdown < w;,, which is achieved in
the interval (byyyr—1,bt4r). Since wyy, > f = ma:n(fs, fB) Vr > 0, we conclude M DD([at,bry,]) =
Wi u

Summary: For entry point a;, the sequence of exit points bpi,, r € [0, m] have cumulative
returns ¢, = bry, —a; — fsp and MDD’s d, = wr4, for r > 0 and dy = f. The task is to maximize
¢r/d, with respect to r. The sequences {c,} and {d,} are both strictly increasing. We now describe
a general algorithm for performing such a maximization.

2.5.2 Maximizing &

On the two dimensional plane, consider the set of points P, = {(d,,¢)},. Let p’ = (0,0).
Then the slope of the line joining p to (d,,c,) is exactly the Sterling ratio of the trade (a¢, by4y).

19

Thus, finding the optimal trade is equivalent to finding the upper-touching point from p to
the convex hull of the set of points P (see Figure 2.3 below). We call p the source point.
We get the same result if we define P, = {(d,,b4r)}g, P =
(0,a; + fsp). Given the convex hull, this touching line can found
in time O(log A) where A is number of the points on the convex hull,
[14]. It is easy to see that A < m + 1 < [n/2]. This algorithm
that computes the touching point in O(log A) requires the ability to
efficiently search through the convex hull. We accomplish this by
maintaining the convex hull as a doubly linked list where each point
in the convex hull maintains O(log A) pointers to other points in the
convex hull. More specifically, point ¢ points forward to points at po-
sition 27 in the convex hull of the points {(dy,)}, where j > 1. Figure 2.3: Upper-touching
Each point also maintains backward pointers to any point that points point from p to the convex
forward to it. At point j, the backward pointers specific to the convex hull of the set of points P,.
hull starting at point ¢ < j are maintained separatly for each ¢ so that

constant time access to this set of pointers is possible. An array of an array of pointers suffices. It
is clear that the worst case memory requirement is O(mlogm) pointers. We now discuss the main
operations we would like to be able to do on our set of points {(d,,c,)} and the point p and still
be able to compute the upper tangent line efficiently. First we recall that the d,. are monotonically
increasing. Assume that each point (d,, ¢,) stores all the necessary forward and backward pointers.
We also assume that the point (d,, ¢;) stores the pointer to the point nxt(r), which is the next point
in the convex hull if all the points dy,...,d._1 were removed — note that in this case, d, becomes
leftmost, and so must be in the convex hull. We will see that these assumptions are maintained
inductively. Note that the initial convex hull with all the points is given by (do, cg) followed by the
points pointed to by nxt(0), nxt(nxt(0)),.... We would like to perform the following operations on
our points and still be able to compute the upper tangent point efficiently:

1) Translate p by some given vector v.

(1)
(2) Translate all the points in {(d,, ¢.)} by some given vector v.
(3) Remove the leftmost point (dg, cg).

(4) Add a new leftmost point (d_1,c_1).

m

Lemma 2.5.12 Assuming that p, {(d,,c,,nxt,)}/" are given, all the operations in (1)-(4) above
can be accomplished in time O(logm). Further, in the event that a point is added or deleted, all
necessary pointers are maintained.

20

Proof: Let A = O(m) be the size of the current convex hull. For (1), we do not change the points at
all, we simply compute the new tangent point for p’ = p+v, which can be accomplished in O(log A).
(2) is equivalent to shifting p by —v. To prove (3), notice that if we remove (do, c¢p), then the new
leftmost point becomes (dy, ¢1) and we immediately have the new convex hull nxt(1), nxt(nxt(1)),
Thus we can find the new upper tangent point in O(log A’") = O(logm), where A’ is the size of
the new convex hull. Further, deleting (dy, ¢p) requires first deleting the backward pointers of the
points that it points to O(log A), and then deleting the point itself, and its forward pointers (it
has no backward pointers), O(log A). To prove (4), note that when we add (d_1,c_1), nxt(—1)
is exactly the upper tangent point from p’ = (d_1,c¢_1) to the current convex hull. This can be
computed in O(log A). We now need to add all the necessary pointers into the data structure. For
each forward pointer we add, we will add the coresponding backward pointer as well. We need a
pointer at position 27 in the convex hull of (d_1, c_1). But this is exactly the point at position 27 —1
in the convex hull of point nxt(—1). Since nxt(—1) maintains a pointer to point 27 in its convex
hull, and this point will have a backward pointer by one step of this same convex hull, we can
construct the forward an backward pointer for point 27 in the convex hull of (d_1,c_1) in constant
time, requiring total time O(log A’) = O(logm) to construct all the new forward and backward
pointers, where A’ is the size of the new convex hull. We now construct the new upper tangent
point from p to the new convex hull of (d_1,c_1) in O(log A’) time. The entire process is therefore
O(logm). []

The algorithm that we have just described is a general purpose algorithm for efficiently maintaining
the upper tangent point to any set of points, as long as only a limited set of operations is allowed
on the set of points and the source point. We will now see that these limited operations are all
that is needed for maximizing the Sterling ratio.

Suppose that point a; has been processed in the algorithm — i.e., the upper tangent point
(optimal trade with entry at a;) from p; = (0, ar + fsp) to P, = {(dr, br4r) }7-, has been computed.
Now consider the addition a;—1 to construct the new weighted exit sequence. Delete the leftmost
point (dg, br) from the convex hull. Lets consider all posible operations that may take place. There
are several possibilities.

i. b1 > by. We remove (leftmost) points byi;, ¢ > 0, until by—1 < byy;41, and the new weight
wy,;,; may have increased (Lemma 2.5.6). Deleting of points b; 4 i from the weighted exit
sequence doesn’t implies changes of the convex hull until ¢t + ¢ > T'. After this point, deleting
one point by + 4, i > 0 from the weighted exit sequence followed by deletion of corresponding
leftmost point of the convex hull. At the very end of the sequence of deletions, we have to
update the MDD of point b;y;4+1 from w;y;41 to w£+i+1, this can be done by deletion of the
point (wiyit1,beyiy1) and addition of new point (wj ; ,bs1i+1). The total number of such
removals during the entire algorithm is at most n — 1. When condition b;_1 < b; is satisfied,
proceed to the next stage.

i, biq < by

it.1. wey; < we. We remove (leftmost) points byyi, ¢ > 0, until wy < wyyipq. Deleting of
points b; + ¢ from the weighted exit sequence doesn’t implies changes of the convex hull
until ¢ + ¢ > T. After this point, deleting one point by + ¢, ¢ > 0 from the weighted
exit sequence followed by deletion of corresponding leftmost point of the convex hull. By

21

Lemma 2.5.10, the total number of such removals cannot exceed n — 1 over the course of
the entire algorithm. When condition w; < w11 is satisfied, proceed to the next stage.

11.2. bp_1 < by and w; < Wi41-
(a) f > we. Add to the convex hull point (f,br).
(b) f < w. Add to the convex hull points (wy, b;) and (f, bi—1).

The new source point is p;—1 = (0,a;—1 + fsp), which just corresponds to a shift of p;, and so
once the new convex hull for the new weighted exit sequence is computed, an additional O(logn)
operations are needed to find the new upper tangent point.

The total number of removals in the entire algorithm is O(n). For each new entry point, we
have at most a constant number of additions, and since the number of entry points is O(n), we see
that the total number of additions is O(n). By Lemma 2.5.12, we have that each operation takes
O(logn) in the worst case, thus the total run time is O(nlogn). Collecting all the results together,
we can find the Sterling-optimal strategies making zero, one or more than one trade in O(nlogn)
time, completing the proof of the first part of Theorem 2.3.3.

Note that by only maintaining exit points with weight at most some given constant, M D Dy, i.e.,
by truncating some region of the points to the right, this algorithm is easily extended to computing
the Sterling-optimal strategy that uses exactly one trade and has an MDD < M DDj.

Proposition 2.5.13 Given M DDy, a Sterling-optimal strategy that uses exactly one trade and
has MDD < MDDy can be computed in O(nlogn) time.

This result will be useful when we consider constrained Sterling-optimal strategies.

2.5.3 Constrained Sterling-Optimal Strategies

As with the return-optimal strategies, the unconstrained sterling-optimal strategies may make too
many trades. Here, we consider the the Sterling-optimal strategy that makes at most K trades,
Ts[t{rl- We refer to such strategies as K-Sterling-optimal. First, we present some properties of this
strategy, before giving an efficient algorithm to compute it.

A maximal return-optimal strategy 77 is a return-optimal whose trade intervals cannot be
enlarged. Given any return-optimal strategy 7, in one (linear time) scan from left to right, we can
enlarge any trade intervals maximally to the right as long as they keep the same return. Similarily,
in one backward scan, we can extend all trade intervals maximally to the left. Since 7, can be
computed in linear time, we conclude that

Lemma 2.5.14 A mazimal return-optimal strategy 1} can be computed in linear time.

If any trade interval of a maximal return-optimal strategy is extended in either direction, then
the total return must strictly decrease. In the previous section, we gave a O(nlogn) algorithm for
computing the Sterling-optimal strategy with exactly 1 trade. We also saw that if the unconstrained
Sterling-optimal strategy contains more than 1 trade, then it is 7,7. Fix K, and let the number of
trades that 7 makes be Ko < K. In this case ,Z-SIt(rI =17, and we are done. Thus we only need
to consider the case that 1 < K < K. Some important properties of 7 are summarized below.
When it is clear, We also use 7,/ to refer to the set of trading intervals {I.}E0 Let C; = Z;Zl 5;

r=1
denote the cumulative return sequence of the excess returns.

22

Lemma 2.5.15 Let ’Z;j be mazimal return-optimal. Let I be an interval [t;,t;].
i. IfT€TF, then, 0 _; 5 — fop = 0 and MDD(I) < fp.

i. Suppose I does not intersect with any interval in 1,7 and let the return of I (Z{C:Z 1) be p(I).
Then, p(I) < fsp. If I is adjacent to some interval of 1, then u(l) < 0. If I is adjacent to
two intervals in Ty, then p(I) < —fsp.

ii. Let [t;,t,;] and [ty,t.] be two consecutive trade intervals in Ty, | < r < I' < r'. Then,
Cr — Cy > fsp, and for allr < g <V, Cp < Cy < C,.

Let {(a;,b;)} denote the local minima and maxima of {C;}, as in the previous section. Any trade
of 77 or 7K, must enter (exit) at a local minimum (maximum). Further, the entry (exit) point
must be a minimum (maximum) in the trade, otherwise we can shrink the trade, strictly increasing
the return without increasing the M DD.

Lemma 2.5.16 Let I = [t;,t,]| be a trade interval of 1, or 7—S[t{rl Then Cj is a local minimum, C,
is a local maximum, and for any k, with | < k <r, C; < C, < C,

We now give an important inclusion property of the ’Tsffﬂ

Proposition 2.5.17 Let ’Z;" be a mazximal return-optimal trading strategy. There exists a K-
Sterling-optimal strategy TS[t{r', K > 1, with the following property: if I = [t;,t,] is any trading
interval in ’Z'S[frl, then a prefiz of I and a suffic of I are trades in the mazximal return-optimal

strategy 1,/

Proof. First we show that for every trading interval I* = [t,,t}] in 7, with INI* # (), one can
pick ’Z'S[frl such that I* C I. Suppose to the contrary, that for some I*, either ¢, < t; and t;, > t; or
ty, < t,. and tp > t.. We will extend I without decreasing the Sterling ratio of ’Tsffﬂ so that I* C I.

Suppose t, < t; and t, > t; (a similar argument holds for ¢, < ¢, and ¢, > t,). There are two cases:

i. I* does not intersects any other interval of Ts[t{rﬁ Applying Lemma 2.5.16 to I*, we have:

C, < Cy. Thus by extending I to [ts,t,], the return of the interval cannot decrease. Since
MDD(I*) < fsp, this extension cannot increase the M DD(7X)), since we already have that
MDD(TE) > fo,

ii. I* intersects with the previous trading interval of strategy ’Tsft{rl: ' = [ty,t] € ’Tslt{ﬂ such that
te <t < t;. Since [t 41,t—1] is a subinterval of I*, Zé»_:lr,ﬂ 5; > —fsp (Lemma 2.5.15). If
we merge [and I’ by adding the interval [t,11,%;_1] into Ts[t{rh we save on the transaction cost
of fsp, and so the total return will not decrease. We show that the M DD has not increased.
Since Cy is a maximum in [ty t,/], the drawdown for all points in [t, 41, ;] is at most fg,. Since
C is a minimum in [¢;,¢,], we conclude that the drawdown for any point in [t;,¢,] is at most
max{ fsp, MDD(I)}. Since MDD(TE,) > fsp, we conclude that this merger does not increase
the MDD.

Note that (1) > 0 otherwise we improve the return of Tslt(rl by removing I, without increasing the
MDD, ans so ’Tsffﬂ cannot possibly be optimal. Thus, without loss of generality, we assume that
the return of is positive. Suppose that I N7} = (). Then, by adding I to 7,7, we strictly increase

23

the return, a contradiction on the optimality of 7. Thus, every interval of ’Z'S[t(rI contains at least
one interval of ’Z;f Now consider the maximal prefix Ppax of I that does not overlap with any
interval of 7;" . Since we know that I contains some interval of Tu* , we conclude that this maximal
prefix must be adjacent to some interval of 7. By Lemma 2.5.15, this interval has strictly negative
return, so removing it from [strictly increase the return of ’Z'S[frl, without increasing its M DD. This
contradicts the optimality of Ts[t{rh thus, Ppnax must be empty. Similarily, the maximal suffix of 1

that is non-intersecting with ’ZL* must be empty, concluding the proof of Proposition 2.5.17. [|

As a result of Proposition 2.5.17, we assume from now on that every interval of the sterling
optimal strategy ’Tsffﬂ is prefixed and suffixed by (not necessarily distinct) intervals from a maximal
return-optimal strategy that makes Ky trades.

Lemma 2.5.18 If 1 < K < Ky then Tsft{r' can be chosen to make exactly K trades.

Proof: If K = Kj, then 7] itself is K-Sterling-optimal. If K < Ko, we show that if the number
of trades made is less than K, we can always add one more interval without decreasing the Sterling
ratio of the strategy. First, note that ’Tsffﬂ cannot contain all the intervals of 77, as otherwise (by
the pigeonhole principle) at least one interval I = [t;,¢,] of ’Tsffrl contains two consecutive intervals
Iy = [ty tr,] and Iy = [t},,t,] of 7,7, The region between these two intervals has return less than
— fsp (Lemma 2.5.15), so breaking up I into the two intervals [¢;,¢,,] and [t;,, t,] will strictly increase
the return, without increasing the M DD, contradicting the optimality of ’Z'S[fr' If ’Z'S[t(rI does not
contain some interval of 77, then by adding this interval, we do not decrease the return or the
MDD (Lemma 2.5.15), since the M DD is already > fqp. [

Lemmas 2.5.17 and 2.5.18 indicate how ,‘TSItiI can be constructed: start with all the intervals of
a maximal return-optimal strategy Tu* and then merge some neighbouring intervals, keeping the
merging sequence that gave the best strategy. The number of possible merging sequences is ex-
ponential, however, we will now show that an efficient greedy merging algorithm gives the correct
result.

Given two consecutive non-adjacent intervals Iy = [t;,,tr,], I2 = [t,,tr,], Where I} preceeds
I5, define the bridge B(I1,I3) = [tr,,t1,] to be interval connecting I; with Ir. If I} and I are
intervals in a maximal return optimal strategy, then by Lemma 2.5.15, the M DD of the bridge
is Cp, — Cy,. Since Cy, is a maximum over the interval [t;,,t;,], and Cj, is a minimum over the
interval [t,,,t,,], we have that the M DD of the union of these three intervals, [t;,,t,,] is given by
max{MDD(I,),C,, —Ci,, MDD(Is)}.

For every bridge B(I1, I2), define the closure CI(B(I1,I2)) to be the smallest interval J = [t;, t,],
in the return sequence, satisfying the following three properties.

Cli. 1 <Cp <Cyforl <m <r, ie., C7is a minimum and C, is a maximum in [t;, ¢,].
Cly. I,I, C J,i.e., J contains both I1 and Is.
Cls. J is prefixed and suffixed by intervals from a maximal return-optimal strategy 7,;.

Note that a bridge may not have closure. For example, if the two last intervals I;_1, I; in 7;* are
such that such that the end point I; is below the end point of I;_1, then B(I;_1, ;) doesn’t have a
closure. The next lemma shows that if the closure J for a bridge exists, then not only is it unique,
but any other interval satisfying Cl; - Cl3 contains J.

24

Lemma 2.5.19 For two intervals Iy, I, if CI(B(I1,12)) exists, then it is unique. Moreover, for
any other interval I satisfying Cly - Cls, Cl(B(I1,12)) C I.

Proof: Let J; = [t;,,t,,] and Jo = [t1,, t,,] satisfy Cl; - Cl3. Without loss of generality, assume
that ¢;, <t;, <ty <t,. By construction, JyNJy = [t;,, t,,] satisfies Cly - Cl3. Now let Cl(B(I1,I2))
be the intersection of all intervals that satisfy Cly - Cl3, concluding the proof. [

Suppose that bridge B and B’ are bridges in 7 and that CI(B) contains B’. Then CI(B) satisfies
Cly - Clg with respect to B’ and hence Cl(B) also contains Cl(B’).

Lemma 2.5.20 Let B and B’ be bridges in 7,;. If B' C Cl(B), then CI(B') C CI(B).

Any interval in ,‘TSItiI containing bridge B satisfies properties Cly - Cl3 (Lemma 2.5.16 & Proposition
2.5.17), immediately yielding the following proposition.

Proposition 2.5.21 Let I € Tslt(rl and let B be a bridge in T,
i. If BC I, thenCIl(B) C I.
1. If B does not have a closure, then no K-Sterling-optimal strategy can contain B.

ii. A K-Sterling-optimal strategy with more than one trading interval and no bridges of 1, has
MDD = fs,. If it contains one or more bridges B; of 7,7 , then MDD = max; M DD(Cl(B;)).

iv. The MDD of a K-Sterling-optimal strategy with more than one trading interval can be one of
at most T'+ 1 possible values where T is the number of bridges between the intervals of 7} .

Proof: (i) and (ii) are immediate. (iv) follows from (iii), thus we only need to prove (iii). Let
I e ,TSItiI contain the consecutive bridges Bi,..., Bk, and hence their closures. From (i), it is
clear that MDD(I) > max; MDD(CI(B;)). It is also clear that I = UKCI(B;). We show, by
strong induction on K, a more general statement than we need: suppose that I = UZK Cl(B;), then
MDD(I) < max; MDD(CI(B;)). If K = 1 then I = CI(B1) and the result is trivial; suppose
it is true for up to K — 1 consecutive bridges, K > 1, and suppose that I is the union of K
closures of consecutive bridges. Consider the first closure Cl(By). Let I = [t;,t,] and Cl(By) =
[ti,t], t,» < t.. By definition of Ci(By), C,s is a maximum over [t;,t,]. Thus, MDD(I) =
max{M DD(Cl(B1)), MDD([t,,t,])}. If r = 1/, then I = CI(B;) and we are done. If r < 7/,
then t,/,; is the begining of some bridge B,. Let I’ = UK CI(B;). Then, [t.,t,] C I’ and so
MDD([t,,t;]) < MDD(I'). But I’ is the union of at most K — 1 closures, so by the induction
hypothesis, MDD(I') < max;>, M DD(CI(B;)), concluding the proof.]

We will distinguish between four types of bridges. Let Iy = [t;,,tr,], I2 = [ti,,tr,] be consecutive
intervals in 7. The bridge B = B (I1,13) can be one of four types:

regular. C;, < C, and Gy, < Cy, ie, CU(B) = [l1,72).

right irreqular. Cj, < Cy, and C,, > C,,, i.e, Cl(B) contains the next bridge.

left irregular. Cy, > Cy, and Cy, < C,,, i.e, Cl(B) contains the previous bridge.

irreqular. Cy, > Cy, and C}, > C},, i.e., Cl(B) contains the next and previous bridges.

25

We define the weight of the bridge W (B(I1, I2)) as follows:

Cy, —Cy, if B(I1,1) is regular,

W(B(I1, I)) Cy, —Cy, if B(Ih,1) is left irregular and the previous bridge is right irregular
b Cy, — Cy, if B(I1, 1) is left irregular and the previous bridge is irregular

+00 otherwise.

The general idea behind our algorithm is to start with a maximal return-optimal strategy and
greedily merge pairs of intervals or pair of bridges according to the bridge weight, keeping track
of the best K intervals each time. When no more merging can occur, because we are down to K
intervals or all the bridge weights are oo, we return the best K intervals we have seen so far. More
precisely, let 7] = {Ii,...,Ik,} be a maximal return-optimal trading strategy making Ky trades.
We denote this pool of trade intervals by Py, the base pool. From pool F;, we obtain pool P,y by a
single merge according to the following rule. Let B = B(I, I2) be the bridge with smallest weight.
If B = oo, stop (pool P,y does not exist). Otherwise, there are two cases.

i. Regular merge: if B is regular, merge B with I; and Iy to get a larger interval Iney = [t try]-
We now update the status (type and weight) of any neighboring bridges as follows:

Previous bridge changes from right-irregular to regular (update type and weight).

Previous bridge B’ changes irregular to left-irregular (update type). If the bridge previous
to B’ is right-irregular or irregular then update weight.

e Next bridge changes from irregular to right-irregular (update type).
e Next bridge changes from left-irregular to to regular (update type and weight).

ii. Irreqular merge: if B is left irregular, denoting the previous bridge B*, merge the two bridges
and the interval between them into one bigger bridge By, = B*UI1UB. The status of bridges
other than B have not changed. The status and weight of B may need updating.

Intervals are formed only by regular merges, so it is easy to see that intervals resulting from this
merging procedure begin at a minimum and end at a maximum. New bridges are formed by
irregular merges, and the resulting bridge must begin at a maximum and end at a minimum. The
only bridge weights that could change are those that had weights of co. In such an event the weight
will drop, but not below the weight of the original bridge used in the merge that led to the update.

Lemma 2.5.22 Let bridge B with weight w be involved in a merge, and suppose that the weight of
bridge B’ is updated in the process from oo to u. Then, w < u.

Proof. There are two cases:

i. The bridge involved in the merge was regular, i.e., two consecutive intervals I; = [t;,,]
and Iy = [t},,tr,] are merged with their bridge Bis = B([1,I2) with W(Bj2) = w. Let the
preceeding interval be Iy = [t;,,t,,] and the following interval be I3 = [t,,%,,] , and let the
preceeding and following bridges be By and Bag respectively. If By; obtained finite weight, it
cannot be left irregular, as it would remain left irregular after the merge, and hence its weight
would still be co. Thus, we need only consider By right irregular or irregular (i.e., Cr, > C,).

26

Its weight becomes u = C,, — Cj; > C,, — C},. Since By is regular, w = C,, — C}, < C,, — C},
and so w < u. If Bz obtained finite weight, then it could not be right regular or irregular as
it could not become regular or left irregular after the merge. Thus, we need only consider Bag
left irregular (Cp, > Ci,). Its weight becomes u = C,, — Cj, > C,., — Cy,. Since Bjy is regular,
Cy, <Cpy, and sou > C,, — (), = w.

ii. The bridge involved in the merge was left-irregular, i.e., Bia = [ty,,1,] is left irregular, and
By1 = [try, t1,] is either right-irregular or irregular (in both cases, Cy, > C;,). Let w = C,, —C,
be the weight of Bjs. The merged bridge is B = By1I1Bi2. If B has finite weight (i.e. it is
either regular or left-irregular), then its new weight is v = C,, — C}, > Cy, — C}, = w. If
B is left-irregular or irregular, then it does not change the weight of any other bridge. If,
on the other hand, B became right-irregular or irregular, then it could affect the weight of
the following bridge Bas, if Bag was left-irregular (Cj, > Cj,). In this case, the weight of
B3 = [ty,, ;] becomes v = C,, — Cj, > C,, — C},. But since Big was left-irregular, C,, > C;,
and so v > C,, — Cj, = w. [|

The next lemma shows that if all the bridge weights become oo, any further merged pairs of
intervals can never be part of a K-Sterling-optimal strategy.

Lemma 2.5.23 If all the bridge weights in a pool of intervals are oo, then any further merged pairs
of intervals from this pool can never be part of a K-Sterling-optimal strategy.

Proof: (Lemma 2.5.23). Let P, be pool obtained from Py by some sequence of merging intervals
with bridges of finite weight, and suppose that all the bridges in P, have infinite weight. In
particular, this means that none of the bridges in P, are regular. Denote the bridges by By, ..., By,
and consider bridge Bg. If By is right irregular or irregular, then all following bridges are either
right irregular or irregular since all bridges have finite weight. If a trading interval contains By, it
must contain By (since By is right irregular or irregular), and so by induction, it must contain
all the following bridges (and their closures). But, the last bridge does not have a closure (as it
is right irregular or irregular), a contradiction. If on the other hand, By is left irregular, then all
preceeding bridges are left irregular as all bridges have infinite weight. If a trading interval contains
By, it must contain By_1 (since By is left irregular), and so by induction, it must contain all the
preceeding bridges (and their closures). But, the first bridge does not have a closure (as it is left
irregular), a contradiction. We conclude that By, cannot be in any trading interval. [|

Fach merge decreases the number of intervals and number of bridges by one. If we merge down
to pool Pg,_x, we are left with exactly K intervals. We will show that ,Z-SIt(;I can be chosen to be
the best K trades (with respect to total return) in one of these pools. Specifically, define ’Z}K to
be the K intervals in P; with the highest total return. We say that a strategy is coarser than pool
P; if the strategy can be obtained by a sequence of merges of some (or all) of the intervals in P;.
Clearly, Vi, P;y; is coarser than P;, as P;11 is obtained from P; after a single merge. Note that for
a strategy to be coarser than P;, it need not contain every trade in P;, however if it contains part
of any trade in P;, then it contains the entire trade. Next, we show that after a merge, the M DD
of the remaining intervals is equal to the weight of the bridge involved in the merging.

Lemma 2.5.24 If pool P;, i > 1, was obtained from P;_1 by a merge involving a bridge of weight
w, then the MDD of any interval in P; is at most w. If the merge created a new interval (i.e., the
bridge was regular), then the MDD of the new interval is equal to w.

27

Proof In pool Py, since any bridge is adjacent to two intervals of 7,7, its weight is at least fs)
(Lemma 2.5.15). Consider sequence of pools Py, Py, ..., P,, where bridge B; with weight W (B;)
was the minimum weight bridge involved in the merge that resulted in pool F; from from P;_;. By
Lemma 2.5.22 bridges weights are non-decreasing, i.e., W(B;) < W(B;41).

We now use induction on the index i. For ¢ = 1, from Lemma 2.5.15, every interval in Py has
MDD at most fs,. If P; was obtained from Fj by an irregular merge, then all intervals of P; are
intervals of Py, with MDD at most fg,. Since W(B;) > fsp, the claim holds. If the merge was
regular, then the MDD is W(B;) > f, and the MDD of all other intervals is at most fsp. Thus,
the claim holds for P;.

Suppose the claim holds for all j < ¢ and consider pool P; which was obtained from P;_; using
a merge involving B;. By the induction hypethesis, the M DD of any interval from P;,_; is at
most W (B;—1) < W(B;). If P; that was obtained by an irregular merge, every interval of P; is an
interval of P,_; and thus has M DD at most W (B;_1) < W(B;). Suppose that P; was obtained by
a regular merge — all intervals except the merged interval are intervals of P;_;. Consider the M DD
of the new interval, which is obtained by the regular merge I1 U B; U Is. Since new intervals are
created only through regular merges, it is easy to see by induction that property Cly holds for all
the intervals in P;_1, in particular it holds for I; and I5. Since B; was regular, the M DD of the new
interval is max(M DD(1), W (B;), MDD(I3)). By the induction hypothesis, MDD(I;) < W(B;_1)
and M DD(Iy) < W(B;_1), thus, max(MDD(I;), W(B;), MDD(I)) = W(B;). [

First, we show that if a K-Sterling-optimal strategy makes K trades, all of which are contained
in intervals of one of the pools P;, then a K-Sterling-optimal strategy exists which is composed of
the K intervals with highest return in some pool P; with j <.

Lemma 2.5.25 If K subintervals of the intervals of pool P; are a K -Sterling-optimal strategy, then
for some j <1, the K intervals with highest return of pool P; are a K-Sterling-optimal strategy.

Proof: If P, = Py, then the claim is trivial. Suppose that i > 0, and let 7 = {I3,...,Ix} be the
K-Sterling-optimal strategy whose trades are all subintervals of intervals in P;. Consider the set
B of all bridges in 7] that are contained in 7, B = {B;}I_;. We can assume that B is not empty
because if it were, then 7 is composed of intervals in 7, in which case the top K intervals (with
respect to return) in 7;* are clearly optimal. Since P; contains all the intervals in 7, P; contains
all the bridges in B. Thus, there must exist j < 7 such that P; contains all the bridges in B and
no pool Py, with k£ < j has this property, i.e., P; was obtained from the previous pool by a regular
merge involving a bridge B* which must contain some bridge B; € B. Let I be the interval in 7
that contains B;. Then, I must contain the whole bridge B*, since if B* is the result of irregular
merges, one of which involved bridge B, then B* C Ci(B;), and Cl(B;) C I (Proposition 2.5.21).
Since B C I, MDD(T) > MDD(I) > W(B*). By Lemma 2.5.24, since B* was the last bridge
involved in a merge, the MDD of every interval in P; is at most W (B*). Since every interval of
7 is a subinterval of some interval in Pj, we conclude that 7 is contained in at most K intervals
of Pj. Let ’Z}K be the top K intervals in P;. Then, the return of 7 is at most the return of ’Z}K .

Further, MDD(’Z}K) <W(B*) < MDD(T), and so Strl(’]}K) > Strl(7), concluding the proof. =

We are now ready to prove the main result, which will lead to the greedy algorithm for con-
structing a K-Sterling optimal strategy.

Theorem 2.5.26 Let j* be such that Strl(’]}lf) > Strl(’];-K)7 Vj. Then ’Z;If is K-Sterling optimal.

28

Proof. Let Sé(be a K-Sterling-optimal strategy that makes K trades — by Lemma 2.5.18,
such a strategy must exist. If Sé(has the same Sterling ratio as the trading strategy composed of
the K most profitable trades in Py, then we are done. If not, then we know from Proposition 2.5.17
that Sé(is coarser than Py. We prove the following statement for all £ > 1

Q(k): Suppose there exists a K-Sterling-optimal strategy S,f_ ; that makes K trades
and is coarser than Pj,_1. Then either S]f_ , is composed of K intervals of Py, or there
exists a K-Sterling-optimal strategy S,f that makes K trades and is coarser than FP.

We know that Q(1) is true. Suppose that Q(k) is true for all k£ > 1, we then prove the proposition

as follows. By an easy induction, we have that if none of the S JK , are composed of K intervals in

P; for all j < m, then there is a K-Sterling-optimal strategy SK making exactly K trades that is
coarser than P,,. Suppose that we can construct a total of x +1 pools, P; for 0 <i <k < Ky — K.
If Kk < Ky — K then all the bridge weights in P, are infinite. If x = Kg — K, then any further
merging leads to fewer than K intervals. In both cases, there cannot exist a K-Sterling-optimal
strategy that is coarser than P,;. Therefore, for some j* < k, the K-Sterling-optimal strategy ng_l
is composed of K intervals of Pj«. By Lemma 2.5.25, there is a K-Sterling-optimal strategy TS[t{rI
that is composed of the top K intervals of some pool P, where [< j*.

What remains is to show that Q(k) is true for all k& > 1. Suppose that S,ﬁ{_ 1 is coarser than
P._1 and is not composed of K intervals in P,. We show that there exists S,f that is coarser than
P.. Since S,ﬁ{_ | is coarser than Pj_p, it contains at least one bridge B in P,_; with finite weight
(because if it contains an infinite weight bridge, then it either contains the preceeding or following
bridge; this argument continues analogously to the proof of Lemma 2.5.23 until we include a bridge
of finite weight). Let I be the interval of S,ﬁ{_ , that contains B, and let I; and I, be intervals in
Pi_1 (which are subintervals of I) connected by B. Let B* be the bridge in Py_; with minimum
weight that was involved in the merge to get Py from P,_;, and let I and I be the intervals in
Pr_1 connected by B*. If B* = B then S,f_ 1 is also coarser than P and we are done, so suppose
B* # B. There are two possibilities:

(i) B* is a regular bridge. If SK | does not contain I} or I*, then SE& N (I UB*UI?) =0 and
thus S]f_ , itself is coarser than Py, and can be chosen as S]f . Suppose that S]f_ , contains
It and not I} (similar argument if it contains I} and not I;). Thus some interval I’ € SK |
has as a suffix ;. Suppose we construct S ,f by replacing interval I’ by interval I' U B* U I¥.
SK is then coarser than Py. Since B* is regular, the return of I’ U B* U I} is at least as big
as the return of I'. I* is either an interval of Py or was obtained by merging some intervals
of Py through bridges with weight at most W(B*) (Lemma 2.5.24), and so MDD(I}) <
W (B*). Since the maximum cumulative return for I’ is attained at its right endpoint (Lemma
2.5.16) and the left endpoint of I} is a minimum in I, we have that MDD(I' U B*U I}) =

max{MDD(I"),W(B*), MDD(I})} = max{MDD(I'), W(B*)}. Since W(B*) < W(B), we
conclude that MDD(SX) < MDD(SE), and thus Strl(S{E) > Strl(SE), which means that
Slf is also K-Sterling-Optimal. Finally, suppose that S,f_ , contains both I and I, and
consider the strategy S,f obtained from S,f_ 1 by removing bridge B and adding bridge B*.
n(SEY = u(SE)+ W(B) — W(B*) > u(SK |). Since W(B) > W(B*), the MDD cannot

have increased, and so Slf is K-Sterling-Optimal and coarser than Pj.

29

(ii) B* is an irregular bridge. Since B* = B(I}, 1)) has finite weight, we can conclude that B* is
left-irregular and the previous bridge B_ = B(I}"_,, I}) is right-irregular or irregular. Since
S]f_ 1 does not contain B*, by Lemma 2.5.16, there are two possibilities: S,f_ 1 does not contain
I}, in which case it also does not contain bridge B_ and so B_ and B* can be merged into one
bridge without influencing S]f_ 1, Le., S,f_ 1 is also more coarse than Pj; or, S,f_ , contains I}
as one of its intervals. In this case, since B* is left-irregular, (1) < W(B*) < W(B), and so
by dropping I} from S ,ﬁ{_ ; and breaking I into two subintervals by removing B from I results
in a profit increase of W (B) — u(I;) > 0. Further, the MDD cannot increase, so the new
strategy makes K trades and has strictly greater Sterling ratio than S]f_ 1» which contradicts
optimality of S,f_ 1- Thus, S,f_ , cannot contain I as one of its intervals.

Thus Q(k) holds for all £ > 1, concluding the proof. [

We are now ready to give the O(nlogn) algorithm that establishes Theorem 2.3.3. First, we can
compute the optimal strategy that makes only one trade in O(nlogn) (Section 2.5.1), and compare
this with the trivial strategy that makes no trades. It remains to compute the K-Sterling-optimal
strategy and pick the best. We show how to do this in O(nlogn) time.

First we obtain 7 in linear time. Suppose 7; makes Ko > K trades (as otherwise 7, is our
solution). By Theorem 2.5.26, we only need to construct the pools Fy, P, ..., maintaining the pool
with the optimal Sterling ratio for its top K trades, as explained in the following algorithm.

1: Set ¢ = 0; Sort (in decreasing order) the intervals from Py according to profit; Sort all the
bridges with finite weight in increasing order. Let B; be the minimum weight bridge in P;; Let
strategy S; consist of the top K intervals, and let Strl,,, = Strl(.S;);

2: while P; contains at least K intervals and at least one finite weight bridge do

3. if B; = B(1},I,) is regular then

4: Regular merge to obtain P;11: remove Ij, I,., B; from the interval and bridge orderings, and

add back I = I; U B; U I, into the interval ordering; compute p(/) and M DD(I);

5: Update neighboring bridge weigths and re-insert them back into the bridge ordering.
6: else if B; = B(I},I,) is left-regular then
7 Irregular merge to obtain P;11: Let B_ be the bridge left of B;; remove I}, B_, B; from the

interval and bridge orderings. Create the new bridge B = B_ U I; U B;, compute W (B)
and insert B into the bridge ordering (note that W (B) may be o).

8 end if

9: i+« ¢+ 1; update Strl;; if Strly,, < Strl;, then Strly,, < Strl;.

10: end while

The correctness of the algorithm follows from Theorem 2.5.26. We now analyse the run time of
an efficient implementation of the algorithm. F, contains at most n intervals and bridges. Each
execution of the while loop reduces loop number of bridges and intervals by 1 each, so the while
loop is executed at most n/2 times. Merging two intervals is a constant time operation. The profit
of a new interval is the profit of the merged intervals minus the weight of the merging bridge (also
computable in constant time). The M DD of a new interval is the maximum of the M DD of the
merged intervals and the weight of the merging bridge (also computable in constant time). The
weight of a new bridge takes constant time to compute, and updating the weights of the neighbour
bridges is a constant time operation provided that pointers are maintained to them. These pointers
can be updated in constant time as well. Thus the run time within the while loop is dominated by

30

inserting into the bridge or interval orderings. At most a constant number of such such inserts into
a sorted list need to be done, and each is an O(logn) operation [17]. To efficiently implement step
9, we maintain two sorted lists of the top K intervals in the algorithm, sorted according to return
and MDD. These can be maintained in O(log K) operations. The first allows us to update the
total return of the top K intervals in constant time, and the second allows us to update the M DD
of the top K intervals (by taking the interval with largest M DD) in constant time. Thus the total
running time of the while loop is O(nlogn + nlog K) = O(nlogn) The preprocessing (step 1) is
O(n), and so does not contribute to the asymptotic run time.

31

2.6 Collecting Training Dataset: Sharpe Optimal Trading Strate-
gies

Another popular measure of the portfolio’s risk-adjusted return is the Sharp Ratio. For trading
strategy 7, we consider two versions of the Sharpe ratio, Shrp; and Shrp,.

w(7T) w(T)
hrp (7)) = —== hrp, (7)) = . 2.

S rpl() O_(T)v S rp2() e (9)
Note that Shrp, is more conservative in that it penalizes large variances more heavily. We introduce
a simplified Sharpe ratio (SSR) S that will be instrumental to finding the optimal strategies,

"
s=1,
82

It is easy to check that maximizing Shrp, is equivalent to maximizing ;, and that Shrp, is given
by To where 7 is the mean return. We will relate the maximization of Shrp; and Shrp, to the

maxumzatlon of S.

Let 7 be a trading strategy that makes K trades, with trading intervals Iy, ..., Ix. Each trade
contributes a transactions cost of —fs, to the return sequence. In general, a trade contributes
fg + f% to s2. However, we will assume that fsp < 1 and so we will ignore the contribution of the
transactions cost to s2. Alternatively, we can justify this by assuming that the transactions cost is
spread finely over many time intervals. The sum over these small time intervals is finite, equal to
— fsp, however, the sum of squares over these small time intervals can be made arbitrarily small.
Define the total return and sum of squared returns for each trading interval,

wi= () =3l =20 = Y el
Jjel; Jjel;

We define A; as the contribution of trade i to the mean return, and B; as the contribution of trade
i to the mean squared return (ignoring the effect of the transactions cost), i.e., A; = %(uz — fsp)

and B; = 2s?. We define A(7) = Zszl A; (note that ¥ = A(7)) and B(7) = Zszl B; (note that
s — B(T)).
2.6.1 Maximizing the Simplified Sharpe Ratio S

We will need the following technical lemma, which can be proved by an easy induction.

Lemma 2.6.1 Let 7 = {{, §2,..., &} be any set of fractions satisfying b; > 0 and § < §+ < §,
for all i, where b,d > 0. Then, § < % < £. The upper (resp. lower) bound is strict if at

least one of the fractions in F is stmctly upper (resp. lower) bounded by % (resp %)

Let 7* be an SSR-optimal strategy making K > 1 trades with trading intervals Iy, ..., Ix.

Y A A(TY)
Zz 1B B(T*)7

S(T%) =
Lemma 2.6.2 ’ i a constant for every interval i, i.e., every trade is equivalent.

32

Proof: Suppose that min; %ﬁ < % for some j (strict inequality), and without loss of generality,
assume that the minimum is attained for interval I;. By Lemma 2.6.1, if we remove I, we get that

K K
i1 A o A;
S(IlU"'UIK):Zfl <ZZI;2 :S(IQU"'UIK),
Zi:l B; Zi:2 B;
A; A

which contradicts the optimality of 7* implying that min; % = Z* for all j. [
i J

Corollary 2.6.3 An SSR-optimal trading strategy making one trade exists.

Proposition 2.6.4 An SSR-optimal strategy making one trade can be found in O(nlogn) time.

Proof: By Corollary 2.6.3, we are guaranteed the existence of such a strategy. It suffices to find
the single interval I maximizing > ,.; 7[i]/ >,c; rli]*>. Consider all intervals starting at position i

and define ¢ = Zf:z r[j] and dj = Z?Zir[jP. We wish to find k to maximize ¢ /dj. If we have
done this for position i, we now consider position ¢ — 1. We show that the algorithm in Section
2.5.2 can be used. Trade intervals starting at ¢ — 1 correspond to shifting all the ¢, by r[i — 1],
and all the dj, by 7[i — 1]2. Both these operations simply correspond to shifting the origin point p
top’ =p — (r[i — 1],r[i — 1]?). We then add a new leftmost point at p. Since each update takes
O(logn), and the optimal interval for the new points can be found in O(logn), the entire algorithm

runs in O(nlogn).]

2.6.2 Maximizing Shrp,

Ignoring the fsp2 term in the denominator changes the denominator slightly, so we introduce the
slightly different quantity Shrp,. Specifically,

A(T)
Lfp? + B(T) — AX(T)’

A(T)
B(T) — AX(T)’

Shrpy(7) = Shrpy(7T) =

where d is the number of trades in 7. By the Cauchy-Schwarz inequality, for any trading strategy,
Sor[i]?> > (3, r[i])% Since we are only interested in strategies for which A(7) > 0, we have

Lemma 2.6.5 For strategy T, if A(T) > 0 then B(T) — A%(T) >0

We will show that maximizing Shrp, is closely related to a constrained optimization of the SSR,
and that maximizing Shrp, is not too far from maximizing Shrp.

Let 7,7 be return optimal, with return pu(7;) = p*. For any 0 < a < u*, we define the
constrained SSR-optimal strategy 7, as the strategy with maximum SSR among all strategies with
return at least «, i.e., A(7,) > « and for all strategies 7 with A(7 > «), S(74) > S(7). Note that
while an SSR-optimal strategy can be chosen with one trading interval, a constrained SSR-optimal
strategy may require more than one trading interval. We show that for some appropriate threshold

a, the constrained SSR-optimal strategy is a Shrpy-optimal strategy.

Proposition 2.6.6 30 < o < p* such that the constrained SSR-optimal strateqy T, is Shrpy-
optimal.

33

Proof: Let 7 be any Shrp,-optimal strategy, and let a*

= A(T). Let 74« be any constrained
SSR-optimal strategy. Then A(7,+) > A(7) and since S(74+) > S

(T), we have that
0 < A(To)B(T) — A(T)B(T,»).
Suppose that Shrpy (7<) < Shrpy(7), then
0 < A(To-)B(T) — A(T)B(Tor) < A(To-)A(T) - (A(T) — A(To)).

Both A(7,+) and A(T) are > 0, otherwise both strategies are inferior to 7,;; thus A(7) > A(7a+),
which is a contradiction. Therefore Shrp,(Z+) > Shrpy(77) and so 74+ is Shrpy-optimal.]

We will need the following property of any SSR-optimal interval.

Proposition 2.6.7 Let J be a subinterval of an SSR-optimal interval I. Then, u(J) > —fsp.
Further, if J is a prefix or suffiz of I, then u(J) > 0.

Proof: If J is a prefix or suffix of I and u(J) < 0, then deleting J from I gives at least as much

return, with smaller sum of squared returns, contradicting the SSR-optimality of I. Suppose that

I =LUJUR where L and R are nonempty subintervals of I. If 8‘58;15 2(52) <=t s;;eru)(L)’ then by

Lemma 2.6.1,

S(I) — _fsp+N(L)+N(J)+N(R) _fsp+,u(L)
s2(L) + s2(J) + s?(R) s2(L)

This contradicts the optimality of I, so we have

pd) +p(R) —fp + (L)
s2(J)+s%(R) — s%(L)

=5(L) ()

Now, suppose that p(J) < —fgp. Using (*) and Lemma 2.6.1, we find that

N(J) +N(R) < _fsp+N(R) _fsp+N(R)

=2 rem ~ R+ 2® T AR

=S(R),

because s%(J) > 0. This contradicts the SSR-optimality of I, so u(J) > — fsp.]

We show that adding an SSR-optimal interval to any trading strategy can only improve the
strategy.

Proposition 2.6.8 Let Iy be any SSR-optimal interval, and let T be any trading strategy. Let
T'=1yUT. Then A(T") > A(T) and S(T') > S(7T)

Proof. If I is contained in some interval of 7, then there is nothing to prove, so suppose
that 7 U Iy # 7, and that 7 contains d > 1 trades Iy,...,I3. Note that S(T) = A(T)/B(T). If
Iy and 7 do not intersect, then 7/ = Io U T = {ly, I1,...,14}. A(T") = A(T) + A(ly) > A(T),

because A(Ip) > 0. Since Iy is SSR~optimal, S(Iy) = ggg; > % =S(7), so by lemma 2.6.1,

AT AT+ Al
ST = @) = BT) + Bl >

AT
B(T

; = S(7).

34

Suppose that 7 NIy # 0. We can decompose 7 into four parts (each part could be empty):
T = S1USUTUI,., where S7 contains intervals that do not intersect with Iy, So contains intervals
that are contained in Iy, I; is not contained in Iy but overlaps Iy on the left, and I, is not contained
in Iy but overlaps Iy on the right. 7/ = IyU7T = S; UL, U Iy U I, ie., adding Iy combines all
the trades in {S2,I;, I, } into one trade. Since the internal regions of I have return at least — f,
and any prefix and suffix of Iy has positive return (Proposition 2.6.7), we see that merging any
two consecutive trades overlapping I decreases the number of trades by one, hence increases the
return by fs, and the added interval loses at most fs,, hence this merge can only increase A(T).
If either I; or I, are empty, then we are addionally adding a prefix or suffix of Iy without changing
the number of trades, which also increases A(7), thus we see that A(7') > A(T).
Let’s introduce the following definitions,

A = AS)+ (N T) + p(t N T)

Ay = A8+ 3TN o) = fop+ plle N o) =)

Bi = B+ (00T + (0,0 o)
By = B(S)+(#(IN k) + 210),

where I is the complement of Iy. Letting A9 = A(Iy) and By = B(Iy), we then have

A1+A2 A+ Ay

T —_-—.
S(T) = B + By’ B1 + By

and S(77) =

Note that S(S2 U (I; N Io) U (I, N Ip)) = B—g, so by the optimality of Iy, g—i < %g. We show that

1
15#(]7* N1Ip) < A

LunnTy) A Ay
532(1—70]_0) o BO'

— < —, and ok
l82(11010) ~ By’ an ()

Su(hnlo) A
If not, then suppose (for example) that #IO) > B—g. Then,

Ao+ Lu(n o) . Ao A

S(lyUl) = =
(0 l) Bo+%$2(lln10) By

= S(lo)

contradicting the SSR-optimality of Iy. Again, by the optimality of Iy, S(S1) = AES” < B—O = S(1p).

it also has to be sharper than strategy S;. Thus, using (**) and Lemma 2.6.1 we have that
gi < B . Because A, is obtained from the returns of a collection of subintervals of Iy, it follows

from Proposmon 2.6.7 that Ay < Ag. Now suppose that S(7) > S(77), i.e
(A1 + AQ)(Bl + B(]) — (A1 + Ao)(Bl + BQ) > 0.

\/

Since As < A, it follows that By < Bjy. Rearranging terms in the equation above, we have that

AyBy — A1 By o Ay A+ A
By(B1 + By) By B+ By’
Ay Ay +Ay AyBy—A1By

By By +By By(B +Bg)’

Y

35

Since S(Ip) > S(7'), the first inequality shows that Ay B; — A1 By > 0. The second inequality then
implies that Bs > By, a contradiction. [|

We can now give the intuition behind our algorithm. The starting point is Proposition 2.6.6,
which says that it suffices to look for constrained SSR-optimal strategies. So the natural first choice
is an unconstrained SSR-optimal interval 7y. Either this will be Shrpy optimal or not. If not, it
is because it has too small a return. So our next step is to add to this interval an new interval
(possibly adjacent) with the property that the interval increases the return with smallest possible
decrease in SSR, resulting in strategy 7;. We repeat this process, constructing a sequence of trading
strategies 7y, 71, . .. with the property that A(7;) > A(7;—1), and among all other strategies 7 such
that A(7) > A(7;_1), S(T;) > S(T). We then pick the strategy 7; with maximum Shrp, ratio
among these strategies, which will be globally sharpe optimal.

Suppose that we have a current strategy, 7;. We need to determine the next piece to add to
this so that we increase the return, with smallest possible decrease in SSR. Let 7; be composed of
the intervals Iy, I1, ..., I;. We replace each of these intervals by a special symbol, $, to signify that
these regions are already included in the strategy. We thus obtain a generalized returns sequence,
one in which some intervals are replaced by the $ symbol. A generalized trading strategy on the
generalized return sequence must be composed of trades that do not contain the $ symbol. However
trades may be adjacent to the $ symbol. A trade interval I in a generalized trading strategy can be
isolated (not adjacent to any $ symbol), extending (adjacent to one $ symbol), or bridging (adjacent
to two $ symbols). In order to correctly account for the transactions cost, we need to change how
we compute A(I), so we introduce the new function A(I):

A(T) I is isolated
A(I) = ¢ A(I) + T2 1ig extending
A(I) + 2l T s bridging

The generalized simplified Sharp ratio (GSSR) for generalized strategy 7 = {I3,...,1;} is

5(7) = 2iz1..a AUL)
>i—1..qa B(I)
Similar to the notion of a maximal return optimal strategy, we introduce the notion of a maxi-
mal SSR-optimal (or GSSR-optimal) interval as one which cannot be extended in either direction
without decreasing the SSR (or GSSR).

We now define generalized return sequences {Ry, Ry,...} as follows. Ry is just the original
returns sequence. Let I; be a maximal GSSR-optimal interval for R;. We obtain the generalized
sequence R;.1 by replacing I; C R; with the symbol $. We define any set of generalized sequences
obtained in this way as monotone. We also refer to a member of a monotone set as monotone.
Let Rg, R1,...,Rr be a monotone sequence of gerenalized returns sequences, and let Iy, I1,..., Iy
be the maximal GSSR-optimal intervals corresponding to each sequence. By construction, I; is a
maximal GSSR-optimal interval for R;. We have defined A so that the SSR of the union of these
intervals in Ry is given by

_ Y Ar (D)
i, B(L)

where the subscript R; indicates on which generalized return sequence the quantity is computed.

I

SRO(IQU11U"'UIk)

36

Lemma 2.6.9 gRi(Ii) > §R¢+1(Ii+1)

Proof: Suppose that gRi(Ii) < §Ri+1(Ii+1), and let $; be the symbol that replaced I; in R; to
obtain R;y1. If I;11 is not adjacent with $;, then I; is not GSSR-optimal in R;, a contradiction. If
I;11 is adjacent with $;, then I; U I;; has higher GSSR (by Lemma 2.6.1), so once again I; is not
GSSR-optimal in R;. [|

Now an easy induction, using Lemmas 2.6.1 and 2.6.9 gives,
Corollary 2.6.10 Sg,(IpU; U---UI) > ng(Ik) for any k.

Analogous to Propositions 2.6.4, 2.6.7, 2.6.8, we have the following three propositions. Their proofs
are almost identical, so we omit them.

Proposition 2.6.11 A GSSR-optimal strategy making one trade exists, and all mazximal GSSR-
optimal trades can be found in O(NlogN) time.

Proposition 2.6.12 Let J be a subinterval of any GSSR-optimal interval I. Then pu(J) > — fsp.
If J is a prefix or suffix of I that is not adjacent with the symbol 787, then u(J) > 0.

Proposition 2.6.13 Let Iy be any GSSR-optimal interval, and let T be any generalized trading
strategy. Let T' = IyUT. Then, A(T') > A(T) and S(T") > S(T).

We now give the main result that will lead to the final algorithm to obtain the Shrp,-optimal strat-
egy. Its essential content is that given a monotone set of generalized returns sequences, Rg, R1, ...,
with corresponding GSSR-optimal intervals Iy, Iy, ..., for some k, 7 = Io U I} U --- U I} is Shrp,
optimal. We will need some preliminary results.

Proposition 2.6.14 For some k, T* = [yU I U---UI} is Shrpy-optimal., where I; are the GSSR-
optimal intervals corresponding to a monotone set of generalized returns sequences.

Proof. First we show that there exists a Shrpy-optimal strategy 7y that contains Iy. Indeed,
let 7 be any Shrpy-optimal strategy, and consider 7y = Iy U 7. By the Proposition 2.6.8, we have
S(7o) > S(T) and A(7) > A(T) > 0. Then,

thus, 7y is Shrpy-optimal.

Let T; be a Shrpy-optimal strategy that contains Iy U --- U I. We know that 7 exists. If
T = IgU--- U I, then we are done. If , 7, = IpU--- U I UT’, with 77 # (), then we show that
there must exist a Sh—rpz—optimal strategy 7Try1 which contains Io U --- U Ix1q, i.e., there is some
other 7” D I 41 such that Ty = IgU---U I, UT" is Shrpy-optimal. The proposition then follows
by an easy induction.

Let 7" = T' U Ij41. Then, Ag,,,(T") > Ag,,,(7’) and Sg, ,(T") > Sg,.,(T’) (Proposition
2.6.13). By Corollary 2.6.10 and the GSSR~optimality of I}, we have that

S(IO U...uU Ik) > ngJrl([k_H) > ng+1(T”) > ng+1(7,)

37

From now on, we will drop the Ry subscript. Let A = A([yU...UI), B=B(lpU...UI),
A" = AT, B = B(T"), A” = A(T") and B" = B(T"). Let Shrpy = Shrpy(lp U ... U I}),
Shrp/2 = Shrpy(lpU...UI; UT’) and Shrpg = Shrpy(loU...UI UT"). Thus,

A
B — A%’

/ A+ A 7
Shrpy = BrB — (At A and Shrp, =

A+A//
B—I—B”—(A—I—A”)T

Shrpy, =

Let A” = a”A and A’ = o’ A, where o’ > o > 0. Then, by direct computation, one obtains

! A 1/ A

Shrp, = - - , and Shrp, = - - ,
2T A2y (B B A2 (R Y R Ly ST E)

Since Shrp/2 > Shrp,, we conclude that % — B — A? < 0. Since S(T") > 5(7"), we have that

’ " . ’
% > B2 and since o/ > of >0, 2 > Tie > 0, therefore

R W sl
O/l B// a/ /!
— (= -B-4%) < — _B-A?)<0
l—i—a”(a” >_1—|—a’<a’ > ’
and so Sh rpg > Sh rp;, concluding the proof. [|

By Proposition 2.6.14, a Shrpy-optimal trading strategy can be obtained by constructing the
strategies 7y, and then picking the one with the maximum value for Shrp,. The next proposition
shows that this can be done in O(N?logN) time.

Proposition 2.6.15 A Shrpy-optimal trading strategy can be found in time O(n%logn).

Proof: I; can be obtained in O(nlogn) time (Proposition 2.6.11). Since there are at most n such
intervals (since each must be non-empty), obtaining all the intervals is in O(n?logn).
Given the intervals, a single scan can be used to obtain the &k for which 7 is Shrpy-optimal. [|

One can improve the runtime to O(n?) if O(n?) memory is available, however, we do not discuss
the details.

2.6.3 Approximation Ratio for Shrp,

We have given an algorithm that obtains a Shrp,-optimal strategy. A modification to the algorithm
constructs the hierarchy 7; and pick the one with the highest one with value of Shrp,. Suppose
we have a Shrpy-optimal strategy 7 and let 7* be a Shrpy-optimal strategy. Then by Proposition
2.6.6, it must be that A(7*) > A(T) and that S(7*) < S(7). Since Shrpy(7) > Shrpy(7*), we
have that A*(B — A?) — A(B* — A*%) <0, where A = A(T), A* = A(T*),B = B(T),B* = B(T*).
We can evaluate Shrpy(7*) — Shrpy(7) to obtain

d 2
ﬁfsp

d

Hfsz +B - A?

0 < Shrpy(T™) — Shrpy(7) < Shrpj -

When B — A% = O(1), which is usually the case, we see that this is a very accurate approximation
(since fsp < 1).

38

2.6.4 Maximizing Shrp,

Once again, we introduce the slightly different quantity Shrp,,
A(T A(T
Shrp,(7) = 7) , Shrp,(7) = 7) —
V& fo? + B(T) - AX(T) B(T) — AX(T)

We will optimize Shrp;(7"). Since maximizing Shrp,(7’) is equivalent to minimizing 1/Sh rp? (T) the
problem reduces to maximizing

_ AX(T)

- B(T)

The entire algorithm is analogous to that for maximizing Shrp, in the previous section, we only
need to prove the analogs of Propositions 2.6.6 and 2.6.14.

Q(T)

Proposition 2.6.16 30 < o < u* such that the constrained SSR-optimal strategy T, is Q-optimal.

Proof: Let 7 be Shrp;-optimal, and let o* = A(7). Let 7.+ be a corresponding constrained
SSR-optimal strategy. A(7,+) > A(7) and AlZo-) %. Multiplying these two inequalities gives

B(Ta*) -
that ‘;‘;(%:)) > fg((TT)), i.e. T4+ is also Q-optimal. [

Proposition 2.6.17 For some k, T* = IgU 11 U---U I is Q-optimal., where I; are the GSSR-
optimal intervals corresponding to a monotone set of generalized returns sequences.

Proof: The proof is very similar to tho proof of Proposition 2.6.14. Let 7 be Q-optimal, and let
7o = IoUT. Then A(7y) > A(T) and S(7y) > S(7). Multiplying these two inequalities give that
Q(7y) > Q(T), or that 7j is also Q-optimal.

Let 7; be a Q-optimal strategy that contains Iy U --- U I. Introduce 7',7" = Iy, UT' as
in the proof of Proposition 2.6.14. Let Q@ = Qo U...UIy), @ = Q(IpU... U I, UT’) and
Q'=Q(LyU...ULl,uT"),

2 "2 1\2
B g AR g e

@= B+B ey

Following exactly the same logic as in the proof to Proposition 2.6.14, we only need to show that
Q"> Q. Let A” =a"A and A’ = o/ A, where o > o' > 0. % > % implies that % < %, and so
B// B/
(X”(a”+2) S Oc’(o/-i—l

ik By direct computation, one obtains

Ql — A2 Q” — A2
1 B’ ’ 1 B '

B + (1 - (1+a/)2> (oc’(o/-i—Z) - B> B + (1 - (1+a”)2> (oc”(oz”-i—Z) - B>
Since Q' > @, it must be that ﬁ,lw) — B < 0. Since o/ > o/, 1 — m >1- m, SO we
have that

1 B" 1 B’
1-— —-B|<[1- - B 0
(- vam) (warrs - 2) = (- tvwp) (s - 2) <0

which implies that Q" > @'. []

39

2.6.5 Approximation Ratio for Shrp,

Once again, a modification to the algorithm constructs the hierarchy 7; and picks the one with
the highest one with value of Shrp;. Suppose we have a Shrp,-optimal strategy 7 and let 7* be a
Shrp;-optimal strategy. By direct computation, and using the fact that Shrp;(7) > Shrp,(7*) =
A*2B — A2B* <0, we get

dfop®
0 < Shrp?(T*) — Shrp?(T) < ShrP%(T*)ﬁ
Ya” 4 B

which gives an approximation ratio of /1 — O(fs,?) when B = O(1).

2.7 Conclusion and Discussion

The main goal of this chapter was to provide the theoretical basis for the computation of a posteriori
optimal trading strategies, with respect to various criteria. The highlights of our contributions are
that return and M D D-optimal strategies can be computed very efficiently, even with constraints on
the number of trades. Sharpe optimal strategies prove to be much tougher to compute. However,
for slightly modified notions of the Sharpe ratio, where one ignores the impact of bid-ask spread
squared we can compute the optimal strategy efficiently. This is a reasonable approach since in
most cases, the bid-ask spread is ~ 107%. We also show that this modified optimal strategy is not
far from optimal with respect to the unmodified Sharpe ratio.

We have introduced a new technique for optimizing quotients over intervals of a sequence.
This technique is based on relating the problem to convex set operations, and for our purposes
has direct application to optimizing the M DD, the simplified Sharpe ratio (SSR), which is an
integral component in optimizing the Sharpe ratio, and the Downside Deviation Ratio (DDR).
This technique may be of more general use in optimizing other financially important criteria.

A natural open problem is whether Sharpe optimal strategies can be computed under constraints
on the number of trades.

40

Chapter 3

Learning: Optimal Linear Separation

3.1 Introduction and Basic Definitions

3.1.1 Convex Hulls

The convex hull of a set of points is the smallest convex set that contains the points. The convex hull
is a fundamental construction for mathematics and computational geometry. Other problems can be
reduced to the convex hull - halfspace intersection, Delaunay triangulation, Voronoi diagrams and
power diagrams. Aurenhammer in [2] describes applications of these structures in mesh generation,
file searching, cluster analysis, collision detection, crystallography, metallurgy, urban planning,
cartography, image processing, numerical integration, statistics, sphere packing and point location.
More formally,

Definition 3.1.1 A set S C R" is convex if Vx,y € Sand 0 < A <1
x+(1-NyeS

Definition 3.1.2 Let X = {x1,Xa,...,X,} C R%. The Convex hull H(X) is the convex set such
that X C H(X) and if Y is another convez set for which this is true then H(X) C Y, in other
words convex hull is defined as smallest convex set containing X .

In two dimensions, the convex hull takes on a specific form.

Definition 3.1.3 A polygon is a closed path of straight line segments in R?. These seqgments
are also called edges of the polygon, and the intersection of two adjacent edges is a vertex of the
polygon. A simple polygon is one which has no intersecting non-adjacent edges. Every simple
polygon divides R? into an interior and an exterior region.

It is easy to see that a simple polygon is convex if and only if the internal angle formed at
each vertex is smaller than or equal to 7. The convex hull of a set of points S € R? is the convex
polygon with smallest area that encloses S . Note that in two dimensions, the convex hull can be
represented by ordered sequence ujus...ugu; € A where the boundary of H(A) is the union of
lines w;u;y1.

41

Definition 3.1.4 Point x € X is a limit point of X, if and only if Ve > 0, the e-neighborhood of
X contains both points from X and points that do not belong to X. Let A = {aj,as,...,a,}. The
vertices of the conver hull H(A) are the points from A which are bound points of H(A).

Convex hulls were studied extensively in the literature. Timothy Chan in [14] presented state-of-
the-art algorithms for computing the convex hull of a set in two or three dimentions. He proved
the following output-sensitive time bounds. By the reduction from sorting, these time bounds are
optimal.

Fact 3.1.5 The convex hull for a given set of points in two or three dimensions can be computed
in time O(N log h), where h is the number of vertices of the convex hull.

3.1.2 Linear Separators

Convex hulls are prominent in areas as Neural Networks, Support Vector Machines, clustering,
pattern recognition, etc. One is usually interested in finding an optimal separating plane for two
convex hulls (in n dimensions). In wide range of applications to robotics, computer graphics,
simulation and computational geometry, intersection tests comprise some of the most fundamental
issues.

The problem of learning - discovering hidden patterns in the collected data - often can be
considered as the problem of finding a linear separator for two sets of points in multidimensional
space. When the sets are not separable, we are interested in finding a subset of points such that
after removing these points, the remaining points are separable. Such a set is called a separator
set. If we assign a positive weight to every point (its fidelity), then we wish to find a separator set
with the minimum possible weight. Optimal linear separator also can be used for optimal boosting
of two classifiers [44]. We discuss the optimal boosting of two classifiers in section 3.4.

Optimal linear separation plays a key role in pattern recognition and computational geometry.
In statistical pattern recognition, a resurgence of linear separability has emerged through its role
in Support Vector Machines and other kernel based methods [18, 75]. In computational geometry,
determining the intersection of sets (mostly in two or three dimensions) is of immense practical
importance, for example in CAD systems, and thus linear separability is of fundamental use in this
setting. To make the discussion more concrete, we need some definitions.

Throughout, we assume that we are in two or three dimensional Fuclidean space.

Definition 3.1.6 Sets A C R™, B C R" are linearly separable iff Jv € R", vy € R such that

vixg+v9>0, Vxqa€A
VTXB—l-’U() <0, VxgeB

The pair (v,vg) defines an (oriented) separating hyperplane.

Definition 3.1.7 Let A,B C R™. The distance d(A,B) = inf | x—y|
x€EA,yeB

If two sets, A, B, are linearly separable, then the optimal or maximum margin separating hy-
perplane is a separating hyperplane with maximum possible distance from both sets.

42

Definition 3.1.8 Suppose that A,B C R"™ are linearly separable. Then the optimal separating
hyperplane o(A,B) is a separating hyperplane with mazimum possible distance from both sets.
Pair of points s € A,t € B is a realization of separation if d(s,t) = d(A,B) and d(s,0(A,B)) =
d(t,0(A,B)) = 3d(s,t).

Suppose that weighting function W assigns a weight W (x) > 0 to point x. For hyperplane
¢ = (v,vp), let Q(f) = Q4U Qg denote the mis-classified points, where Q4 = {x € AlvIx+vy < 0}
and Qp = {x € BlvIx+wy > 0}. We define the weight (or error) £(¢) as the weight of mis-classified
points, £(£) = > co() W(x). Note that the sets A" = A\ Q4 and B’ = B\ Qp are linearly separable,
and /¢ is a separator for them.

Definition 3.1.9 (Optimal Fat Separator) A hyperplane ¢ = (v,vg) is optimal if it has mini-
mum weight. It is an optimal fat separator if it has minimum weight and separates A’ and B' with
maximum margin.

Intuitively, the optimal fat separator ¢ is the hyperplane with minimum error such that if the
mis-classified points are viewed as noisy and have their class flipped, then the entire set becomes
separable, and £ is a maximum margin separator for the “noise-corrected” set.

The goal of this chaper is to develop an efficient algorithm for exact linear separation, where
“exact” means globally optimal with respect to some (arbitrarily specified) error criterion. Con-
structed algorithms are applicable to the case where the data points are not linearly separable.

In the next sections we will discuss previous related work.

3.2 Related Work

3.2.1 Convex Hulls

One of the simplest O(N log N) — algorithms for computation of the convex hull for given a set of
points on the plane is the Graham’s Scan Algorithm. An online demonstration of the Graham’s
Scan Algorithm can be found at [54]. Under certain conditions on probability density function, this
algorithm has O(n) expected time complexity [20].

Algorithm 3.2.1 Graham’s Scan Algorithm [30]
The algorithm works in three phases:

1. Find an extreme point. This point will be the pivot, is guaranteed to be on the hull, and is
chosen to be the point with largest y coordinate.

2. Sort the points in order of increasing angle about the pivot. We end up with a star-shaped
polygon (one in which one special point, in this case the pivot, can “see” the whole polygon).

3. Build the hull, by marching around the star-shaped polygon, adding edges when we make a
left turn, and back-tracking when we make a right turn.

Another popular algorithm for computing the convex hull for given a set of points on the plane is
the Quick-Hull Algorithm. An online demonstration of the Quick-Hull Algorithm can be found
at [55]. Although it’s worst-case complexity is quadratic, typically the algorithm works fast on
random sets of points, and is similar to quick-sort:

43

e it is recursive
e cach recursive step partitions data into several groups

Algorithm 3.2.2 Quick-Hull Algorithm [4]
The partitioning step does all the work. The basic idea is as follows:

1. We are given a some points, and line segment AB which we know is a chord of the convex
hull (i.e., it’s endpoints are known to be on the convex hull). A good chord to start the
algorithm goes from the leftmost to the rightmost point in the set.

2. Among the given points, find the one which is farthest from AB. Let’s call this point C.
3. The points inside the triangle ABC cannot be on the hull. Put them in set Sp.

4. Put the points which lie outside edge AC in set Sy, and points outside edge BC' in set Ss.

Once the partitioning is done, we recursively invoke quick-hull on sets S1 and Sy. The algorithm
works fast on random sets of points because step 8 of the partition typically discards a large fraction
of the points.

Timothy Chan in [14] presented state-of-the-art algorithms for computing the convex hull of a set
in two or three dimentions. He proved the following output-sensitive time bounds.

Fact 3.2.3 The convex hull for a given set of points in two or three dimensions can be computed
in time O(N logh), where h is the number of vertices of the convex hull.

The problem of randomized computation of the convex hull in two dimensions has been well-
studied and several randomized incremental algorithms have been developed, with linear expected
running time (when the probability distribution satisfies certain constraints) [21] [3].

3.2.2 Separable Sets

When two sets of points are separable, an approach to constructing the maximum margin separator
is to first construct the convex hulls, and then construct the maximum margin separator for the
convex hulls. In 2 and 3 dimensions, this approach is very efficient. The maximum margin separator
can be specified as the orthogonal bisector of the line joining two points on the convex hulls of the
two sets. These two points are sometimes refered to as a realization of the maximum margin
separator.

Dobkin and Kirkpatrick, [23], introduced hierarchical representations for convex hulls and es-
tablished many useful properties of such representations [25, 24, 26]. Specifically, given a standard
representation of a convex hull (in 2 or 3 dimensions), a compact hierarchical representation of
can be constructed in linear time. This representation has been exploited in a series of subsequent
papers dealing with separation of polytopes[23], generalized extremal queries and applications, in-
tersection of convex and non-convex polyhedra, intersection of convex bodies with curved edges
and faces, parallel algorithms for manipulation of polytopes, applications in computer graphics etc.
[26].

In particular, they construct a sublinear deterministic algorithm for obtaining the optimal linear
separator for separable convex hulls in 2 and 3 dimensions (assuming that compact hierarchical
representations for both convex hulls are available):

44

Fact 3.2.4 (/23]) The optimal linear separator o(P,Q) (and its realization) of convex hulls on
the plane P, Q can be determined O(log|P| + log|Q|) time from their hierarchical representations,
where |P| (|Q|) is the number of vertices of P (Q).

Using the linear algorithm for constructing the hierarchical representations combined with Fact
3.2.4, one obtains an efficient deterministic algorithm for constructing the maximum margin sepa-
rator for separable sets in 2 and 3 dimensions:

Fact 3.2.5 ([23], [15]) The optimal linear separator (in 2 and 3 dimensions), and its realization,
for two separable sets A and B can be found in O(nlogn) operations.

Generalizing results of Dobkin and Kirkpatrick to d > 3 dimensions is difficult, and a more
popular approach is to re-formulate the linear separability problem as a linear program or the
maximum margin separator problem as a quadratic program. Such problems can be handled using
linear /convex programming techniques such as: the simplex method [19, 16], with complexity
O(N?) where the constant is exponential in d (in practice the simplex method has linear average-
case complexity [71]); or, interior point methods [22, 38, 39, 52, 49].

3.2.3 Unseparable Sets

Our work addresses the case when A and B are not linearly separable (i.e., their convex hulls
intersect). In this case we are interested in finding a subset Q of points such that after removing
points from ©Q remaining points are separable.

Combinatorial approach plagued by the exponential growth og running time. Heuristics based
on greedy search that seeks local inprovement may trap the solution in a local minimum which is
much worse than the true global minimum [49].

Popular approaches are to formulate some differentiable error as a function of the distance of
a mis-classified point from the hyperplane. One then seeks to minimize some heuristic function of
this error, [75, 5]. If the resulting error function is convex, then convex optimization techniques
can be brought to bear, for example in [75] one obtains a convex quadratic program. Bennet and
Mangasarian [6] propose minimizing the average distance from mis-classified points using linear
programming. Most often, however, such heuristic errors are minimized using iterative algorithms.

Another approach, suggested by Bennett and Bredensteiner in [5] use following heuristic to
deal with this problem. If most points of one class are not in convex hull of the other, then we
could restrict the influence of outlying points and solve the problem on reduced convex hulls. The
intuition is that it is undesirable to let one point excessively influence the solution. Therefore, we
want the solution to be based on a lot of points, not just a few bad ones. Say we want the solution
to depend on at least K points. This can be done by contracting or reducing the convex hull
by putting an upper bound on the multiplier in the convex combination for each point. Reduced
Conver Hull of set of points A is the set of all convex combinations ¢ = Awu of points in A where
efu=1,0 < wu < De, D < 1. Typically we choose D = % and 1 < K < |A]. K have to be
chosen sufficiently large to ensure that the convex hulls do not intersect. Then problem solved for
the reduced convex hulls via linear programming.

Interior point methods also can be applied to problems of discrete optimization. These methods
do not confine their working to a discrete solution set, but instead view combinatorial objects

45

as limiting cases of continuous objects. Many computational breakthroughs in the approximate
solution of large scale combinatorial optimization problems achieved recently are due to the devel-
opment of interior point algorithms and implementations. Theoretical foundations and applications
of interior point techniques to the development of algorithms for combinatorial optimization prob-
lems given in [49]. These techniques are superior to combinatorial heuristics and Simplex method
for some problems. Interior point methods have provided a unified approach to create efficient
algorithms for many different combinatorial problems. Successful approaches include an interior
point branch and bound technique [11, 47], cutting plane technique [33, 40, 48], and semidefinite
programming relaxations [35, 76].

In contrast to these existing approaches, our work focuses on producing globally optimal so-
lutions in 2 dimensions: for an arbitrary weight function W, the problem cannot be represented
as the minimization of some differentiable error (convex or not). Constructed algorithms output a
minimum weight subset of the points Q such that after deleting these points, the remaining points
are separable, and the algorithms given by Fact 3.2.5 can then be used.

46

3.3 Contribution

In 2 dimensions, we give exact algorithms for obtaining an optimal fat separator £ for two sets A and
B with respect to an arbitrary weighting function W. In particular, if W (x) = 1, then the resulting
separator minimizes the classification error. With respect to set intersection, Q(¢) is the minimum
sized set that must be removed in order to make the remaining points separable, and can be
viewed as the intersection of the two objects. Further, constructed algorithms also furnish an exact
calculation of the leave-one-out error with no increase in computational complexity. Traditionally,
if n = | AU B| is the number of data points, the computation of the leave-one-out error incurs an
extra factor n in the runing time.

Let |A] = m and |B| = k, and assume without loss of generality that m < k. Then, the
computational complexity of constructed algorithm is given by O(mnlogn).

3.3.1 Optimal Linear Separator for Non-Separable Sets

Let A = {a;}/", and B = {bj}§:1 be two sets of points, with m < k, and let n = m + k. It is
traditional to assign class +1 to one of the sets (say) A and —1 to the other. Every point x has a
weight W(x) > 0. A separator set Q@ C AU B is a set with the following property: if the points
in Q are deleted, the remaining points are linearly separable. Every separator set Q has a weight,
W(Q) = > 1 co W(x). An optimal separator set Q* is one with minimum weight, i.e., for any other
separator set Q, W(Q) > W(Q*). A brute force search through all subsets of A U B is clearly an
exponential algorithm, and we present here a polynomial time algorithm for the 2 dimensional case.

Theorem 3.3.1 (2-dimensions) An optimal fat separator and its corresponding optimal separa-
tor set Q(A, B) can be found in O(mnlogn) time.

Proof: We first discuss the correspondence between optimal separator sets and hyperplanes. As
already discussed, to every oriented line ¢, we can associate the separator set Q(¢). The converse
is also true for an optimal separator set. Specifically, let Q@* be an optimal separator set. Then
A=A\ QF and B’ = B\ Q* are linearly separable, so let £ be any separating hyperplane. Then
no points of Q@* must be mis-classified, as otherwise QQ* is unnecessarily large, contradicting its
optimality. Further, if any points of Q* lie on /¢, then by shifting ¢ a little, we still separate A’ and
B’, however now we correctly classify some points of Q*, once again contradicting the optimality
of Q*. Thus, we have the following lemma,

Lemma 3.3.2 Let Q* be any optimal separator set. Any hyperplane ¢ that separates (AU B)\ Q*
also separates Q, i.e., Q* itself is separable; further, Q(¢) = Q*.

In the proof of Lemma 3.3.2, we used the fact that any hyperplane ¢ that separates (AUB)\ Q*
is such that Q(¢) = Q*, and so in particular the maximum margin separator for (AU B) \ Q* will
have minimum weight. Thus, once we have found the optimal separator set, we can easily construct
the optimal fat separator using the result in Fact 3.2.5.

Lemma 3.3.2 implies that any optimal separator set is the separator set of some hyperplane.
Thus, it suffices to consider all possible hyperplanes, and their separator sets. Though it appears
that we have increased the difficulty of our enumeration problem, we will now show that not all
possible hyperplanes need be considered. In fact, we can restrict ourself to hyperplanes passing

47

through at least two points. This is a big step, because there are only ©(n?) such hyperplanes.
The separator set for a given hyperplane can be computed in O(n) operations, and so we immedi-
ately have an O(n?) algorithm. By being careful about reusing computations, we can reduce the
complexity to O(n?logn), which is essentially the content of the Theorem 3.3.1.

We need to consider more carefully the definition of a separator set, especially when points lie
on the hyperplane £. According to the strict definition of separability, we would need to include
all the points on ¢ into Q(¢). We relax this condition in the definition of the positive separator set
associated to the hyperplane £.

Definition 3.3.3 For hyperplane £, the positive separator set QT () contains all mis-classified
points except the positive points (in A’) that lie on £. £ is denoted the positive separator hyperplane

of Q*(0).

The only difference between the usual separator set and the positive separator set is in how we
treat the points that reside directly on the hyperplane (Q*(¢) C Q(¥)).

Let Q* be an optimal separator set, and let ¢ be a hyperplane that separates A’ and B’
constructed from AU B\ Q*. By Lemma 3.3.2 Q(¢') = Q* and ¢ separates Q*. Let a™ be the
closest positive point in A’ to £. Then all hyperplanes ¢ parallel to ¢ that are closer to a™ and
correctly classify a® also separate A’ and B’. Hence, by Lemma 3.3.2 all such hyperplanes also
separate Q*, i.e., for all such hyperplanes ¢”, Q(¢") = Q*. This means there are no points that
are on any of these hyperplanes ¢’. Now consider the hyperplane ¢ parallel ¢ and containing a™,
and consider QT (¢). Any negative points on £ already belong to @*. Thus, QT (¢) = Q*. Suppose
that ¢ contains at least one negative point. If it contains no other positive points (other than
a™t), then by slightly rotating £ about a™, we can classify some of these negative points correctly,
without altering the classifications of A’ or B’. This contradicts the optimality of Q*, which gives
the following lemma,

Lemma 3.3.4 Let Q* be any optimal separator set. Then there exists hyperplane £ such that
QT (¢) = Q* and either:

i. two or more positive points from A reside on {;

1. exactly one positive point from the A resides on £, and no others.

Lemma 3.3.4 shows that it suffices to consider only the positive separator sets of hyperplanes
that pass through at least one positive point. This forms the basis of the algorithm. We try every
positive point as a candidate ”central” point and compute the best possible separator set for all
hyperplanes that pass through this central point. We then keep the best separator set over all
possible central points.

Let’s consider how to efficiently find the best positive separator hyperplane that contains some
fixed positive point a®™. In order to do so efficiently, we introduce a mirrored-radial coordinate
system in which all the points except a* can be linearly ordered with respect to a™.

We start with an arbitrary (base) vector u that defines an axis as shown in Figure 3.1. The
origin of u is at a™. With at as origin, we define the angle 0(x) of a point x with respect to the
base vector u as the angle between the two vectors x — a™ and u. The upper hemisphere of the
unit circle is the set of points on the unit circle with angle in the range [0, 7] (shaded in Figure
3.1). We define the mirrored-radial projection of a point s(x) as the projection of x onto the upper

48

hemisphere of the unit circle, through the origin a*. The mirrored-radial projections of x1,Xs, X3
are illustrated by si, s, s3 in the Figure 3.1). The mirrored-radial coordinate 0(x) is then the angle
of s(x), i.e., O(s(x)). Notice that many points may have the same mirrored-radial projection, in
which case, they all have the same mirrored-radial coordinate.
Suppose that the mirrored radial coordinates of all the
points (except a*) have been sorted and that u has been cho-
sen so that 0 < 6; < fy--- < 6,1 < 7. For convenience,
define g = 0 and 6,, = w. An oriented hyperplane ¢ can also
be uniquely specified by giving its angle 6, (see Figure 3.1),
together with its orientation (£1). For a given orientation,
all hyperplanes with 6, € (0;,0;+1), 0 < i < n, partition the
points into the same two sets, and hence have the same positive
separator set. The other possible values for 6, are the actual
mirrored-radial coordinates 6;. Since there only two possible
orientation for a given ;, we have the following lemma

Lemma 3.3.5 There are 4n—2 possible equivalence classes of
positive separator hyperplanes, corresponding to the following
ranges for for 6,

{(60,601),61,(61,62),02,...,0n_1,(0h—1,6n)}.

For any two values of 0y from the same range, and for a given orientation, the positive separator
sets are identical.

Figure 3.1: Mirrored-radial coordi-
nates.

The importance of Lemma 3.3.5 is that we now only have to check one representative from
each equivalence class. Further, this can be done very efficiently with two linear time scans (one
for each orientation) as follows. Lets consider hyperplanes with orientation +1. First, we compute
Qt(¢) for 6, = 0, and its weight. Now, we iteratively step through the values 6;. When we process
0;, some (or all) of the points with mirrored radial coordinates #; will move to the opposide side
of ¢, which will correspond to an update of Q*(¢) and the its weight W (Q*(¢)). Assuming that
set membership in Q7 (¢) is maintained by an array of size n — 1, if n; points are moveed to the
opposite side, then the update of QT (¢) and W(Q™(¢)) requires O(n;) operations. After processing
0;, and come to process the range (6;,6;11), once again at most n; points shift sides, resulting in
an update costing O(n;) operations. Thus the full scan takes O(2>_ n;) = O(n) operations. Since
two scans need to be made, the total cost of these scans is O(n).

Recap: For every positive point, a™, we first compute the mirrored-radial coordinates of all the
other points, requiring O(n) operations. We then sort these coordinates in O(nlogn) operations.
We now make two scans (in sorted order), one for each orientation of the hyperplane, updating the
the best positive separator set and its weight as we scan. This requires O(n) operations, Since the
sorting operation has the dominant run time, this entire process is in O(nlogn). Since this entire
process has to be run for every positive point, and there are m positive points, we obtain a final
computational complexity of O(mnlogn), which completes the proof of the theorem. [|

3.3.2 Leave-One-Out Error

An important issue in the design of efficient machine learning systems is the estimation of the
accuracy of learning algorithms, in particular its sensitivity to noisy inputs. One classical estimator

49

is leave-one-out error, which is commonly used in practice. Intuitively, the leave-one-out error is
defined as the average error obtained by training a classifier on n — 1 points and evaluating it on
the point left out. For some learning algorithms, one can obtain estimates of the leave-one-out
error, for example for Support Vector Machines, in the separable case, the leave one out error can
be bounded in terms of the number of support vectors, [75]. Algorithmically, we remove one point,
train the classifier and test in on the point left out. This process is repeated n times for every
possible point that could be left out. The average error on the points left out is the leave-one-out
error. More formally,

Let X denote all the points, X = AU B. Let X® denote the points with point x; left out,
XW = X\ x;. Let C® denote the classifier built from X® — in our case this is the optimal fat
hyperplane. Let e; denote the error of C() applied to the input point x;.

0 if x; is classified correctly,
€; =
W(x;) otherwise.

The leave-one-out error, &, is given by &y, = % > ei. We focus on the 2-dimensional case. A
brute force computation of &, results in a factor of n increase in the run time, which would result
in an O(mn?logn) algorithm. We show how to modify the algorithm so that it outputs &,, with
no increase in the computational complexity. We will establish the following theorem.

Theorem 3.3.6 (2-dimensions) An optimal fat separator, together with its optimal separator set
Q(A, B) and the leave-one-out error can be be found in time O(n?logn) time.

Let Q(X) be optimal separator set for set of points X, and let V be any subset of Q(X’). We
consider the set X’ = X \ V, i.e., a set resulting from the removal of some part of an optimal
separator set from the original set. Note that Q(X') is mis-classified by the optimal fat separator
trained on X. Consider Q(X’), i.e. an optimal separator set for the reduced set of points, and
its corresponding fat separator hyperplane ¢. Certainly Q(X) \ V is a separator set for X/, and
so W(Q(X") < W(Q(X)) — W(V). Now considering adding back the points in V. If we add into
Q(X’) all the points in V that ¢ mis-classifies, then we get a separator set for X. Suppose that ¢
classifies any of the points in V correctly. Then the weight of the separator set Q(X’) will increase
by less than W (V), which means we have constructed a separator set for X with smaller weight
than Q(X), contradicting the optimality of Q(X). Thus, ¢ must mis-classify every point in V, and
further, W(Q(X")) = W(Q(X)) — W (V).

Lemma 3.3.7 Let V C Q(X) and X' = X\ V. Then W(Q(X")) = W(Q(X)) — W(V), and any
separator hyperplane ¢’ associated to Q(X') mis-classifies every point in V.

By lemma 3.3.7, we immediately have that

€i,
n
z, €X\Q(X)

and so we immediately have a lower bound on &,,. Further, it suffices to compute e; only for
x; € X'\ Q(&X). With only a slight change in the algorithm given in the proof of the theorem 3.3.1
we can compute exactly the leave-one-out error. First observe that the following lemma holds.

Lemma 3.3.8 If Q is a separator set for X, then QU x; is a separator set for X.

50

Thus, all separator sets of X(®) are subsets of the separator sets of X.
Point z; from X can be one of three types:

Type 1. z; always classified correctly by any optimal fat separator constructed for X, Obviously,
such a point z; makes zero contribution to the leave-one-out error.

Type 2. z; always misclassified by any optimal fat separator constructed for X . Contribution
of such a point to the leave-one-out error is equal to its weight W (x;).

Type 3. There are N, representative lines for X' such that optimal fat separators corresponding
to these lines will classify z; correctly and there are N, representative lines for X®) such
that optimal fat separators corresponding to these lines will misclassify x;. Contribution of
such a point to the leave-one-out error is equal to the weighted probability of choosing bad
separator: W(xl)ﬁ

Thus, the leave-one-out error can be computed as follows: start with zero and add contribution

of every point. Points of type 1 can be ignored, and we can concentrate only on points of type 2

and 3.

Lemma 3.3.9 Let v be positive (negative) point from X such that there exists an optimal fat
separator £ for X — v that misclassifies v. Then there exists positive (negative) separator line £*
that passes through positive (negative) point u € X,u # v, v € QT (£*), and Wop < Wa(QT(£*)) <
Wopt + W (v), where Wy is the weight of an optimal separator set for set X.

Proof: (Lemma 3.3.9). It is enough to prove the lemma for the case when point is positive. Let
£ be an optimal fat separator for X — v that misclassifies v. Since ¢ is fat, no point from X — v can
reside on it. Since v is positive and v is misclassified by ¢, v is either reside directly on ¢ or in the
negative side of ¢. Thus, line £* that is parallel to £, has same orientation and passing through the
closest point u in the positive side of £ also will misclassify v. Since ¢ is optimal, u have to be a
positive point.

Wopt < Wx(QT(¢*)) by the definition of optimal separator, and thus all we have to prove is that
Wax(QT(0*)) < Wop + W (v). It is easy to see that Wx_,(Q(¢€*)) = Wx_,(Q(¢)) and Wx(Q(¢*)) =
Wax_(Q(€*)) + W (v). Since an optimal separator for X is also a separator for X —v with weight at
most Wy, and £ is optimal for X —v, we have Wx_,(Q(¢)) < Wops, so Wa(Q(£*)) < Wopr + W (v).
|

Lemma 3.3.10 Let v be positive (negative) point from X and let £* be positive (negative) sep-
arator line that passes through positive (negative) point v € X,u # v, v € QT ({*), and
Wopt < Wax(QT(0%)) < Wope + W(v). Then any optimal fat separator for X — v will misclas-
sify v.

Proof: (Lemma 3.3.10). First, note that Wx_,(Q(¢*)) = Wx(Q(¢*)) — W(v) < Weps. Since £*
is a separator line for X — v with weight strictly less than W, weight of any optimal separator
for X — v is also strictly less than W,,;. If we suppose that there exists optimal fat separator for
X — v that classifies v correctly, then this separator also would be a separator for X with weight
smaller than W,;. []

51

Algorithm 1 Algorithm to compute type of points.

//Input: Set of points X', Optimal fat separator ¢* for X
//Output: Type(u), Vu € X
LOO = 0.
Let Wop = W (€*) be the weight of the optimal separator.
for any positive (negative) point u € X do
Sort all other points around u accordingly to the angle coordinates.
Consider all the different positive (negative) representative lines that pass through w.
for every representative line ¢ with weight W, do
V positive (negative) v € Q(¢), such that W (v) > W, — Wop, SET Type(v) = 2
V positive (negative) v € Q(¢), such that W(v) == Wy — Wy, SET Type(v) =3
end for
: end for

—= = =
I T

The two lemmas above immediately give us Algorithm 1 for computing the type of all the points.
Please note that point once marked as of type 2, cannot change it anymore. Point once marked
as of type 3, can only change its type for 2. All the points left unmarked after the Algorithm 1
stopped are of type 1.

For a fixed central point u, execution of the loop 8 — 10 can be performed in time O(NlogN)
as follows: for every representative line ¢, place two marks on the circle that bound the positive
(negative) arc of this line, and specify the representative line weight in these marks. After this is
done for all the representatives, mark type of vertices in single ordered scan. Every time passing
opening mark of some representative line, insert this mark into ordered set of active bounds (bounds
sorted accordingly to the line weights). Every time passing closing mark of a representative line,
remove corresponding mark from the ordered set of active bounds. Every time passing a point,
update the type of the vertex accordingly to the smallest active bound.

In the Algorithm 1 above we can also keep track of number of times every vertex of type 3
was labelled as of type 3. Adding such a counter C'(v) for every vertex v € X won’t increase the
algorithm’s time complexity. It is clear that at the end of processing, counter for a vertex v will
contain number of different representative lines in X — v such that v belongs to the separator set
defined by the representative line: C'(v) = N.(v) + N.(v). If vertex v belongs to the separator set
defined by the representative line, the optimal fat separator corresponding to this representative
might or might not misclassify v. Following lemma establishes useful property of optimal fat
separators that we will use to make our algorithm efficient.

Lemma 3.3.11 Let £ be a representative line and W (Q(£)) = Weop + . Suppose there are k
vertices in Q(¢) with weight oc: Vp = {v1,...,v;}. Then optimal fat separator £, corresponding to £
can classify correctly at most one vertex in Vp. If ¢, classifies correctly any vertex from Q(£) — Vp,
it misclassifies all the vertices from Vp.

Proof: (Lemma 3.3.11) Suppose ¢, classifies correctly vertex v € Q(¢). Then Yv; € Vp, W(v) +
W (v;) > a. Thus, if 4, also classifies correctly v;, then Wy (Q(4,)) < W(Q(¢)) — (W (v) + W (v;)) <
Wopt, that contradicts with the optimality of W;. []

Suppose we are given a representative line ¢, optimal fat separator ¢, corresponding to ¢ and

52

convex hull built on Q(¢). Then accordingly to the lemma 3.3.11, there exists at most one point in
Q(¢) with weight W(Q(¢)) — Wop: can be classified correctly. This point or non-existence of such
a point can be established in time O(logN). Thus, exact value of N.(v) for every point v can be
computed in time O(N2logN) as follows: for every central point, sort all the other points according
to the angle coordinates. Start enumerating all the representative lines, for every representative ¢
compute the optimal fat separator ¢, and convex hull on Q(¢), then increase the N, counter for the
point from Q(¢) with weight W (Q(¢)) — Wy, (if any) that classified correctly by /.

The last thing remaining to finish our proof of the proposition 3.3.6 is to show how to update the
convex hull on Q(¢) for a new representative line ¢ from convex hull for the separator of a previous
representative line Q(¢pre,) in time O(N log N) for all representatives with a fixed center. It can be
done as follows. It is well known that adding a point to a convex hull can be done in O(logN) time.
The only difficulty is with deleting a point from convex hull. But since we process representative
lines in ordered manner, we know the order in which points will be deleted from the convex hull for
the first representative. We can build the convex hull for the first representative iteratively adding
points in reversed order and store all the intermediate convex hulls (not explicitly, we only need to
store the information that will enable us restore previous convex hull after deleting next point in
time O(logN)). This observation finishes our proof of proposition 3.3.6.

3.4 Discussion and Open Questions

As an example application of the linear separators in

computational finance, consider the problem of opti-

mal boosting of two classifiers. We have training set bl gt
{x;}ier of points in multidimensional space R™. Ev- o
ery datapoint zp € R™ corresponds to values of a
set of monitored features at time t;. We also given +
values {y; }ier - change in the stock price from t; to
t; + At. Our task is to construct an intelligent agent
able to predict values of stock in the future ... + At
given the value of monitored features at current mo-
ment t,,-. Suppose also that we designed and trained
two different intelligent agents g1 and go that for ev-
ery point zp predict the direction and magnitude of
the price change ¢;(x) and go(zr). We can consider mapping from {z;};c1 into 2-dimensional
space F(z;) = (g1(x;),g92(x;)). In the ideal case of perfect predictors, we would end up with two
separable sets on the plane (see Figure 3.2).

In reality, due to the noise in the data and models limitations we will obtain non-separable sets
as depicted on Figure 3.3. Assuming that classifiers g; and go are somewhat different, we want to
construct a new classifier g3 as a linear combination of ¢g; and g, that combines strengths of both
models. Then g3 corresponds to an oriented line in the (g1, g2)- space. To every point from {x;};cr
we can assign penalty for misclassification of this point W (z;). Penalties can be uniform (W (z;) = 1,
Vi € I) or differentiated. One reasonable assignment of penalties is W (z;) = Prob(z;|g1(zi), g2(x;)),
where Prob(z;|g1(z;), g2(x;)) is the probability that observed value y; is real given the values g1 (z;)
and ga(z;). We want g3 to classify correctly as many points as possible and, futhermore, we want
to pay more attention to the classification of points that are known to be more reliable. In other

Figure 3.2: Case of two perfect predictors.

93

words, we want to keep the summary likelihood of the misclassified points as small as possible.

Then problem of finding the optimal linear combina-
tion g3 is essentially the problem of finding the optimal
separator set for a given set of weighted points in the
2-dimensional space. Earlier in this chapter we pre-
sented O(n%logn) - algorithm for computing the opti-
mal separator set for an arbitrary weighting function.

Interesting open question is the probabilistic inter-
pritation of the leave-one-out error in the case when
points are weighted with the likelihood weighting func-
tion Prob(z;|g1(x;), g2(x;)). Another open question is
the constructing of similar algorithm for 3-dimenaional
case with time complexity at most O(n%logn). It is an
interesting fact that for separable sets in 3 dimensions
linear separator can be found with same time complex-

- * o
® ° P o+
+9® ﬂi ¢ o "
® Y ‘o :(X)
g ° o °
° PY o\ fe

Figure 3.3: Optimal boosting of two clas-
sifiers.

ity as in 2 dimesions. The efficiency of the 3-D algorithm is based on properties of planar graphs
[23]. Tt is open question if these properties can be utilized for constructing an efficient algorithm

for finding the optimal separator set in 3-D case.

54

Chapter 4

Avoiding Overfitting: Isotonic and
Unimodal Regression

4.1 Introduction and Basic Definitions

The problem of overfitting training data is well recognized in the machine learning community.
Standard approach to deal with this threat is the early stopping of the training algorithm iterations.
Important question is when the iterations should be stopped. Usually one monitores another error
measure and stops iterations when the associated error starts growing. The associated error can
be same error function measured on separate set of datapoints (validation set) or even completely
different error function. Since the associated error measure is somewhat different from the primary,
it does not necessary shows monotinical behavior but often appears as random fluctuations around
unknown function. In order to pinpoint the exact location of the critical point, one can perform
shape constrained optimization to fit function to the ibserved values of the associated error. Another
application of the shape constrained regression arise in the pricing of financial instruments, for
example the american put option [44].

Futher applications of isotonic regression can be found in [62, 61]. Isotonic and unimodal
regression are both examples of nonparametric shape constrained regression. Such regressions are
useful when prior knowledge about the shape but not the parametric form of a function are known.
The importance of isotonic regression stems from the fact that it is often the case in statistical
estimation or learning that one wishes to estimate a function that is known to be monotonically
increasing (say), even though the data will not necessarily exhibit this behavior, on account of
noise, [43, 67]. Examples include the probability of heart attack as a function of cholesterol level
[43]; the “credit worthiness” as a function of income [67].

To illustrate, suppose that we would like to determine cholesterol level thresholds at which a
heart attack becomes more prevalent, and we have a sequence of patients with cholesterol levels
c1 < ¢y < ...< ¢, Associated to each patient i, let x; be the number of heart attacks they had
within the following year, x; = 0,1,2,..., K for some small value of K. The isotonic regression
determines thresholds for the cholesterol levels that identify different severities for heart attack risk.

A futher example of application of isotonic regression is epidemiologic studies, where one may be
interested in assessing the relationship between dose of a possibly toxic exposure and the probability
of an adverse response [51]. In characterizing biologic and public health significance, and the need

95

for possible regulatory interventions, it is important to efficiently estimate dose response, allowing
for flat regions in which increases in dose have no effect. In such applications, one can typically
assume a priori that an adverse response does not occur less often as dose increases, adjusting for
important confounding factors, such as age and race. It is well known that incorporating such
monotonicity constraints can improve estimation efficiency and power to detect trends [62].

Isotonic regression in the L, norm, p > 0, is defined as follows. Let x = [z1,x2,...,Zy],2; € R,
be given. The task is to construct a corresponding sequence w = [w; < wy < ... < wy,] so that
Ep(w) is minimized for some given p, where

n
LS o —wiP 1< p< oo,
Ep(w) = =1

max |z; —w;| p=o0.
(2

The regression is unimodal if wy < wgy < --- < w; > wip1 > -+ > wy, for some i; x; is denoted a
crossover point. The prefix-isotonic regression problem is to construct the isotonic regression for
all prefixes of x. We study the cases p = 1 and p = oco. The case p = 1 is sometimes denoted
isotonic median regression. We will refer to & (w) or £o(w) as the error of the regression when
the context is clear. The efficiency of an algorithm is measured in terms of n.

o6

4.2 Previous Work

Ls isotonic regression can be performed efficiently in linear time using some variant of a Pooling
Adjacent Violators (PAV) algorithm [1, 61, 62]. For L; isotonic regression, algorithms in the
efficiency class O(nlogn) are known. Some approaches to isotonic regression are given in [13, 57,
58, 62].

The L; and Ly prefix-isotonic regression problems have been solved optimally in [72]. For Lo,
the runtime is O(n), which is clearly optimal, and for L; it is O(nlogn), which, by a reduction
from sorting, is optimal [72]. While O(nlogn) is optimal for L, prefix-isotonic regression, it is not
known whether the apparently simpler isotonic regression problem can be performed faster than
O(nlogn). We take a first step in this direction by obtaining a linear bound in terms of the size of
the output (K).

Unimodal regression has been studied extensively in [72], where the author gives a linear time
algorithm for the Ly case, and an O(nlogn) algorithm for the L, cases. This result was a significant
improvement over the exponential and quadratic algorithms that existed prior to this work [27, 28,
50, 56].

A general PAV type algorithm, [72], relies on the ability to efficiently update a suitably defined
“mean”. Such an algorithm is easily applicable to the L and Lo cases, however, for p > 2, the
“L,-mean” is not conveniently updated. For the case p = oo it is not clear what this “mean” should
be, and hence, the algorithm cannot be applied.

o7

4.3 Contribution

We provide two output sensitive isotonic median regression algorithms and algorithms for L.,
regression. More specifically,

i. Suppose that z; € X where |X| = K. Then, Li-isotonic regression can be performed in
O(nlog K) time, linear in n. In the worst case, K = n and we have O(nlogn).

ii. Suppose that x; € [a,b], Vi. Given € > 0, we can construct an approximate Lj-isotonic
regression with error at most the optimal plus € in time O(n log(b_T“)).

iii. Lo prefix-isotonic and unimodal regressions can be constructed in linear time.

4.3.1 L,-Isotonic Regression

We use the notation [i, j] to refer to the interval of integers {i,i+1, ..., 5}, and x[i, j] to represent the
sequence [z;,...,z;]. In this section, the isotonic regression will always refer to L;-optimal isotonic
regression. Without loss of generality, we can represent the isotonic regression by a collection of
monotonically increasing level sets, or intervals to each of which is associated a value or level:

= {I., ho }X_,. Each I, is an interval of the form I, = [iy, o). We assume that i; = 1, jx = n,
la+1l = Jo + 1 and hy < hoy1 for 1 < a < K. The isotonic regression that is induced by C is given
by assigning w; = h, for all i € I,. We define the error for C, £ (C), as the error & (w) of the
corresponding induced isotonic regression w. Figure below below illustrates all this notation for
the sequence x = [2,1,2,1,2].

= O O -=- 2l O - e = = =
| —eo——o |—e @ l o o
C= ([174]71)7([575]72)} {([172]71)7([] 2)} C:{([175]72)}
w=1[1,1,1,1,2] w=1[1,1,2,2 2] w=[2,2,2,2,2]
&(C) =2 &(C) =2 &(C) =2

Note that the isotonic regression is not unique. To remove this ambiguity, we will only consider
the isotonic regression in which the sum of the w; is minimized (the leftmost regression in the figure).
We define the weight of the isotonic regression by W(C) = >, w;, where {w;} is the isotonic
regression induced by C. Thus if C is an isotonic regression, and C’ is any other monotonically
increasing collection of level sets, then & (C) < &(C'), and if £1(C) = &£1(C'), then W(C) < W(C)
(we will show later that the isotonic regression is indeed unique). Throughout, we will refer to the
unique isotonic regression by C = {I, = [ia; ja], ha }5_;, and in general, we will use I,, to refer both
to the interval [iq, jo], as well as to the set of points {x;,,...,z;,}.

We define the median of a level set I = [i,j], M(I), to be the median of the points
{Zs,%iy1,...,x;}, where the median is defined in the usual way:

M(y1§y2---§ym)=yL%J

o8

Note that M(I) = zj, for some k € [i, j]. Further, note that if M (S1) < M (S2) for any S, S2, then
M(S1) < M(S1US2) < M(S2). It is also well known that the median is a minimizer of the L;
error. Since we require the weight of the isotonic regression to be minimum, we conclude that the
level of each level set has to be the median of the set:

Proposition 4.3.1 hy, = M(I,) for all « € [1, K].

Proof: Suppose that h, < M(I,) for some a. This means that there are strictly more points
in I, above h, than below. By raising h, we can decrease the error, contradicting the optimality
of the isotonic regression. Suppose that h, > M(I,) for some «. In this case, by the definition
of the median, there are at least as many points below h, as there are above. In this case, we
guarantee not to increase the error by lowering h,, and at the same time decrease the sum of the
w; contradicting the minimality of W (C). []

In particular, h, = xj for some k € [iy, jol, i.e., every level is one of the x;’s. Note that since,
ha < ha+1, we immediately have that the sequence of medians must be increasing.

Corollary 4.3.2 M(I,) < M(Ig) for1<a<f < K.

The next proposition is one of the crucial properties that we will use. It essentially states that the
isotonic regression for a set of points is the union of the isotonic regressions for two disjoint subsets
of the points. Consider any level set I, in the isotonic regression and define the left and right subsets
of the points with respect to this level set by S; = {z1,...,z;,-1} and S, = {x;_,...,x,}. We
define the left and right isotonic regressions C; and C, as the isotonic regressions for the respective
left and right subsets. Then C = C;UC,.. We will need the following lemma to prove the proposition,

Lemma 4.3.3 For any «, with I, = [ia, ja) € C,

(i) M{i,,...,z;}) > M(Ia), for all j > i,.
(1) M{xs... x5, }) < M), foralli < j,.

Proof: (i) Let I, be the last level set for which there exists a j > io, with M({z;,,...,z;}) <
M(I,). Suppose j > jo. Then, M(x;, ,,...,z;) < M(I,) < M(Iat+1) and so I, is not the
last level set with this property. Thus, j < j,. Decompose (I, hs) into two level sets: (I} =
{Zip, - x5}, max(ha—1,M(11))) and (I = {xj41,...,%j,}, ha). The decomposition guarantees
not to increase the error, while lowering the weight of the regression, contradicting the fact that C
has minimum weight among optimal isotonic regressions.
(it) Let I, be the first level set for which there exists an i < jo, with M ({z;,...,z;,}) > M(l,).
Suppose i < iq. Then, M(x;,..., x5,) > M(ly) > M(Io—1) and so I, is not the first level set
with this property. Thus, i > i,. Decompose (I, hy) into two level sets: (I} = {z;_,...,Zi—1}, ha)-
and (Iy = {xj,...,zj, },min(haq1,M(I2))). The decomposition strictly decreases the error, con-
tradicting the fact that C has minimum error.

|

Proposition 4.3.4 C =C;UC,

Note that the proposition is valid for any level set I, that is used to construct S, S;.

99

Proof: Let C'=C,UC, = {I}, h/ﬁ}éil Since hjy = M(I}), it will suffice to show that I, = I, for
all a € [1, K]. Suppose to the contrary and let o* be the first level set for which I+ # I'.. Further,
suppose without loss of generality that |I,+| > |I..| (a similar argument holds for |Io+| < |[I..]).
Therefore,

where P is a prefix of I..,; ;. Note that Ix,...,I}. ;. are either all in C; or all in C,. Without
loss of generality, assume they are all in C;. We know that h/,.; = M(I}. ;) for i € [0, L+1] and by
construction, Al ; < hi« ;. fori € [0, L]. From Lemma 4.3.3, we know that M (P) > M (I}., ;)
(since C; is the isotonic regression for S;). By Lemma 4.3.3, we also have that M (I,+) > M (I}.), and
similarly from the optimality of C, we have that M (I/.) > M(I,+), hence that M(I..) = M(I,~).

Therefore, we have that
M(Io#) = M(Ioe) < M(Igey) <o < M(Lpeyp) < M(Igeypy1) < M(P).

Since P is a suffix of I+, by the optimality of C and Lemma 4.3.3, we have that M(P) < M (I,~)
which is the desired contradiction. []

An immediate consequence of this proposition is that the isotonic regression is unique, by choosing
(for example) S; = x and S, = {}.

Corollary 4.3.5 The isotonic regression is unique.

Suppose we are given a constant v, we would like to find the first level set whose height is at least
~. In particular, we would like to find the first point of this level set. We call this point a pivot
point for v. More specifically, let C be the isotonic regression, and let « be such that h, > v and
if a > 1, then hq—1 < . We would like to find z;,. Note that if all the levels are < ~, then z;,
does not exist, in which case we can default to i, = n + 1. We know from Lemma 4.3.3 that it is
necessary for z;, to satisfy two conditions:

i. for every sequence S begining at x;_ , M(S) > ho > 7;
ii. for every sequence S” ending at x;_,_1, M(S") < hq—1 < 7.
The content of the next proposition is that these conditions are also sufficient.

Theorem 4.3.6 Let C be the isotonic regression. Given vy, let I, be the first level set with hy, > 7.
Then, x; is the first point in I, (i.e., v; = x;,) if and only if for any sequence S begining at x; and
any sequence S' ending at x;—1, M(S") <~ < M(S).

Proof: It only remains to prove that if M (S") < v < M(S) for any two sequences as described,
then i = i,. We know that 7 must belong to one of the level sets, i € I3 for some 8 with 1 < 8 < K.
We need to show three things: (i) hg > v; (ii) i = ig; (iii) hg_1 < 7.
(i) Suppose that hg < . Then, consider S = {w;,...,x;,}. By Lemma 4.3.3, M(S) < hg <. By
construction of z;, M(S) >+, a contradiction.
(ii) Suppose that 4 is not the first point in I3. Then consider S = {xi,,...,2;-1}. By Lemma
4.3.3, M(S") > hg >~ (by (i)). By construction of z;, M(S") < 7, a contradiction.
(iii) Suppose that hs_y > . Consider S = {x;,_,,...,x;—1}. From (ii), this is exactly I5_;. By
construction of z;, M(S") = M(Ig—_1) = hg_1 < 7, a contradiction.

|

60

Thus to find the first point of the first level set with height at least a given -, we only need to
search for an x; that satisfies the conditions of Theorem 4.3.6. The remainder of this section is
devoted to developing a linear time algorithm to find this point. This algorithm will be the basis
of our isotonic regression algorithms that we discuss in the next section.

Define the following three quantities for any interval [z, j].

’,

N*(i,j): the number of points > ~ in the set S; ;; = {zi, ..., z;}.
N~(i,j): the number of points < v in the set Sj; jj = {=s,...,7;}.
Ar(ing): i (N*(3,) = N~ (i, 1)),

teli,j

Note that the median of the set Sy j is > v if and only if N*(4,5) — N7(i,5) > 0. From this
observation, we get the following lemma.

Lemma 4.3.7 zj satisfies the conditions of Theorem 4.3.6 if and only if one of the following hold:
i. k=1 and A.(k,n) > 0;
it. k>1, Ap(k,n) >0 and Ay(1,k—1) <O0.

If no such xy, exists, then the levels of all the level sets are < .

We show how to find such an x; in linear time. Start two pointers p; = 0 and p, = n+ 1. The
initial conditions of the algorithm are:

N+(pT,’I’L) =0; N_(pr,n) =0,
N*t(1,p)=0; N—(1,p)=0.

Let x; = x[1,p1], X = X[pr,n], and S = x[p; + 1,p, — 1]. Initially, x, = x; = {}, and S = x. If
M(S) > ~, then we know that z,, is not our solution, so we decrement p, by 1 and update x;, X, S.
On the other, if M(S) < v, then x,,41 is not our solution, so we increment p; by 1 and update
X1, X, 5. We continue this process of decreasing p, or increasing p; until p, = p;+ 1. We now prove
that this algorithm correctly computes the pivot point. The nature of the algorithm is to move p,
(resp. p;) until M(S) switches from > 7 (resp. <) to < v (resp. > 7). Denote a phase in the
algorithm as the period when one of the pointers begins to move and then stops.

Lemma 4.3.8 The following invariants are maintained at the end of every phase.
i. The median of every prefiz of X, is > 7.

1. The median of every suffiz of x; is < 7.

61

Algorithm 2 Algorithm to compute a pivot point.

1: //Input: x = {z;]i € [1,n]} and v € R.

2: //Output: i such that x; is the pivot point for > ~.
3: Set p; = 0, p, = n + 1 and using a single scan compute N*(p; + 1,p, — 1);
4: while p; + 1 # p, do

5. if N+(pl—|—1,pT—1)—N_(pl—|—1,pr—1)>0then
6: pr < pr — 1, and update N*(p; + 1,p, — 1);

7. else

8: p; < p + 1, and update N*(p; + 1,p, — 1);

9: end if

10: end while

11: return p;{p, = n+ 1 if all levels are < 7.}

Proof: We prove the claim by induction on the phase number. Initially the invariants hold by
default since x, and x; are empty. Suppose the invariants hold up to some phase, and consider the
next phase, i.e., p; + 1 < p;.

Suppose that p; — p; and x; — x] in this phase. By construction, M (x[k,p, — 1]) < ~ for
pr+1 <k <p]. Since p; stopped moving, there are two cases. (i) p; = p, — 1, in which case the
median of every suffix of x[p; +1,p]] is <. (ii) p; < p, — 1, in which case M (x[p; +1,p, —1]) > ~.
But since M (x[k, p, —1]) < for p;+1 < k < p}, it follows that M (x[k, p]]) < -y, or once again, the
median of every suffix of x[p; 4+ 1,p]] is < 7. Every suffix of x] is either a suffix of x[p; + 1, pj] or the
union of x[p; + 1, pj] with a suffix of x;. Since M (S1) <y and M (S2) <y implies M (S; U Ss) < v
for any Si, S, invariant (iz) now follows, i.e., the median of every suffix of x] is < ~. Since p, did
not move in this phase, invariant (i) was unchanged.

Similarily, suppose instead that p, — p/. and x, — % in this phase. This means that M (x[p; +
1,k])gey for pl. < k < p, — 1. Once again, there are two cases, p. = p;+1 and p,, > p;+ 1. In
both cases it follows using similar arguments that the median of every prefix of x[p/., p, — 1] is > 7.
Invariant (i) follows from the facts that any prefix of x/ is the union of prefixes of x[p],p, — 1]
and x,, and M(S1) >, M(S2) >~y = M(S1 U S2) > ~. Since p; did not move in this phase,
invariant (i) was unchanged.]

Thus when the algorithm concludes, A, (p,,n) > 0 and A;(p1,l) < 0 and we have the pivot point.
The efficiency of the algorithm hinges on being able to determine if M(S) is larger or smaller than
7. Since M (x[i, j]) > v if and only if NT (4,) — N~ (i,5) > 0, we need to maintain N*(p;+1,p, —1).
The following update rules allow us to do this efficiently. Suppose we have computed N* (i, j) for
1<i1<3<n

N*(i+1,5) = N*(i, j); N=(i+1,j)=N—(i,j) -1 ifxz; <n.

The entire algorithm is summarised in Algorithm 2.

62

We define an operation as a comparison, a floating point operation or an assignment. Step 3
can be computed in 3n operations. An update (steps 6,8) takes 6 operations, and n updates need
to be made. We thus have the following theorem.

Theorem 4.3.9 Given x = {z;|i € [1,n]} and v € R, the pivot point for v can be found using at
most Cn operations, where C' =~ 9.

Summary. The pivot point z; for any value v can be found in linear time. x can then be
partitioned into two disjoint subsets, x; = x[1,7 — 1] and x,, = x[i,n]. The isotonic regression C;
of x; will have level sets all of whose levels are < v, and the isotonic regression C, of x, will have
level sets all of whose levels are > . Further, the isotonic regression C of x is given by C = C; UC,..
This result already has applications. Suppose we would simply determine a threshold x where the
response function exceeds a given value, v. This can be accomplished by finding the pivot point
for ~.

4.3.2 L,-Isotonic Regression: Algorithms

The importance of Proposition 4.3.4 and Theorem 4.3.9 from the algorithmic point of view can be
summarised as follows. Suppose we have the input x for which the isotonic regression can only
have levels in the set {m; < mg < --- < mg} — for example, this would be the case if z; can only
take values in this set. Let p be the index of the pivot point for v = m;, i € [1, K|. This pivot
point, which can be found in linear time, partitions x into x; = x[1,p — 1] and x,, = x[p,n] (one
of these may be empty). By Proposition 4.3.4, it then suffices to recursively compute the isotonic
regressions for x; and x,. Further, by construction of p, all the levels in x; will be < v = m;, and
all the levels in x, will be > «. We obtain an efficient algorithm by choosing + to be the median of
the available levels each time in the recursion. The full algorithm is given in Algorithm 3.

The correctness of this algorithm follows from the results in the previous section, specifically
Proposition 4.3.4. What remains is to analyse the run time. It is enough to analyse the runtime
of ISOTONIC(x,m, [i, j], [k,l]). Let T(n,K) be the worst case runtime when |[i,j]|] = n and
|[k,1]| = K. Then in the worst case, the algorithm will call itself on a left set of size § with [K/2]
levels and on a right set of size n — § with | K/2 | levels, for some 0 < § < n. As already discussed,
the pivot step to perform this partition takes at most Cn operations (step 9), so we have the
following recursion for T'(n, K):

T(n,K) < Jnax, (TS [END+Tn—06]5])+Cn.

For K = 2!, a stralght forward induction shows that T'(n, K) < Cnlog K. By monotonicity,
T(n,K) § T (n, 2M1°8 K1) which gives T'(n, K) < Cn[log K], yielding the following theorem.

Theorem 4.3.10 The isotonic regression for n points with K possible levels can be obtained in
O(nlog K) time.

If the K levels are not known ahead of time, they can be determined and sorted using standard
data structures, such as a balanced binary seach tree in O(nlog K) time, [17]. This does not affect
the asymptotic running time. In the worst case, K = n and our algorithm is no worse than existing
algorithms. However, there can be significant improvement in the efficiency when K is fixed and
small.

63

Algorithm 3 Algorithm to perform the full isotonic regression.

1: // Wrapper to call the recursive function.

2: //Input: x = {z;]i € [1,n]} and m = {m; <ma < --- < mg}.

3: //Output: Isotonic regression, C = {(I4, ha)}

4: Call ISOTONIC(x,m, [1,n], [1, K]);

1: ISOTONIC(x, m, [1, j], [k,])

2: //Output: Isotonic regression C = {(In, ha)} for x[i, j], given all levels are in mlk,[].
3: if 7 < i then

4: return {};

5. else if k£ =1 then

6 return {([i,], mk])}

7: else

8 Letg=k+1+ L% |; {g is 1+the median of [k,]}

9: Let p=index of pivot point for x[i, j| with v = ml]g];

10: C; =ISOTONIC(x,m, [i,p — 1], [k,q — 1]); C, =ISOTONIC(x, m, [p, j], [¢,1]);
11: return C;UC,;

12: end if

Approximate isotonic regression. The algorithm that we have given can be run with any set
of levels supplied — the pivot point is defined for any . It is not required that the true isotonic
regression levels all be from this set in order to run the algorithm. Ofcourse, if the true levels are
not from the set of levels supplied to the algorithm, then the result cannot be the true isotonic
regression. If the levels chosen are close to the true levels, then the approximate isotonic regression
should be close to the true one.

In particular, suppose that a < z; < b for all i € [1,n]. Consider the levels m; = a + ie, where
e = (b—a)/K and i € [0, K]. Suppose that [ig, jo], ha is a (non-empty) level set output by the
algorithm, h, = a + ine. Then z;, is a pivot point, for which all the levels of the true isotonic
regression to the right are > h,. Further, all the levels to the left of the next level set that is
output are < h, + €. Therefore, the error of a point from its corresponding level output by the
algorithm differs from its error with respect to the true isotonic regression level by at most €. Thus,
the additional error contributed by every point is at most ¢, for a total error increase of at most ne,
increasing £; by at most e. Further, the runtime is O(nlog K) = O(nlog((b — a)/¢)), establishing
the following theorem.

Corollary 4.3.11 Suppose that a < x; < b for i € [1,n] and let w be the isotonic regression.
Then, an approzimate isotonic regression W' can be computed in O(nlog((b — a)/e€)) time with
51(W,) — 51 (W) <e.

4.3.3 L.-Prefix-Isotonic Regression

In this section, we will refer to the L.,-optimal isotonic regression more simply as the isotonic
regression (which is not necessarily unique). For any sequence of points x = [z1, 22, ...,], define a
Mazimally Violating Pair (MVP) to be a pair of points that maximally violates the monotonicity
requirement, i.e., an MV P is a pair (z;,z,) with | <7, z; > x,, and Vi < j, & — z, > x; — x;. If

64

x; < xj for all ¢ < j, then no such pair exists. If x has an MV P (x;,x,), we define the distortion
of x, D(x), to be (x; — x,), and D(x) = 0 if x does not have an MV P. Note that by definition of
an MV P, x; <z for all i <r and x; > x, for all j > [.

Let C be an isotonic regression for x and let (x;,z,) be an MV P. Either w; < (z; + x,)/2 or
wy > wyp > (z74,)/2, so we conclude that £, (C) cannot be less that D(x)/2. The next proposition
shows that this lower bound is achievable.

Proposition 4.3.12 Let C be an isotonic regression for x. Then Ex(C) = D(x)/2. Further, if
(z1,) is an MV P, then w; = w, = (x; + z,)/2.

Proof: If D(x) = 0, then x is a monotonically nondecreasing sequence. w; = z; is the optimal
regression with £, = 0. Suppose that D(x) > 0. We will construct (by induction) an isotonic
regression with error D(x)/2. It then follows immediately that w; > (x; + x,)/2 > w,, and by
monotonicity, w, > w; from which we get w; = w, = (z; + z,)/2.

The induction basis is when x = {}, x = [z1] or x = [z}, z2], in which cases the claim is obvious.
Suppose that an optimal regression exists with error D(x)/2 whenever |x| < N, and consider any
sequence x with |x| = N + 1 and D(x) > 0. Let (x;,z,) be an MV P, and define the left and
right sequences: x; = [z1,22,...,2;-1]; and X, = [Xy41,Tr42,...,2N+1]. Note that D(x;) < D(x)
and D(x,) < D(x). Let C; and C, be the isotonic regressions for x; and x, respectively. Since
the left and right sequences are strictly shorter than x, by the induction hypothesis, we have that
Ex(C1)) = D(x7)/2 < D(x)/2 and £x(C;) = D(x,)/2 < D(x)/2.

We now show how to construct the isotonic regression for x with error D(x)/2 from C;, C, and
one additional level set C* = {(I = [l,r],h = (x; + 2,)/2)}. Consider all level sets in C; with
level > h. Reduce all these levels to h, and call this new isotonic regression C;. We claim that
Ex(C]) < D(x)/2. We only need to consider the level sets whose levels were altered. Let x be
any point in such a level set with height A’ > h. x < x; by definition of the MV P (x;,z,).
x > xy, because if ¥ < z,, then D(x;)/2 > I —x > h —z, = D(x)/2 > D(x;)/2, which is a
contradiction. Thus z, < x < z; and so the error for any such point is at most D(x)/2 for the
regression C;. The error for all other points has remained unchanged and was originally at most
Exo(C) = D(x1)/2 < D(x)/2, so we conclude that £, (C]) < D(x)/2. Similarily, consider all level
sets of C, with level < h. Increase all these levels to h and call this new isotonic regression C,.
Once again any point x in any level set with a level change must satisfy x, < x < x; and so we
conclude that £ (Cl.) < D(x)/2.

Consider the regression C' = C;UC* UC,. Ex(C') = max{Es(C)),Ex0(C*),Ex(C)} = D(x)/2. The
isotonic regression C is constructed from C’ by taking the union of all level sets with the height h
(these must be consecutive level sets), which does not alter the error.]

Proposition 4.3.12 immediately yields a recursive algorithm to compute the isotonic regression.
Unfortunately, this recursive algorithm would have a run time that is quadratic in n. We now show
how to construct this regression from left to right, using a single pass. This will lead to a linear
time algorithm for the prefix-isotonic regression problem. Let x; = x[1,i]. Let C; be an isotonic
regression for x;. The prefix-isotonic regression is given by {C;}_ ;. Note that E(Ci+1) > Ex(Ci)
since D(x;41) > D(x;). We will construct C;11 from C;.

Let C; = {In = [ia;ja)s ha} ;. Let inf, = minges, 4, and sup, = maxyes, 7). Define the
distortion of level set I, D(I,) as the distortion of the sequence X[iy, jo]. The C; that we construct
will all satisfy the following properties:

65

P1: Va € [1, K], ho = 1 (sup, + inf,).
P2: Va € [1, K], D(I,) = sup,, — inf,.
P3: Va € [2,K], ho—1 < haq.

Property P3 is just a restatement of the monotonicity condition. From property P2 it follows
that for any i € I, |z; — ho| < D(14)/2. Since D(I,) < D(x), it follows from Proposition 4.3.12
that any regression that has properties P2 and P3 is necessarily optimal. Therefore, properties
P1-P3 are sufficient conditions for an isotonic regression. Suppose that C; has been constructed,
satisfying P1-P3. Now consider adding the point x;41. Let Iy = {i + 1}, hx+1 = zi+1. Note
that D(Ix4+1) = 0, and by construction, I satisfies P1 and P2.

Lemma 4.3.13 If hx+1 > hg, let Cip1 = CiU{(Ix4+1,hi+1)}. Then Ciyq satisfies P1-P3.

If hgt1 < hg, then to get C; 11, we merge I 1 with Ix. We need to ensure that properties P1 and
P2 continue to hold. We will prove this in general for any two consecutive level sets. Suppose that
(I, hy) and (Ixy1, hy1) both satisfy properties P1 and P2, and suppose that hiiq1 < hy. Define
the new level set I} by

I =1, Ul inf) = min(infy, infj) sup), = max(supy, supy,)
= %(inﬁf + sup})

Lemma 4.3.14 I} satisfies properties P1 and P2.

Proof: By construction, P1 is satisfied. We show that D(I}) = sup) — inf}, from which P2
follows.

Suppose that infyy; < infg. Thus, inf}, = infg, ;. Since the first maximum in Iy, occurs before
the last minimum in I, (as Iy satisfies P2), and the maximum in Ij occurs before any point in
Ij41, it follows that the first maximum in I;, occurs before its last minimum, thus I}, satisfies P2.
Suppose, on the other hand, that infg,; > inf. Thus, inf} = infj. Since hjy1 < hg, we have that
supy,; + infg1 < supy, +infy, = sup,,; < supyg, and so supj, = sup;,. Thus, the first maximum
inl l{c is the first maximum in I;, and the last minimum in I,; is the last minimum in I;. Since I
satisfies P2 then so does I}. []

The idea of the algorithm should now be clear. The addition of a new point creates a new level set
satisfying P1 and P2. If this new level set also satisfies P3, then we are done, and have constructed
the isotonic regression for the sequence augmented by this one point. If not, then we merge the last
two level sets, maintaining P2 and P3, and not altering any of the other level sets. We continue
to merge until P3 is satisfied for the last level set, which must eventually happen. At this point
we have a regression that satisfies P1-P3 and so it is the isotonic regression for the augmented
sequence.

Note that Ix is the right most level set of C;, i.e., Ix = [i,4]. This rightmost level set is
the union of ¢ with some number (possibly zero) of the level sets (from right to left) of C;_;1. The
remaining level sets of C; will be the level sets of C;_; that remain after the merging. In fact, the
remaining level sets will be exactly the level sets of C;,_1, where it is understood that C;,,_; = {}
if igg = 1.

66

Proposition 4.3.15 C;=C;,.—1 U {Ix,hk}.

Proof: If i =1, there is nothing to prove. Assume that ¢ > 1 and that the claim holds for all C;
with j < i. Let C; = {In = [ia, Jo), ha}5_;. By construction, C;_; is given by

Cio1 ={(I1,h1), ..., (Ik—1,hx—1),(S1,h}), -, (Sar, ap)}, *)

where M is possibly zero, and Iy = U;S; U {i}. Let S; = [oy, 5;], where ay = i and By =i — 1.
By the induction hypothesis,

Ci—l - Ca]\/[—l U{SM7h9\J}7

COll\/I_l COlel—l U {SM—17h9\4—1}7
COlel—l = CQN172_1U{SM_2,h§\4_2},

Cor—1 = Coy—1U{S1,h}.
Combining these equalities and using the fact that a1 = ix, we get that
Ci1=Cip—1U; {Si, hi}.
using (*), we identify that C;,, 1 = {({1,h1),...,(IKx—1,hK—1)}, concluding the proof. [

4.3.4 L. -Prefix-Isotonic Regression: Algorithms

Here, we will give the linear time algorithm for L..-prefix-isotonic regression that follows from
the results of the previous section, along with the analysis of its run time. Our algorithm will
process points from left to right. After processing the new point z;, we will have constructed the
isotonic regression C; as discussed in the previous section by merging the rightmost two intervals
until P1-P3 are satisfied.

By Proposition 4.3.15, to reconstruct C;, we only need to know [;, the index of the first point
of its rightmost level set, the level, h;, of this rightmost level set, and how to construct Cj,_;. This
can be recursively achieved by only storing the parameters [; and h;, for every i. The algorithms
are given in Algorithm 4. The correctness of this algorithm follows from the results of the previous
section, specifically Lemmas 4.3.13, 4.3.14. Further, £, (C;) is stored in D[i]. By Proposition
4.3.15, the output of the algorithm stores all the necessary information to extract C,, as shown in
the recursive function RECONSTRUCT.

What remains is to analyse the computational complexity of the algorithms. First consider
the prefix-isotonic regression. lines 7,8,13 constitute 8 operations, thus contributing about 8n
operations to the total run time. The merging while loop, lines 9-12, uses 6 operations. The
maximum number of intervals is n. Each time a merge occurs, this maximum drops by 1. Since
this maximum is bounded below by 1, this means that there are at most n — 1 merges, so the total
time spent merging is about 6n operations, and the condition of the while loop is checked at most
2n times, so the runtime of this algorithm is bounded by Cn where C' = 14. There are at most
n level sets at any time, and each level set needs to store 5 numbers, iy, jo,inf,, sup,, he. The
additional space for L, H, D is 3n, for a total memory requirement bounded by C’n, where C’ ~ 8.

67

Algorithm 4 Algorithms for L., prefix-isotonic regression.

1. // Algorithm to perform L. -Prefix-Isotonic Regression.

2: // Input: x = {x;|i € [1,n]}.

3: // Output: L,H,D. {L[i] = l;, H[i]=level of [l;,i] in C;, D[i]=distortion of x;}
4: Iy = [1,1}, infy; = 24, sup; = z1, hy = z1, K = 1; {Initialization}

5. L[1] = 1, H[1] = hy, D[1] = 0; {Initialization of outputs}

6: for i =2 to n do

T K—K+1

8 Ix =[i,i], infx = m;, supyx = x;, hx = x;, D[i| = D[i — 1];

9: while hxy < hg_1and 1 < K do

10: Ig 1 — Ig 1 Ulg;infg_1 « min(infx_q,infg); supg_; < max(supyx_q,Supg);
11: K «— K —1; hg = $(infx +supg); D[i] = max(D[i],supy — inf);

12: end while

13: L[i]=left endpoint of Ix; H[i] = h;

14: end for

1. RECONSTRUCT (m)

2: // Output C,,, the isotonig regression for x,,, assuming L, H are global.

3: if m =0 then

4: return {};

5: end if

6: return RECONSTRUCT(L[m] — 1) U{[L[m],m], H[m]};

It is not hard to analyse the recursion for RECONSTRUCT, and a straightforward induction
shows that the runtime is O(m).

4.3.5 L., Unimodal Regression

As pointed out in [72], a prefix-isotonic regression can easily be modified to yield the optimal
unimodal regression. The next proposition shows that the crossover point in the L., unimodal
regression can always be chosen at a maximum in the sequence (any maximum). Thus, a simpler
algorithm that follows directly from the prefix-isotonic regression is to first find a maximum in x
(linear time). Now perform isotonic regression on the sequence to the left of the maximum and the
reversal of the sequence to the right. More specifically, suppose that the maximum is z,,. Now
consider the sequences x; = x[1,m], x, = x[m, n], and let x be the reversal of x,.. Let C; and C
be the isotonic regressions for x; and XTR respectively. Then the union, C; U C, (where C, is the
reversal of C®) is the unimodal regression, with the merging of the last level set of C; and the first
level set of C,., as they will have the same level, equal to the maximum. All that remains is to prove
that the crossover point can always be chosen at a maximum.

Proposition 4.3.16 The crossover point in the unimodal regression of x can always be chosen to
be a mazimum (any mazimum) of x.

68

Proof: Let C be the unimodal regression, and let z; be the crossover point, so

Let x; = x[1,4], x, = x[i,n]. Since w[l,4] is an isotonic regression for x; and w¥[1,n —i + 1] is
an isotonic regression for x%, the error of the regression is £, (C) > %maX(D(xl),D(xf)). Let
Zy, be any maximum not equal to x; (if z; is a unique maximum, then we are done, otherwise
T, exists). Without loss of generality, since a unimodal regression for x* is C¥, we can suppose
that m > i. Let x; = x[1,m], let xo = x[m,n|, and let x, = x[i, m]. For the unimodal regression
constructed from the two isotonic regressions on x; and xg, T, will be a crossover point. We
show that the error of this regression cannot be more than the error of C. The error of this
regression is given by max(D(x1), D(x%)). Since z,, is a maximum, D(xF) = max(D(x}), D(x¥)),
50 £50(C) = max(D(x;), D(x}), D(xE)). D(x1) is given by

C

D(xy)= = 1ISrltaSXm{max(x[1, k]) — xp}

= max <112]?%<i{max(x[1, k]) — xk},iggin{max(x[l, E]) — xk}>
The first term on the right hand side is D(x;). Since x,, is a maximum, the second term is bounded
by max;<k<m{zm — 2} = D(xF). Thus D(x;) < max(D(x;), D(x%)), and so

max(D(x1), D(x5)) < max(D(x)), D(x), D(x5)) = €x(C).

(o

4.4 Conclusion and Discussion

For Lq-isotonic regression we presented an output sensitive algorithm whose running time is linear
in n when the number of possible values that the levels of the isotonic regression can take is bounded
by K. In the worst case, K = n and the algorithm is no worse than existing algorithms. The open
question that remains is whether the median isotonic regression can be computed in linear time, or
to prove that it cannot. Presented algorithms can be extended without much effort to the case of
minimizing a weighted L; error. In this case, all the results remain true, with minor modifications,
by replacing the standard median with the weighted median.

For L isotonic and unimodal regression, we have given simple (not requiring sophisticated
data structures) linear time algorithms. We are unaware of any other published results relating to
the Lo regression.

69

Bibliography

1]

M. B. Ayer, H. D., G. M. Ewing, W. T. Reid, and E. Silverman. An empirical distribution
function for sampling with incomplete information. Annals of Mathematical Statistics, 1955.

F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data structure.
ACM Symposium on Computational Geometry, 20-28, 1995.

C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, Volume 22, Issue 4, 469 - 483, 1996.

C. Barber, D. Dobkin, H. Huhdanpaa. The Quickhull Algorithm for Convex Hull. Geometry
Center Technical Report GCG53, Univ. of Minnesota, MN, 1993.

K. P. Bennett and E. J. Bredensteiner. Duality and geometry in SVM classifiers. In Proc. 17th
International Conf. on Machine Learning, pages 57—64, 2000.

K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two
linearly inseparable sets. Optimization Methods and Software, pages 23-34, 1992.

Arjan Berkelaar and Roy Kouwenberg. Dynamic asset allocation and downside-risk aversion.
citeseer.ist.psu.edu/berkelaar00dynamic.html.

Tomasz R. Bielecki, Stanley Pliska, Jiongmin Yong. Optimal investment decisions for a Port-
folio with a Rolling Horizon Bond and a Discount Bond. To appear, 2004.

Tomasz R. Bielecki, Jean-Philippe Chancelier, Stanley Pliska, Agnes Sulem. Risk sensitive
portfolio optimization with transaction costs. To appear, 2004.

Fischer Black. Treynor, Jack L. How to use security analysis to improve portfolio selection.
Journal of Business, pages 66-85, January 1973.

B. Borchers and J. E. Mitchell. Using an interior point method in a branch and bound algorithm
for integer programming. Technical report 195, Mathematical Sciences, Rensselaer Polytechnic
Institute, Troy, NY, 12180, July 1992.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning
Research, 2002. To appear.

N. Chakravarti. Isotonic median regression, a linear programming approach. Math. of Oper.
Research, 1989.

70

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems.
In Proc. 11th Annual Symposium on Computational Geometry, pages 10-19, 1995.

B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. In
IEEE Sympos. on Found. of Comp. Sci. (FOCS), volume 30, pages 586-591, 1989.

V. Chvtal. Linear Programming. W. H. Freeman and Company, New York, 1983.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
Mcgraw-Hill, 2001.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines (and other
kernel-based learning methods). Cambridge University Press, 2000.

G. B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity Analysis of Production and Allocation, Wiley, New York, 1951, pp 339-347.

L. Devroye and T. Klincsek. Average time behavior of distributive sorting algorithms. Com-
puting, 26: 1-7, 1980.

L. Devroye and G. T. Toussaint. A note on linear expected time algorithms for finding convex
hulls. Computing, vol. 26, pp. 361-366, 1981.

I. I. Dikin. Iterative solution of problems of linear and quadratic programming. Sov. Math.
Doklady, 8(66):674-675, 1967.

D. Dobkin and D. Kirkpatrick. A linear algorithm for determining the separation of convex
polyhedra,. J. Algorithms, 6:381-392, 1985.

D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersections. Theoretical
Computer Science, 27:241-253, 1983.

David P. Dobkin, David G. Kirkpatrick. Fast detection of polyhedral intersections, Lecture
Notes in Computer Science, 140 (1982) 154-165.

D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra
- a unified approach. In Proc. 17th International Colloquium on Automata, Languages and
Programming, pages 400 — 413, 1990.

M. Frisén. Unimodal regression. The Statistician, 1980.
Z. Geng and N.-Z. Shi. Isotonic regression for umbrella orderings. Applied Statistics, 1990.
Thomas H. Goodwin. The information ratio. Financial Analysis Journal, 54(4):43-43, 1998.

R. L. Graham. An efficient algorithm for determining of the convex hull of a planar set.
Information Processing Letters, 132-133, 1972.

Bhaswar Gupta and Manolis Chatiras. The interdependence of managed futures risk measures.
pages 203—-220. Center for International Securities and Derivatives Markets, October 2003.

71

[32]

[33]

[34]

[35]

Jiging Han. Yang Liu, Xiaohui Yu. Sharp ratio-oriented active trading: A learning approach.
SSRN Electronic Paper Collection, 2001.

M. Junger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane algo-
rithms in combinatorial optimization. Combinatorial Optimization: DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pp. 111 - 152. AMS, 1995.

Thomas Hellstrom. Optimizing the sharpe ratio for a rank based trading system. In Portuguese
Conference on Artificial Intelligence, pages 130-141, 2001.

C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite programs and
cutting planes. Technical report SC-95-35, Konrad-Zuse-Zentrum fuer Informationstechnik,
Berlin, 1995.

Sergei Issaenko. Domenico Cuoco, Hua He. Optimal dynamic trading strategies with risk
limits. SSRN Electronic Paper Collection, 2001.

G. Kalai. A subexponential randomized simplex algorithm. Proc. 24th Annual ACM Sympos.
Theory Comput., 475-482 (1992).

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373-395, 1984.

L. G. Khachiyan. A polynomial algorithm in linear programming (in russian). Doklady
Akademii Nauk SSSR, 244:1093-1096, 1979.

Eva K. Lee, John E. Mitchell. Branch-and-Bound Methods for Integer Programming. FEncy-
clopedia of Optimization, Kluwer Academic Publishers, August 2001.

Jiming Liu. Samuel P. M. Choi. Optimal time-constrained trading strategies for autonomous
agents. In Proceedings of International ICSC Symposium on Multi-agents and Mobile Agents
in Virtual Organizations and E-Commerce (MAMA 2000), 2000.

Hong Liu. Optimal Consumption and Investment with Transaction Costs and Multiple Risky
Assets. The Journal of Finance, Vol. 59 Issue 1 Page 289 February 2004.

M. Magdon-Ismail, J. H.-C. Chen, and Y. S. Abu-Mostafa. The multilevel classification prob-
lem and a monotonicity hint. Intelligent Data Engineering and Learning (IDEAL 02), Third
International Conference, August 2002.

M. Magdon-Ismail, Personal communication.

J. Matousek, M. Sharir, E. Welzl. A subexponential bound for linear programming. Proc. 8th
Annual Sympos. Comput. Geometry, ACM, 1-8 (1992).

Oliver Mihatsch and Ralph Neuneier. Risk-sensitive reinforcement learning. Mach. Learn.,
49(2-3):267-290, 2002.

John E. Mitchell. Branch-and-Cut Algorithms for Combinatorial Optimization Problems.
Handbook of Applied Optimization, pp. 65-77, Oxford University Press, January 2002. ISBN:
0-19-512594-0.

72

[48]

[49]

[50]

[51]

[52]

John E. Mitchell. Cutting plane algorithms for integer programming. Encyclopedia of Opti-
mization, Kluwer Academic Press, August 2001.

John E. Mitchell, Panos Pardalos, Mauricio G. C. Resende. Interior point methods for combi-
natorial optimization. Chapter in Handbook of Combinatorial Optimization, Kluwer Academic
Publishers, 1998.

R. A. Mureika, T. R. Turner, and P. C. Wollan. An algorithm for unimodal isotonic regression
with application to locating a maximum. Technical report, Department of Mathematics and
Statistics, University of New Brunswick, 1992.

Brian Neelon, David B. Dunson. Bayesian Isotonic Regression and Trend Analysis. To Appear,
2003.

Y. Nesterov and A. Nemirovsky. Interior Point Polynomial Algorithms in Convex Program-
ming. STAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics,
1994.

Online encyclopedia of financial terms. http://www.investopedia.com, 2004.

http://www. cs.princeton. edu/~ ah/alg_anim//versionl/GrahamScan.html. Online demonstra-
tion of Graham’s scan algorithm.

http://www. cs.princeton.edu/~ah/alg_anim /versionl/QuickHull.html. Online demonstration
of Quick-Hull algorithm.

G. Pan. Subset selection with additional order information. Biometrics, 1996.

P. M. Pardalos and G.-L. Xue. Algorithms for a class of isotonic regression problems. Algo-
rithmica, 1999.

P. M. Pardalos, G.-L. Xue, and L. Yong. Efficient computation of an isotonic median regression.
Appl. Math. Lett., 1995.

C.D. Perttunen D. Jones and B.E. Stuckman. Lipschitzian optimization without the lipschitz
constant. Journal of Optimization Theory and Application, 79:157-181, 1993.

F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag,
New York, 1985.

T. Robertson and P. Waltman. On estimating monotone parameters. Ann. Math. Stat., pages
1030-1039, 1968.

T. Robertson, F. T. Wright, and R. L. Dykstra. Order Restricted Statistical Inference. Wiley
Series in Probability and Statistics. Wiley, new York, 1988.

Rudholm-Alfvin T. Pedersen C.S. Selecting a risk-adjusted shareholder performance measure.
Journal of Asset Management, 4(3):152-172, September 2003.

Matthew Saffell. John Moody. Learning to trade via direct reinforcement. IEEE Transactions
on Neural Networks, 12(4):875-889, 2001.

73

[65]

[66]

[67]

William F. Sharpe. Mutual fund performance. Journal of Business, pages 119-138, January
1966.

William F. Sharpe. Adjusting for risk in portfolio performance measurement. Journal of
Portfolio Management, pages 29-34, 1975.

J. Sill and Y. S. Abu-Mostafa. Monotonicity hints. In M. C. Mozer, M. I. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems (NIPS), volume 9,
pages 634—640. Morgan Kaufmann, 1997.

David M. Smith, Christophe Faugere, Hany A. Shawky. Sell discipline and institutional money
management. Journal of Portfolio Management, 30(3), 2004.

Miguel Sousa Lobo, Maryam Fazel, Stephen Boyd. Portfolio optimization with linear and fixed
transaction costs. Submitted to Operations Research, Oct 2002.

Chester S. Spatt, Robert M. Dammon. The optimal trading and pricing of securities with asym-
metric capital gains taxes and transaction costs. The Review of Financial Studies, 9(3):921—
952, 1996.

Sabine Stifter, Eugen Ardeleanu. Intersection algorithms: a comparative study. http://cite-
seer.ist.psu.edu/6603.html, 1994.

Q. F. Stout. Optimal algorithms for unimodal regression. Computing Science and Statistics,
32, 2000.

D. Tasche and L. Tibiletti. Ap-proximations for the value-at-risk approach to risk-
return analy-sis. Working paper. Technische Universiat Unchen. hittp://citeseer.ist.psu.-
edu/tasche01approximations.html, 2001.

G. W. P. Thompson. Optimal trading of an asset driven by a hidden Markov process in the
presence of fixed transaction cost. Collection of research papers, Judge Institute of Management
Working Papers, 2002.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer—Verlag, 1995.

H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Seimidefinite Program-
ming: Theory, Algorithms, and Applications. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2000.

Valeri 1. Zakamouline. Optimal portfolio selection with both fixed and proportional transaction
costs for a CRRA investor with finite horizon. Web-site of Norwegian School of Economics
and Business Administration, 2002.

74

