
COLUMN SUBSET SELECTION FOR
APPROXIMATING DATA MATRICES

By

Ali Çivril

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Approved by the
Examining Committee:

Malik Magdon-Ismail, Thesis Adviser

Petros Drineas, Member

Mark Goldberg, Member

John E. Mitchell, Member

Rensselaer Polytechnic Institute
Troy, New York

December 2009
(For Graduation December 2009)

c⃝ Copyright 2009

by

Ali Çivril

All Rights Reserved

ii

Annem, babam ve kardeşime ithaf olunur.

iii

CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGMENT . viii

ABSTRACT . ix

1. Introduction . 1

1.1 Overview . 1

1.2 Our Contributions and Outline . 3

2. Preliminaries and Related Work . 6

2.1 Overview of Matrices and Linear Algebra 6

2.2 Related Work . 9

2.2.1 Low-Rank Matrix Approximation 9

2.2.2 Rank Revealing QR (RRQR) Factorization 10

2.2.3 Volume . 12

3. Approximating Multi-Dimensional Scaling 14

3.1 Introduction and Related Work . 14

3.2 MDS . 15

3.2.1 Performance Analysis of MDS 18

3.3 Approximation of the Distance Matrix 21

4. MAX-VOL and Related Problems . 31

4.1 Introduction . 31

4.1.1 Contributions of This Chapter 32

4.1.2 Preliminaries and Notation . 33

4.2 Hardness of Subset Selection Problems 33

4.3 The Greedy Approximation Algorithm for MAX-VOL 37

4.3.1 Approximation Ratio of Greedy 38

4.3.2 Lower Bound for Greedy . 43

4.3.3 Maximizing the Number of Unit norm Vectors Attaining A
Given Volume . 46

4.4 Discussion . 48

iv

5. Exponential Inapproximability of MAX-VOL 50

5.1 Introduction . 50

5.1.1 Preliminaries and Notation . 51

5.2 Label-Cover Problem . 52

5.3 Exponential Inapproximability of MAX-VOL 55

5.3.1 The Basic Gadget . 55

5.3.2 The Reduction . 57

5.3.3 The Analysis . 59

5.4 Discussion . 66

6. Deterministic Low-Rank Approximation 68

6.1 Introduction . 68

6.1.1 Preliminaries and Notation . 69

6.2 Generalized Sparse Approximation 69

6.2.1 The Algorithm . 70

6.2.2 Implementation Details and Running Time Analysis 70

6.2.3 Performance Analysis . 71

6.3 Deterministic Low-Rank Matrix Approximation 79

6.4 Numerical Results . 83

6.5 Discussion . 85

7. Conclusion . 92

REFERENCES . 94

v

LIST OF TABLES

3.1 Running time comparison between MDS and Approximate MDS on
several graphs (Most of these graphs can be downloaded from [1], [2]
and [3]). Missing entries are graphs where it was too costly to compute
the entire distance matrix. 27

6.1 Error ratios of Low-Rank Approximation Algorithms for Log 400×400.
In bold for each k is the best method. 86

6.2 Error ratios of Low-Rank Approximation Algorithms for Scaled Random
400× 400. In bold for each k is the best method. 87

6.3 Error ratios of Low-Rank Approximation Algorithms for Kahan 400×
400. In bold for each k is the best method. 87

6.4 Running times of Low-Rank Approximation Algorithms for Scaled Ran-
dom 1000× 1000 . 91

vi

LIST OF FIGURES

3.1 The main approach for approximating MDS 22

3.2 Comparison of Layouts Computed by MDS and Approximate-MDS I . . 28

3.3 Comparison of Layouts Computed by MDS and Approximate-MDS II . 29

3.4 Comparison of MDS and Approximate-MDS on a finite element mesh
of a cow with |V | = 1820, |E| = 7940. 30

3.5 Comparison of A-MDS with other spectral methods (HDE and ACE)
on the finite element mesh of a cow with |V | = 1820, |E| = 7940. 30

5.1 A part of a simple bipartite graph representing a Label-Cover instance . 58

5.2 The resulting (row) vectors in MAX-VOL instance computed from the
graph in Figure 5.1 by our reduction . 59

6.1 Error ratios of Low-Rank Approximation Algorithms for Log 1000×1000
in Spectral Norm . 88

6.2 Error ratios of Low-Rank Approximation Algorithms for Log 1000×1000
in Frobenius Norm . 88

6.3 Error ratios of Low-Rank Approximation Algorithms for Scaled Random
1000× 1000 in Spectral Norm . 89

6.4 Error ratios of Low-Rank Approximation Algorithms for Scaled Random
1000× 1000 in Frobenius Norm . 89

6.5 Error ratios of Low-Rank Approximation Algorithms for Kahan 1000×
1000 in Spectral Norm . 90

6.6 Error ratios of Low-Rank Approximation Algorithms for Kahan 1000×
1000 in Frobenius Norm . 90

vii

ACKNOWLEDGMENT

I am truly grateful to my advisor Malik Magdon-Ismail who played the most impor-

tant role in my acceptance to graduate school, who has always supported and guided

me. He was not only academically sharp and diverse, but also quite lenient and un-

derstanding on personal issues. I also learned a lot from him about the academic

environment and different research paradigms.

I would like to thank my committee members Petros Drineas, Mark Goldberg

and John Mitchell. Special thanks go to Petros Drineas and his student Christos

Boutsidis for several encouraging discussions and help on technical issues.

I would like to thank Bülent Yener for being interested in my progress and for

his several candid suggestions.

A PhD is impossible without friends. My roommate Çağrı Özçağlar has the

greatest credit whose close support for my ill health was invaluable. We also have

a common background to a great extent which resulted in unforgettable late-night

conversations. My special thanks go to Hilmi Yıldırım and Erol Akmercan for

also supporting me during my difficult times despite their busy schedule. Others

include Süleyman Vural and Asil Ali Özdoğru. I would like to thank Jon Purnell

and Eli Bocek-Rivele for introducing a warm American perspective into my life,

and my other lab-mate Mykola Hayvanovich. The non-Western gang deserves a

big thanks, too: Asif Javed, Saeed Salem, Vineet Chaoji and Mohammad Hasan.

I would especially like to thank Saeed who is my previous roommate. Thanks to

Cemal Çağatay Bilgin and Buğra Çaşkurlu who have always been around my office

for leisurely talk. I hope the ones who were unintentionally forgotten due to lack of

time and space would except my apologies.

Terry Hayden and Chris Coonrad helped me on several administrative issues

which significantly reduced my load and stress.

Finally, I want to express my deepest gratitude to my family, my mother Nimet

Çivril, my father Nihat Çivril and my sister Hanife Çivril for their unconditional,

unceasing support and prayers. This work is dedicated to them.

viii

ABSTRACT

In this thesis, we study the problem of selecting a subset of columns of a matrix so

that they capture the important information contained in the matrix. We present

complexity results and algorithms. The problem, in a very broad sense, asks for

a “good” subset of columns of a given real matrix that provides a performance

guarantee in terms of an objective function related to the spectrum of the matrix.

We first present a linear-time spectral graph drawing algorithm as a motiva-

tion which is a vast improvement over the standard quadratic-time method Classical

Multidimensional Scaling (CMDS). To guarantee a fast implementation of the al-

gorithm, it is desirable to quickly select a subset of columns of a distance matrix

associated with the graph. Intuitively, in order to obtain a well conditioned sub-

matrix, one has to choose a subset of column vectors -in a geometrical sense- such

that they are as “far away” from each other as possible. We consider formalizations

of this notion by studying the problem of selecting a subset of columns of size k

such that it satisfies some certain orthogonality conditions. We establish the NP-

hardness of a few such problems and further show that two of them do not admit

PTAS. For the problem of choosing the maximum volume sub-matrix, which we call

MAX-VOL, we analyze a greedy algorithm and show that it provides a 2−O(k log k)

approximation. Our analysis of the greedy heuristic is tight to within a logarithmic

factor in the exponent, which we show by explicitly constructing an instance for

which the greedy heuristic is 2−Ω(k) from optimal. Further, we show that no effi-

cient algorithm can appreciably improve upon the greedy algorithm by proving that

MAX-VOL is NP-hard to approximate within 2−ck for some constant c. Our proof

is via a reduction from the Label-Cover problem.

Our last result is a constructive solution to the low-rank matrix approximation

problem which asks for a subset of columns of a matrix that captures “most” of its

spectrum. Our main result is a simple greedy deterministic algorithm with guaran-

tees on the performance while choosing a small number of columns. Specifically, our

ix

greedy algorithm chooses c columns from A with c = Õ
(

k2 log k
ϵ2

µ2(A)
)
such that

∥A− CC+A∥F ≤ (1 + ϵ) ∥A− Ak∥F ,

where C is the matrix composed of the c columns, C+ is the pseudo-inverse of

C (CC+A is the best reconstruction of A from C), and µ(A) is a measure of the

coherence in the normalized columns of A. To the best of our knowledge, this is the

first deterministic algorithm with performance guarantees on the number of columns

and a (1+ϵ) approximation ratio in Frobenius norm. Numerical results suggest that

the performance of the algorithm might be far better than the theoretical bounds

suggest.

x

CHAPTER 1

Introduction

1.1 Overview

Most data can be represented as anm×nmatrix where the columns are objects

and the rows are the features associated with them. Among the important examples

of such representation in modern statistical analysis are document-term data, DNA

microarray data and user-movie data where the analysts often need to define a

feature vector for a specific object. Hence, given a matrix A ∈ Rm×n, it is of practical

importance to obtain the “significant information” contained in A. It becomes

especially important to have a compact representation of A when A is large and has

low numerical rank, as is typical of modern data. Thus, in a broad sense, we are

interested in concise representations of matrices. Besides the tremendous practical

impact of linear algebraic algorithms, they also come up in different theoretical

forms and paradigms. Specifically, the formalization of “significant information”

can be done in several ways and to a great extent, it depends on how a matrix is

interpreted.

From a conceptual point of view, rather than interpreting a matrix as a block

of numbers, we constrain ourselves to view it as a set of vectors (specifically, column

vectors) which are indivisible entities. Thus, the formalization of “significant infor-

mation” is essentially related to finding a subset of columns of the matrix which

satisfies some certain spectral conditions or orthogonality requirements. From a

purely combinatorial perspective, treating vectors as elements of a set, one can also

view subset selection in matrices as a generalization of the usual subset selection

problem where the elements contain little or no information. To give a specific ex-

ample, the well known Set Cover problem asks for a smallest cardinality subset of a

set system which covers a universal set. Likewise, the problem we are interested in

essentially asks for a small number of column vectors to “cover” the whole matrix.

In what follows, we intuitively state two measures of quality for this problem, which

will be the subject matter of this thesis.

1

2

Several problems in matrix analysis require to construct a more concise version

of a matrix generally performed by a re-ordering of the columns [33], such that the

new smaller matrix is as good a representative of the original as possible. One of

the criteria that defines the quality of a subset of columns of a matrix is how well-

conditioned the sub-matrix that they define is. To motivate the discussion, consider

the set of three vectorse1 =

1

0

 , e2 =

0

1

 , u =

√1− ϵ2

ϵ

 ,

which are clearly dependent, and any two of which are a basis. Thus any pair can

serve to reconstruct all vectors. Suppose we choose e1, u as the basis, then e2 =

(1/ϵ)u − (
√
1− ϵ2/ϵ)e1, and we have a numerical instability in this representation

as ϵ → 0. Such problems get more severe as the dimensionality of the space gets

large (curse of dimensionality), and it is natural to ask the representatives to be

“as far away from each other as possible”. From the simplest example, it is clear

to see that two vectors orthogonal to each other will capture more information

about a superset of columns than the two that have an acute angle between each

other. Hence, in its generality, this vaguely stated problem can be stated as finding

a subset of columns with the maximum volume possible or equivalently with the

maximum determinant. Indeed, in one of the early works studying Rank Revealing

QR (RRQR) factorizations [39], while discussing different options on how to choose

a good sub-matrix, it was noted that it turns out that “the selection of the sub-

matrix with the maximum smallest singular value suggested in [32] can be replaced

by the selection of a sub-matrix with maximum determinant”.

Although selecting a subset of columns is insightful to obtain a compact repre-

sentation, this approach in general does not yield an optimal subspace as a solution

to our problem with respect to certain matrix norms. The usual spectral approach

to this problem is to take the best rank-k (k < min{m,n}) approximation revealed

by the Singular Value Decomposition (SVD), which minimizes the error with re-

spect to any unitarily invariant norm. Geometrically viewed, SVD reveals the best

k dimensional subspace in the sense that the column vectors of A are not so “far

3

away” from it. The immediate question is, whether it is possible to quickly select

a subset of columns so that the subspace that they define is as close as possible to

the optimal one, hoping that it will give similar results, i.e. that the column vectors

of A will be close to it. There are numerous practical impacts of choosing actual

columns of a matrix rather than using a new set of coordinates revealed by the

singular values. For example, in statistical data analysis, the singular vector repre-

sentation might not be suitable to make inferences about the actual underlying data

since they are generally combinations of all the columns of the raw information in

A: in the microarray data, the combinations of the column vectors have no sensible

interpretation [45].

In brief, there are two simple paradigms for attacking the problem we consider

which can be stated as:

• choose columns so that they are “far apart” from each other

• choose columns so that they are “close enough” to the optimal subspace that

reconstructs the whole matrix

This thesis presents algorithms and complexity theoretic results about the

problems related to these two main approaches.

1.2 Our Contributions and Outline

In Chapter 2, we first present preliminaries together with the related work. As

a motivation to our theoretical work, we then present a fast spectral graph drawing

algorithm in Chapter 3 which is an improvement over the well known method called

Multidimensional Scaling (MDS). The algorithm uses a matrix decomposition called

CUR decomposition [50] (or CGR by [34]) and chooses a subset of columns by

making one pass over the matrix. The method of choosing pivot nodes corresponding

to the columns of the associated matrix gives valuable insights about the theoretical

justification of the success of the algorithm in practice.

In Chapter 4, inspired from the heuristic approach developed for the graph

drawing algorithm, we then turn our attention to formalizing the notions of a “good”

4

subset of columns. We define four related problems in which we try to find a sub-

matrix C ∈ Rm×k of a given matrix A ∈ Rm×n such that (i) σmax(C) (the largest

singular value of C) is minimum, (ii) σmin(C) (the smallest singular value of C) is

maximum, (iii) κ(C) = σmax(C)/σmin(C) (the condition number of C) is minimum,

and (iv) the volume of the parallelepiped defined by the column vectors of C is

maximum. We establish the NP-hardness of these problems and further show that

(i) and (iv) do not admit PTAS. We then study a natural greedy heuristic for the

maximum volume problem and show that it has approximation ratio 2−O(k log k).

Our analysis of the greedy heuristic is tight to within a logarithmic factor in the

exponent, which we show by explicitly constructing an instance for which the greedy

heuristic is 2−Ω(k) from optimal.

Chapter 4 is dedicated to proving an exponential inapproximability result for

MAX-VOL, thereby reducing the gap between the hardness of proved in the previous

chapter and the upper bound provided by the greedy algorithm. Specifically, we

prove that it is not approximable to within 2−ck for some absolute constant c > 0

unless P = NP . The conclusion is that the greedy algorithm is about all we can

hope for when it comes to worst case performance.

Chapter 5 presents a simple greedy deterministic algorithm for the problem of

low-rank approximation to a matrix, with guarantees on the performance and the

number of columns chosen. Our greedy algorithm chooses c columns from A with

c = Õ
(

k2 log k
ϵ2

µ2(A)
)
such that

∥A− CC+A∥F ≤ (1 + ϵ) ∥A− Ak∥F ,

where C is the matrix composed of the c columns, C+ is the pseudo-inverse of C,

CC+A is the best reconstruction of A from C, and µ(A) is a measure related to

the coherence in the normalized columns of A. To the best of our knowledge, this

is the first deterministic algorithm with performance guarantees on the number of

columns and a (1+ϵ) approximation ratio in Frobenius norm. The algorithm is quite

simple and intuitive and is obtained by combining a generalization of the well known

sparse approximation problem from information theory with an existence result on

the possibility of sparse approximation. We provide empirical results on various spe-

5

cially constructed matrices comparing our algorithm with the previous deterministic

approaches based on QR factorizations and a recently proposed randomized algo-

rithm. The results indicate that in practice, the performance of our algorithm can

be significantly better than the bounds suggest. In particular, our algorithm gener-

ally outperforms the other algorithms, even the randomized algorithms which have

better asymptotic theoretical guarantees (with high probability).

Finally, Chapter 6 discusses the results in a general framework and proposes

several open problems in different venues of research we have opened along with

possible ways of attack.

Chapter 3 contains mostly work which was published in [14, 15]. The material

in Chapter 4 appeared in [13]. The material in Chapter 5 is based on a manuscript

to be submitted. Chapter 6 is an extension of the paper which appeared in [12].

CHAPTER 2

Preliminaries and Related Work

This section summarizes the basic facts about linear algebra and matrices together

with the definitions related to our main work. The non-standard notation that we

adopt for a specific chapter will be given later at the beginning of the chapter. The

related work about spectral graph drawing will be given in the next chapter where

we introduce our own algorithm.

2.1 Overview of Matrices and Linear Algebra

We deal with matrices and vectors with real entries in Euclidean space. We

denote matrices and sets with capital letters. Small letters are generally used for

vectors and elements. Specifically, A ∈ Rm×n denotes a matrix with m rows and n

columns, which can be thought of as n column vectors in m dimensional Euclidean

space. The dot product of two m dimensional vectors x and y is given by

x · y =
m∑
i=1

xiyi,

where xi denotes the ith element of x. The standard norm of an m dimensional

vector x in this space is denoted by

∥x∥2 = x · x =

√√√√ m∑
i=1

|xi|2.

A(i) denotes the ith row of A for 1 ≤ i ≤ m, and A(j), the jth column of A

for 1 ≤ j ≤ n. Aij is the element at ith row and the jth column. AT denotes the

transpose of A, and diag(a1, a2 . . . , an) denotes a matrix with entries a1, a2 . . . , an

on its diagonal and zeros elsewhere, so

6

7

diag(a1, a2, . . . , an) =

a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · an

I denotes the identity matrix with diagonal entries 1, i.e. I = diag(1, 1, . . . , 1). The

spectral norm of a matrix A is given by

∥A∥2 = max
x̸=0

∥Ax∥2
∥x∥2

.

The Frobenius norm is given by

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

A2
ij.

span(A) denotes the subspace spanned by the column vectors of A. The range of a

matrix A ∈ Rm×n is

range(A) = {y ∈ Rm|y = Ax for some x ∈ Rn} = span(A(1) . . . A(n)).

The rank of A, rank(A), is the dimension of range(A) and is equal to the number

of linearly independent columns of A.

A matrix is called orthonormal if the pair-wise dot products of its columns

are all 0 and the columns have unit norm. An orthonormal transformation does

not change the norm of a vector; that is ∥Ux∥2 = ∥x∥2. An orthonormal matrix U

satisfies UTU = I. A square orthonormal matrix is orthogonal. The spectral norm

and the Frobenius norm are unitarily invariant in the sense that ∥UA∥2 = ∥A∥2 and
∥UA∥F = ∥A∥F for any orthogonal matrix U with proper dimensions. Typically,

we use C to denote a subset of columns of A, written C ⊂ A, i.e. C is a column

sub-matrix of A.

Every A ∈ Rm×n of rank r admits a factorization of the form

8

A = QR,

where Q ∈ Rm×r is an orthogonal matrix, and R ∈ Rr×n is upper triangular. That

is, the QR factorization reveals an orthonormal basis for the space spanned by the

columns of a matrix.

The Singular Value Decomposition (SVD) of a matrix A ∈ Rm×n of rank r is

denoted by

A = UΣV T

where U ∈ Rm×r is the orthonormal matrix of left singular vectors, Σ ∈ Rr×r is

the diagonal matrix containing the singular values of A in descending order, i.e.

Σ = diag(σ1(A), . . . , σr(A)) where σ1(A) ≥ σ2(A) . . . ≥ σr(A) > 0 are the singular

values of A. V ∈ Rr×n is the orthonormal matrix of right singular vectors. The SVD

reveals a lot of information about the structure of a matrix through the singular

values. Specifically, we have

∥A∥2 = σ1(A), ∥A∥F =

√√√√ r∑
i=1

σi(A)
2.

The “best” rank k approximation to A (with respect to a unitarily invariant norm)

is Ak = UkΣkV
T
k where Uk and Vk are the first k columns of the corresponding

matrices in the full SVD of A, and Σk is the k × k diagonal matrix of the first k

singular values. To be more precise:

min
B∈Rm×n,rank(B)=k

∥A−B∥2 = ∥A− Ak∥2 = σk+1(A).

min
B∈Rm×n,rank(B)=k

∥A−B∥F = ∥A− Ak∥F =
r∑

i=k+1

σi(A).

The pseudo-inverse ofA is denoted byA+ = V Σ+UT , where Σ+ = diag
(

1
σ1
, . . . 1

σr

)
=

Σ−1. Let C ∈ Rm×k be a full rank sub-matrix of A ∈ Rm×n, the best reconstruction

of A from C (with respect to a unitarily invariant norm) is CC+A. That is,

9

min
X∈Rk×n

∥A− CX∥2 = ∥A− CC+A∥2.

min
X∈Rk×n

∥A− CX∥F = ∥A− CC+A∥F .

2.2 Related Work

In this section, we review the basic related work about selecting a subset of

columns of a matrix. It falls into three main categories as related to our investigation.

• Results on Low Rank Matrix Approximation: This body of work, mainly pur-

sued in theoretical computer science, aims to construct an approximation to

Ak up to an arbitrary precision ϵ by choosing as few columns as possible. The

number of columns chosen is a function of k and ϵ.

• Results on Rank Revealing QR (RRQR) Factorization: An RRQR factoriza-

tion reveals the rank of a matrix by re-ordering the columns via pivoting strate-

gies. The algorithms developed for this purpose choose exactly k columns and

the quality of approximation is a function of k and n (n is the number of

columns of the matrix).

• Results on Volume: We review the results revealing the relationship between

the volume of a subset of column vectors of a matrix and its low-rank approx-

imations and RRQR factorizations.

2.2.1 Low-Rank Matrix Approximation

With the advent of massive data sets, much work in theoretical computer

science has been on finding algorithms for matrix approximation by considering a

careful choice of a subset of the columns of the data matrix. The seminal paper

by Frieze, Kannan and Vempala [30] gives a randomized algorithm that chooses

a subset of columns C ∈ Rm×c of A such that ∥A− CC+A∥F ≤ ∥A− Ak∥F +

ϵ∥A∥F , where c = poly(k, 1/ϵ, 1/δ), and δ is the failure probability of the algorithm.

Subsequent work [25, 26, 53] introduced several improvements on the dependence of c

10

on k, 1/ϵ and 1/δ also extending the analysis to the spectral norm. These algorithms

sample columns of the matrix with probability proportional to their Euclidean norm

squared. The related information is stored in the memory after one pass over the

matrix and the approximation is computed in the second pass. Later, [53] showed

that the same sampling scheme also yields similar results in the spectral norm.

Recently, the effort has been towards eliminating the additive term in the

inequality thereby yielding a relative approximation of the form ∥A− CC+A∥F ≤
(1+ϵ)∥A− Ak∥F . Along these lines, Deshpande et al. [24] first showed the existence

of such approximations introducing a sampling technique related to the volume of

the simplex defined by the column subsets of size k, without giving a polynomial

time algorithm. Specifically, they showed that there exists k columns with which

one can get a
√
k + 1 relative error approximation in Frobenius norm, which is tight.

Later, Deshpande and Vempala [24] and Drineas et al. [27] provided algorithms with

different sampling schemes attaining the (1 + ϵ) approximation where the number

of columns is a function of k and ϵ. Other recent approaches for the low-rank ap-

proximation problem includes random projections [54], and sampling which exploits

geometric properties of high dimensional spaces [55]. All of these algorithms exploit

the power of randomization and they introduce a trade-off between the number of

columns chosen, the error parameter and the failure probability of the algorithm.

The proof techniques presented in these papers break when the random sampling

approach is replaced by a deterministic column selection procedure. In contrast,

our result in Chapter 6 provides a deterministic algorithm with approximation ratio

(1 + ϵ) together with a bound on the number of columns chosen. However, this

bound is a function of the input matrix, which might be an evidence that determin-

istic solutions for this problem are difficult to analyze.

2.2.2 Rank Revealing QR (RRQR) Factorization

When it comes to deterministic approximation, no (1 + ϵ) approximation al-

gorithms are known. The linear algebra community has developed deterministic

algorithms in the framework of rank revealing QR (RRQR) factorizations [16] which

yield some approximation guarantees in spectral norm. Given a matrix A ∈ Rn×n,

11

consider the QR factorization of the form

AΠ = Q

 R11 R12

0 R22

 , (2.1)

where R11 ∈ Rk×k and Π ∈ Rn×n is a permutation matrix. By the interlacing

property of singular values (see [33]), σk(R11) ≤ σk(A) and σ1(R22) ≥ σk+1(A). If

the numerical rank of A is k, i.e. σk(A) ≫ σk+1(A), then one would like to find

a permutation Π for which σk(R11) is sufficiently large and σ1(R22) is sufficiently

small. A QR factorization is said to be a rank revealing QR (RRQR) factorization

if σk(R11) ≥ σk(A)/p(k, n) and σ1(R22) ≤ σk+1(A)p(k, n), where p(k, n) is a low

degree polynomial in k and n.

Much research on finding RRQR factorizations has yielded improved results

for p(k, n) [16, 17, 18, 19, 20, 21, 37, 39, 49]. These algorithms make use of the local

maximum volume concept. Tight bounds for p(k, n) can be used to give deterministic

low rank matrix approximation with respect to the spectral norm, via the following

simple fact.

Theorem 2.1. Let Πk be the matrix of first k columns of Π in (2.1). Then,

∥A− (AΠk)(AΠk)
+A∥2 ≤ p(k, n) · ∥A− Ak∥2.

The best p(k, n) was proposed by Gu and Eisenstat [37]. The authors show

that there exists a permutation Π for which p(k, n) =
√
1 + k(n− k). It is not

known whether such a permutation can be computed in polynomial time. In-

stead, algorithms with p(k, n) =
√

1 + f2k(n− k) were given which run in O((m+

n logf n)n
2) time for f > 1 [37]. Hence, for constant f , the approximation ratio de-

pends on n and the running time is O(mn2 + n3 log n). Note that, these algorithms

consider choosing exactly k columns and the results are not directly comparable to

ours as they provide bounds on the spectral norm. It is not clear whether these

algorithmic results can be extended to give non-trivial bounds in Frobenius norm

or to choose more than k columns so as to yield (1 + ϵ) approximation.

Very recently, Boutsidis et al. [9] introduced a hybrid algorithm for the prob-

12

lem of choosing exactly k columns from a matrix A to approximate Ak, combining

the random sampling schemes and the deterministic column pivoting strategies ex-

ploited by QR algorithms. Their algorithm provides a performance guarantee of

p(k, n) = O
(
k

3
4 log

1
2 (k)(n− k)

1
4

)
for spectral norm, and p(k, n) = O

(
k
√
log k

)
,

with high probability.

2.2.3 Volume

There are a few results revealing the relationship between the volume of a sub-

set of columns of a matrix and its approximation. In [23], the authors introduced

‘volume sampling’ to find low-rank approximation to a matrix where one picks a

subset of columns with probability proportional to the volume of the simplex they

define. Improving the existence results in [23], [24] also provided an adaptive ran-

domized algorithm which includes repetitively choosing a small number of columns

by approximating volume sampling, to find a low-rank approximation. Thus, sam-

pling larger volume columns is good. A natural question is to ask what happens

when one uses the columns with largest volume (deterministic), which is our problem

MAX-VOL. For the algorithmic problem of obtaining the columns with largest vol-

ume, we rely on [24] as the qualitative intuition behind why obtaining the maximum

volume sub-matrix should play an important role in matrix reconstruction.

Goreinov and Tyrtyshnikov [35] provided more explicit statements of how vol-

ume is related to low-rank approximations in the following theorems:

Theorem 2.2. [35] Suppose that A is an m× n block matrix of the form

A =

 A11 A12

A21 A22

where A11 is nonsingular, k×k, whose volume is at least µ−1 times the maximum vol-

ume among all k×k sub-matrices. Then 1 ∥A22−A21A
−1
11 A12∥∞ ≤ µ(k+1)σk+1(A).

This theorem implies that if one has a good approximation to the maximum

volume k × k sub-matrix, then the rows and columns corresponding to this sub-

matrix can be used to obtain a good approximation to the entire matrix in the

1∥B∥∞ denotes the maximum modulus of the entries of a matrix B.

13

∞-norm. If σk+1(A) is small for some small k, then this yields a low-rank approxi-

mation to A. Thus, finding maximum volume sub-matrices is important for matrix

approximation. [36] also proves a similar result to Theorem 2.2.

Pan [48] unifies the main approaches developed for finding RRQR factoriza-

tions by defining the concept of local maximum volume and then gives a theorem

relating it to the quality of approximation.

Definition 2.3. [48] Let A ∈ Rm×n and C be a sub-matrix of A formed by any

k columns of A. V ol(C)(̸= 0) is said to be local µ-maximum volume in A, if

µV ol(C) ≥ V ol(C ′) for any C ′ that is obtained by replacing one column of C by a

column of A which is not in C.

Theorem 2.4. [48] For a matrix A ∈ Rn×n, an integer k (1 ≤ k < n) and µ ≥ 1,

let Π ∈ Rn×n be a permutation matrix such that the first k columns of AΠ is a local

µ-maximum in A. Then, for the QR factorization

AΠ = Q

 R11 R12

0 R22

 ,

we have σmin(R11) ≥ (1/
√
k(n− k)µ2 + 1)σk(A) and σ1(R22) ≤

√
k(n− k)µ2 + 1σk+1(A).

We note that, MAX-VOL asks for a stronger property of the set of vectors

to be chosen, i.e. it asks for a “good” set of vectors in a global sense rather than

requiring local optimality. Nevertheless, it is clear that an approximation ratio for

MAX-VOL translates to a result in the context of RRQR factorizations. Because,

if one could obtain a subset which is µ-maximum (as opposed to local µ-maximum)

then the same theorem would hold, since the volume of any new set of vectors

which is a result of exchanging a column between the current set and the rest of the

columns is smaller than the largest possible volume. This new result obtained via the

approximation factor we provide for Greedy is an alternative to a mathematically

different analysis provided by [37] which proves p(k, n) =
√
n− k 2k [37]. We state

the details in the relevant chapter.

CHAPTER 3

Approximating Multi-Dimensional Scaling

The main goal of this chapter is to present some of the motivations of the theoretical

work which follows. We present a spectral graph drawing algorithm based on the

well known method Multi-Dimensional Scaling (MDS). In this work, it became clear

that very compact and accurate representations to the distance matrix can lead to

very efficient algorithms for MDS with results comparable to pure MDS. This is

what led to the further investigation of compact ways to represent data.

3.1 Introduction and Related Work

Spectral graph drawing formulates graph drawing as a problem of computing

the eigenvalues and eigenvectors of certain matrices related to the structure of the

graph. We will briefly review popular methods.

High-Dimensional Embedding (HDE) described in [38] by Harel and Koren

embeds the graph in a high dimension (typically 50) with respect to carefully chosen

pivot nodes. One then projects the coordinates into two dimensions by using a well-

known multivariate analysis technique called principal component analysis (PCA),

which involves computing the first few largest eigenvalues and eigenvectors of the

covariance matrix of the points in the higher dimension.

ACE (Algebraic multigrid Computation of Eigenvectors) [43] minimizes Hall’s

Energy function E = 1
2

∑n
i,j=1 wij(xi − xj)

2 in each dimension, modulo some non-

degeneracy and orthogonality constraints (n is the number of nodes, xi is the one-

dimensional coordinate of the ith node and wij is the weight of the edge between i and

j). This minimization problem can be reduced to obtaining the eigen-decomposition

of the Laplacian of the graph. A multi-scaling approach is also used, creating coarser

levels of the graph and relating them to the finer levels using an interpolation matrix.

Being closer to what we propose, Landmark MDS (LMDS) [22] is also a fast

method using MDS based on sparsification of the distance matrix. It distinguishes

a few nodes in the graph as landmarks and performs a spectral decomposition on

14

15

the matrix of squared distances among those landmarks followed by positioning

of the other nodes using a barycentic method. The algorithms presented in [28,

61] employ slightly different strategies for approximating the distance information.

These algorithms have been shown to be extensions of the well known Nystrom

approximation [51], which is a general approach to find the top eigenspace of a

matrix approximately. Recently, a new method which the authors call Pivot MDS

(PMDS) [10] was also introduced which is slightly different from LMDS in that it

also uses the distance information between landmarks and non-landmarks.

3.2 MDS

The idea of reproducing the pair-wise distances of a metric space (specifically

a graph metric) in l2
2 has been known for a long time as Multi-Dimensional Scaling

(MDS) [7]. This idea was first used for graph drawing2 purposes by [44]. Here,

we give a more general and complete formulation of this technique along the ways

introduced in [14]. Different formulations appeared in [42, 58].

Given an n-point metric space (X,D), let A ∈ Rn×n be the distance matrix

keeping the pair-wise distances between the points in X. We are trying to find an

embedding of points in d-dimensional Euclidean space, x1, . . . , xn where xi ∈ Rd for

n ≥ i ≥ 1, so as to approximate the pair-wise distances in A, i.e.

∥xi − xj∥2 ≈ Aij, for i, j = 1, 2, . . . , n. (3.1)

Taking squares of both sides, we have

xi
2 + xj

2 − 2xi · xj ≈ A2
ij. (3.2)

Let L be an n× n symmetric matrix such that Lij = A2
ij, for i, j = 1, 2, . . . , n. Let

X,Q and 1n be defined as follows:

XT = [x1, . . . , xn], Q
T = [∥x1∥2, . . . , ∥xn∥2], 1nT = [1, . . . , 1].

2In graph drawing, (roughly speaking) one tries to assign coordinates to the nodes of the given
graph in the Euclidean plane.

16

Now (3.2) can be written as

[Q1n
T]ij + [Q1n

T]ji − 2[XXT]ij ≈ Lij. (3.3)

Since Aij = Aji
T , and (Q1n

T)T = 1nQ
T , the entire set of equations in matrix form

is

Q1n
T + 1nQ

T − 2XXT ≈ L. (3.4)

From this equation, since rank(X) ≤ d, it immediately follows that the rank of L

is at most d + 2. That is L has low rank (when d ≪ n). As it stands, (3.4) is

hard to solve on account of the dependance of Q on X. We massage it into a more

convenient form by using a projection matrix

γ = In −
1

n
1n1n

T , (3.5)

where In is the n×n identity matrix. Multiplying both sides of (3.4) by γ from left

and right, we obtain

γQ1n
Tγ + γ1nQ

Tγ − 2γXXTγ ≈ γLγ. (3.6)

Since γ is a projection operator, (3.4) becomes

(γX)(γX)T ≈ −1

2
γLγ, (3.7)

where we have used the fact that γ = γT . We may interpret this equation more

easily by setting

Y = γX = (X − 1

n
1n1n

TX). (3.8)

Y is an n × d matrix containing the same vectors of X in a different coordinate

system; one in which mean(Y) = 0; in this centered coordinate system, (3.4) is

considerably simplified. Letting M = −1
2
γLγ, we get

Y Y T ≈M. (3.9)

17

Note that Y has rank d. If A were a true Euclidean distance matrix, then M would

have rank at most d and we could exactly recover Y , solving our problem. Since

A may not be a true Euclidean distance matrix, i.e. A may not be isometrically

embeddable in Rd, M will generally have rank greater than d. Naturally, we want to

approximateM as closely as possible. The metric MDS chooses is the spectral norm,

so we wish to find the best rank-d approximation to M with respect to the spectral

norm. This is a well-known problem, which is equivalent to finding the largest d

eigenvalues of M . Specifically, order the eigenvalues of M such that |λ1| ≥ |λ2| ≥
· · · ≥ |λn| and let u1, u2, . . . , un be the associated eigenvectors. Then, the spectral

decomposition of M yields M =
∑n

k=1 λkukuk
T , and the rank-d approximation of M

is Md =
∑d

k=1 λkukuk
T . It is well known that Md is the best rank-d approximation

to M with respect to the spectral norm. The final centralized coordinates are then

given by Y = [
√
λ1u1, . . . ,

√
λdud]. This fact can easily be turned into a graph

drawing algorithm for d = 2. Specifically, there are two stages:

(i) computing all-pairs shortest path lengths to obtain L.

(ii) finding a rank-d approximation of M = −1
2
γLγ which corresponds to comput-

ing the largest d eigenvalues and eigenvectors.

In order to implement (i), we run a BFS for each node. The complexity of

this step is O(|V ||E|). For (ii), rather than using an exact algorithm which will be

O(|V |3), we use a standard procedure typically referred to as the power iteration

to compute the eigenvalues and eigenvectors of M . The power iteration typically

produces results as good as the exact algorithm, but much more efficiently. It starts

with some random initial vectors and iteratively multiplies them with the relevant

matrix modulo orthogonality constraints. The procedure stops when some termina-

tion condition is met, for example, when the change in direction of the eigenvector is

negligible, i.e., the cosine of the dot product of the previous estimate and the newly

computed estimate is above 1− ϵ for some small ϵ. We impose one additional con-

dition for termination, which ensures that the ratio of the direction change between

two consecutive iterations is above some value, 1 + ϵ in our case. The convergence

of the power iteration depends on the eigenvalues of the matrix; in practice it takes

18

some constant number of iterations to compute the eigenvalues to some precision,

since convergence is exponentially fast. The matrix multiplications we perform in the

power iteration take O(|V |2) time, which makes the overall complexity of the power

iteration O(d|V |2). Thus, the complexity of our algorithm is O(|V ||E| + d|V |2),
which is equal to O(|V ||E|) for d = 2. The space complexity is O(|V |2) since we

need to store all the pair-wise distances.

Algorithm 1 MDS(G = (V,E))

1: Compute the distance matrix D using an APSP algorithm on G
2: Define matrix L such that Lij = D2

ij.
3: return Y = PowerIteration(−1

2
γLγ, ϵ) % epsilon is a tolerance

Algorithm 2 PowerIteration(M ,ϵ)

1: current← ϵ; y1 ← random/∥random∥
2: repeat
3: prev ← current
4: u1 ← y1
5: y1 ←Mu1

6: λ1 ← u1 · y1 % compute the eigenvalue
7: y1 ← y1/∥y1∥
8: current← u1 · y1
9: until current ≥ 1− ϵ or |current/prev| ≤ 1 + ϵ
10: current← ϵ; y2 ← random/∥random∥
11: repeat
12: prev ← current
13: u2 ← y2
14: u2 ← u2 − u1(u1 · u2) % orthogonalize against u1

15: y2 ←Mu2

16: λ2 ← u2 · y2
17: y2 ← y2/∥y2∥
18: current← u2 · y2
19: until current ≥ 1− ϵ or |current/prev| ≤ 1 + ϵ
20: return (

√
λ1y1

√
λ2y2)

3.2.1 Performance Analysis of MDS

The formal problem that MDS id attempting to solve is a problem in minimum

distortion finite metric embedding. MDS approaches this problem using a spectral

19

decomposition of the matrix of squared distances. We now give some results that

explain the intuition behind why and when MDS will work well in practice. The

distance matrix D represents a finite metric space. MDS uses a spectral technique

to estimate L, where Lij = D2
ij. Suppose that the optimal embedding (which we

define below) is given by the coordinates z1, . . . , zn, which we collect in the matrix

Z (analogous to X,Y). Let DZ and LZ be the distance matrix and the matrix of

squared distances implied by Z. We can then write

L = LZ + ϵ. (3.10)

We refer ϵ as the metric embedding error. Z is optimal in that ∥ϵ∥2 is infimum over

all possible Z. L is embeddable if ϵ = 0.

Theorem 3.1. If L is embeddable, then, up to an orthogonal transformation, MDS

returns Z − 1
n
1n1n

TZ.

Proof. Multiplying both sides of (3.10) by γ from the left and right, we obtain

γLγ = γLZγ

= −2(Z − 1

n
1n1n

TZ)(Z − 1

n
1n1n

TZ)T

= −2AAT ,

(3.11)

where A = Z − 1
n
1n1n

TZ is rank-d. Since MDS computes a rank-d approximation

Ad of the matrix −1
2
γLγ, and the right hand side of (3.11) is rank-d, it exactly

recovers −1
2
γLγ, i.e., AdAd

T = −1
2
γLγ = AAT . Since the singular values of a

matrix A are the nonnegative square roots of the eigenvalues of AAT and the left

singular vectors of that matrix are the eigenvectors of AAT , we can write the singular

value decompositions of Ad and A as Ad = UΣV1
T and A = UΣV2

T . Multiplying

the equation for Ad from left by V1, we have AdV1 = UΣ since V1 is orthogonal.

Substituting this expression in the equation for A, we obtain A = AdV1V2
T . Note

that V = V1V2
T is also orthogonal since V V T = Id and therefore Ad differs from A

by at most an orthogonal transformation.

Since the distance matrix is invariant to orthogonal transformations, we obtain

20

the following corollary, which is the basic intuition behind MDS:

Corollary 3.2. When the distance matrix is embeddable, the coordinates recovered

by MDS exactly reproduce the distance matrix.

When the distance matrix is not exactly embeddable, but the embedding error

ϵ is small, MDS should approximately reproduce the distance matrix. Suppose that

ϵ ̸= 0, and let

M = −1

2
γLZγ

= −2(Z − 1

n
1n1n

TZ)(Z − 1

n
1n1n

TZ)T .
(3.12)

Let ϵ1 = −1
2
γϵγ. Then, using (3.10), −1

2
γLγ = M + ϵ1. The next theorem states

that the optimal rank-d approximation for −1
2
γLγ is a also a good approximation

to M (up to the embedding error ϵ).

Theorem 3.3. Let Md be the optimal rank-d approximation to −1
2
γ Lγ = M + ϵ1.

Then, ∥Md −M∥2 ≤ ∥ϵ∥2.

Proof. By the triangle inequality, we have

∥Md −M∥2 = ∥Md −M − ϵ1 + ϵ1∥2
≤ ∥Md −M − ϵ1∥2 + ∥ϵ1∥2.

(3.13)

Since Md is the best rank-d approximation to M + ϵ1 and M is itself rank-d,

∥Md −M − ϵ1∥2 ≤ ∥M −M − ϵ1∥2
= ∥ϵ1∥2.

(3.14)

Thus, ∥Md −M∥2 ≤ 2∥ϵ1∥2. To conclude, note that since γ is a projection matrix,

∥γ∥2 ≤ 1, so by sub-multiplicativity, ∥ϵ1∥2 = ∥ −
1
2
γϵγ∥

2
≤ 1

2
∥γ∥22∥ϵ∥2 ≤

1
2
∥ϵ∥2.

21

Thus, if MDS returns the coordinates Y , then ∥γY Y Tγ − γZZTγ∥2 is small

provided that L is nearly embeddable (which depends on the perturbation ϵ). Un-

fortunately this alone does not guarantee that γY ≈ γZO for some orthogonal d× d

matrix O. In general, the eigenvectors are not stable to perturbations. The next

theorem relates the change in the eigenvectors to the spectrum.

Theorem 3.4 (Corollary 7.2.6 in [33]). Let ê1 and ê2 be the top two eigenvectors of

M + ϵ1, and e1 and e2 be the top two eigenvectors of M . Then there exists functions

f1 and f2 of M and ϵ1 such that ∥e1 − ê1∥2 ≤ f1(M, ϵ1) and ∥e2 − ê2∥2 ≤ f1(M, ϵ1).

Furthermore, these functions depend on how well separated the eigenvalues of M

are, the size of the error ϵ1, and how well aligned the error is to M .

The functions f1, f2 in Theorem 3.4 have the expected dependence on M, ϵ1.

In particular, the better separated the spectrum of M is and the smaller ϵ1 is, the

smaller the values of f1, f2 will be. An additional concern is how well aligned ϵ1

is to M . The precise formulation of this can be found in [33], but in a nutshell,

the perturbations in the small singular value subspaces of M should be small (i.e.

the relative perturbations should be small). According to Theorem 3.4, when the

eigenvalues of M are well separated and ϵ is small, then not only will Md be close

to M , but so will the top two eigenvectors match closely. Thus, MDS will recover a

close approximation to ZO for some orthogonal matrix O, i.e., the distance matrix

is nearly recovered. Note that the separation of the eigenvalues is a necessary con-

dition for the power iteration to converge quickly. Thus, when the power iteration

fails to converge quickly, it is already a sign that MDS may produce undesirable

results. However, it also means that any rank-2 decomposition, including the opti-

mal embedding must have a high relative embedding error. To see this, note that

∥ϵ1∥2F ≥
∑n

i=3 σ
2
j (L), and since σ2

3(L) ≈ σ2
1,2(L) (because the singular values are not

well separated), the embedding error will be a constant fraction of ∥L∥F .

3.3 Approximation of the Distance Matrix

Our goal is to develop an efficient algorithm for MDS while preserving its

accuracy. There are some properties of MDS which make it an interesting problem

for our investigation:

22

Figure 3.1: The main approach for approximating MDS

1. It embeds using the most important spectral information.

2. It uses the whole matrix L to get this information.

A convenient low-rank representation for L which we will use was presented in [50].

We will approximate L by a product of three smaller matrices. Here, we briefly

review the approach, following the notation used in [15]. Our general approach is

depicted in Figure 3.1.

Let i1, i2, . . . , ic be a set of distinct indices where c is a predefined positive in-

teger smaller than n and 1 ≤ ik ≤ n for k = 1, . . . , c. Let C = [L(i1), L(i2), . . . , L(ic)],

where L(i) denotes the ith column of L (L(i) also denotes the i
th row of L). If C is cho-

sen carefully, any column L(i) can approximately be written as a linear combination

of the columns of C, i.e.

L(i) ≈ Cα(i) for i = 1, 2, . . . , n, (3.15)

23

where α(i) is a c× 1 vector. Denoting α = [α(1), α(2), . . . , α(n)], we have

L ≈ Cα. (3.16)

Let Φ be the c × c matrix such that Φjk = Lij ik for j, k = 1, . . . c. Note that since

we also have CT = [L(i1), L(i2), . . . , L(ic)], Φ can be interpreted as the intersection

of C and CT on the matrix L. Now, since the columns of L can approximately be

expressed as a linear combination of the columns of C, the columns of CT can also

be expressed as a linear combination of the columns of Φ. This gives

CT ≈ Φα, (3.17)

where α is the same matrix as we defined above. If Φ has full rank, (3.17) yields

α = Φ−1CT . Combining this with (3.16), we have L = CΦ−1CT . More generally,

we do not assume that Φ has full rank, so we have

L ≈ CΦ+CT . (3.18)

The last expression indicates that we can approximate the distance matrix L by the

multiplication of three smaller matrices, which all have at most linear size in terms

of n. Note that C is n× c and Φ is c× c. Hence, the matrix-vector multiplications

in the power iteration procedure take linear time.

The main question is, how to choose the sub-matrix C. The following strategy

was heuristically proposed in [15]: The first point is chosen uniformly at random.

Then, at each step, we choose the furthest point to the set of points that have already

been chosen until c nodes are chosen. And then, C is formed with the corresponding

columns. Note that, this algorithm is also known to be a 2-approximation algorithm

for the k-center problem [60]. We begin presenting a practical implementation of

our algorithm for d = 2, by describing this procedure below. The number of pivot

nodes, c can be treated as a parameter to the algorithm; but we have experienced

that setting c = 50 is enough for getting good results on practically all graphs. The

sampling step, overall requires O(c|E|) time as we initiate a BFS from c nodes in

the graph.

24

Algorithm 3 ComputeCandPhi(G, method, c)

i1 ← unifrnd(1, |V |) % choose uniformly at random
C1 ← dist(i1, V) % BFS
for k = 2 to c do
ik ← max

1≤j≤n
min
1≤l≤k

{Cjl} %choose the furthest node

Ck ← dist(ik, V) % BFS
end for
Compute Φ % Φk j = Cik j

return (C,Φ)

We find the pseudo-inverse Φ+ by first computing the singular value decompo-

sition Φ = UΣV T , which can be performed in O(c3) time using standard procedures

(See for example [33]). The pseudo-inverse can then be computed by the expres-

sion Φ+ = V Σ+UT . Here, Σ+ is the diagonal matrix keeping the reciprocals of the

non-zero singular values, which are stored in Σ. Unfortunately, in order to get nu-

merically stable results, it is not enough to compute the reciprocals of the singular

values, since the small singular values which are close to zero should actually be

ignored, as they may be the result of numerical imprecision and will result in huge

instability in Σ+. To prevent such instability, we use a regularization method which

uses the expression

σi

σi
2 + α/σi

2
(3.19)

for the reciprocals in Σ+, where σi is the ith diagonal entry in Σ. The parameter

α is the regularization parameter, which must be chosen judiciously in order not to

distort the reciprocals of the large singular values too much. On the other hand, it

should result in values close to zero for the small singular values. Our experiments

revealed that α = σ1
3 is good enough for practical purposes where σ1 is the largest

singular value. However, we keep it as a parameter of the procedure, which is

presented below.

Having computed the pseudo-inverse of Φ, we compute L̂ = CΦ+CT from

which we obtain M̂ = −1
2
γL̂γ. Then, analogous to MDS, we obtain the coordinates

of the points in the embedding using the spectral decomposition of M̂ , which ap-

proximates M . This requires computing the top 2 eigenvalues and eigenvectors, for

25

Algorithm 4 Regularize(Σ, α)

for i = 1 to c do
Σii

+ ← Σii

Σ2
ii
+ α/Σ2

ii

end for
return Σ+

which we use the power iteration similar to the one used for MDS. In this procedure,

starting from the right, the matrix-vector multiplications can be performed using

O(c|V |) scalar additions and multiplications. The total number of iterations until

a predefined convergence condition holds, depends on the matrix processed. But,

since the convergence is exponential, in practice, a constant number of iterations is

enough. Overall, the running time of the power iteration step of the algorithm is

O(c|V |), which overall means that our algorithm runs in linear time.

Intuitively, the method that chooses the sub-matrix C tries to make the dot

product between two column vectors corresponding to the nodes as small as possible

while choosing the most distant node from the already chosen. Because, the nodes

closer to the already chosen node are far away from the one to be chosen. Hence,

small entries in one column vectors is multiplied by large entries in the other one.

In contrast, if two closer nodes are chosen, large entries are multiplied by other

large ones. In Figures 3.2 and 3.3, we provide a comparison between MDS and its

approximation for several graphs. As it is clearly seen, the information contained in

the sub-matrix C of the distance matrix provides a good approximation to the space

spanned by the first two eigenvectors. The striking similarity of the pictures of a

finite element mesh of a cow, provided by MDS and Approximate MDS also indicates

that our method is well suited to accelerate drawings of mesh-like real objects (see

Figure 3.4). Whereas, other fast spectral methods have problems visualizing this

graph, which is depicted in Figure 3.5. Table 3.1 gives the running time comparison

of the two methods on a 2 GB Pentium 4HT 3.0 Ghz machine. The experiments

reveal that our approximation is a vast improvement over MDS in terms of running

time. Overall, this simple heuristic is empirically successful at approximating MDS

by choosing columns that(roughly speaking)

• are far away from each other

26

• capture the relevant spectral information of the matrix

Inspired from this two simple observations, we investigate the problem of choosing

subsets of columns of a matrix so that they satisfy certain related properties to the

goals above. So the problem we would like to formulate based on our success with

MDS is:

• Can we recover the important subspace of L efficiently so that its properties

with respect to MDS is unchanged?

• Can we do this without knowing L (i.e. with an online manner)?

As we will see Problem (i) is already hard enough to analyze theoretically. A

theoretical result on Problem (ii) would be icing on the cake, since in any practical

problem, it may be too costly to sample all the entries in L. Our heuristic algorithm

solves both (i) and (ii) which leaves hope that at least for some classes of distance

matrices, we can accomplish (i) and (ii).

27

Table 3.1: Running time comparison between MDS and Approximate
MDS on several graphs (Most of these graphs can be downloaded from
[1], [2] and [3]). Missing entries are graphs where it was too costly to
compute the entire distance matrix.

Graph |V| |E| MDS A-MDS(c=50)
3elt 4720 13722 8.47 0.04
sierpinski08 9843 19683 24.72 0.07
Grid 100x100 10000 19800 29.73 0.06
crack 10240 30380 45.00 0.10
4elt2 11143 32818 48.77 0.14
4elt 15606 45878 133.33 0.25
sphere 16386 49152 136.69 0.27
finan512 74752 261120 - 1.43
ocean 143437 409593 - 3.56
144 144649 1074393 - 6.03
wave 156317 1059331 - 4.78
auto 448695 3314611 - 21.67
Florida 1048506 1330551 - 23.45
California 1613325 1989149 - 36.13
Texas 2073870 2584159 - 45.89

28

MDS A-MDS (c=25)

4970
|V | = 4970
|E| = 7400

running time = 5.04 sec. running time = 0.01 sec.

sierpinski08
|V | = 9843
|E| = 19683

running time = 24.72 sec. running time = 0.03 sec.

3elt
|V | = 4720
|E| = 13722

running time = 8.47 sec. running time = 0.015 sec.

4elt
|V | = 15606
|E| = 45878

running time = 133.33 sec. running time = 0.13 sec.

Figure 3.2: Comparison of Layouts Computed by MDS and Approximate-
MDS I

29

MDS A-MDS (c=25)

4elt2
|V | = 11143
|E| = 32818

running time = 48.77 sec. running time = 0.07 sec.

mesh 50× 50
|V | = 2500
|E| = 4950

running time = 6.83 sec. running time = 0.01 sec.

sphere
|V | = 16386
|E| = 49152

running time = 136.69 sec. running time = 0.14 sec.

whitaker3
|V | = 9800
|E| = 28989

running time = 42.11 sec. running time = 0.41 sec.

Figure 3.3: Comparison of Layouts Computed by MDS and Approximate-
MDS II

30

MDS A-MDS (c=25)

cow
|V | = 1820
|E| = 7940

running time = 6.03 sec. running time = 0.01 sec.

Figure 3.4: Comparison of MDS and Approximate-MDS on a finite ele-
ment mesh of a cow with |V | = 1820, |E| = 7940.

A-MDS (c=25) HDE ACE

Figure 3.5: Comparison of A-MDS with other spectral methods (HDE
and ACE) on the finite element mesh of a cow with |V | = 1820, |E| = 7940.

CHAPTER 4

MAX-VOL and Related Problems

4.1 Introduction

As a reminder to the example presented in the introduction, consider the set

of three vectors e1 =

1

0

 , e2 =

0

1

 , u =

√1− ϵ2

ϵ

 ,

which are clearly dependent, and any two of which are a basis. Thus any pair can

serve to reconstruct all vectors. Suppose we choose e1, u as the basis, then e2 =

(1/ϵ)u − (
√
1− ϵ2/ϵ)e1, and we have a numerical instability in this representation

as ϵ → 0. Such problems get more severe as the dimensionality of the space gets

large (curse of dimensionality), and it is natural to ask the representatives to be

“as far away from each other as possible”. A natural formalization of this problem

is to find the representatives which span the largest volume, since the volume is

a quantification of how far the vectors are from each other. Another would be to

choose them so that the matrix that they form is well conditioned, i.e. its condition

number is small which intuitively means that the matrix is as close as possible

to an orthogonal one and its smallest singular value is large with respect to the

largest singular value. Thus, given a set of n vectors in Rm represented as a matrix

A ∈ Rm×n and a positive integer k, we discuss four distinct problems in which we

ask for a subset C ∈ Rm×k satisfying some spectral optimality condition:

1. MinMaxSingularValue: σ1(C) is minimum;

2. MaxMinSingularValue: σk(C) is maximum;

3. MinSingularSubset: κ(C) = σ1(C)/σk(C) is minimum;

4. MAX-VOL: V ol(C) =
∏k

i=1 σi(C), the volume of the parallelepiped defined

by the column vectors of C is maximum.

31

32

4.1.1 Contributions of This Chapter

First, we establish the NP-hardness of these four problems. We then obtain

the following inapproximability results:

1. MinMaxSingularValue is inapproximable to within 2/
√
3− ϵ;

2. MAX-VOL is inapproximable to within 2
√
2/3 + ϵ.

Here ϵ > 0 is an arbitrarily small constant.

Next, we consider a simple (deterministic) greedy algorithm for the last prob-

lem and show that it achieves a 1/k! approximation to the optimal volume when

selecting k columns. We also construct an explicit example for which the greedy

algorithm gives no better than a 1/2k−1 approximation ratio, thus proving that our

analysis of the greedy algorithm is almost tight (to within a logarithmic factor in

the exponent). An important property of the approximation ratio for the greedy

algorithm is that it is independent of n, and depends only on the number of columns

one wishes to select.

We then consider the related problem of choosing the maximum number of

vectors with a given volume, in the case when all columns in A have unit norm. If

the optimal algorithm loses a constant factor with every additional vector selected

(which is a reasonable situation), then the optimal volume will be 2−Ω(k). When the

optimal volume for k vectors is 2−Ω(k) as motivated above, we prove that the greedy

algorithm chooses Ω(k/ log k) columns having at least that much volume. Thus, the

greedy algorithm is within a log k-factor of the maximum number of vectors which

can be selected given a target volume.

The 1/k! approximation ratio of the greedy algorithm is a general result about

selecting sequences of vectors which are near-orthogonal sequentially. Each step in

the sequential algorithm turns out to be successively worse which is what leads to the

1/k! approximation. It turns out that even this approximation ratio has had some

unexpected consequences: indeed, [56] shows that vectors constructed by Greedy

can be used to obtain approximate Fekete points. Further, a 1/k! approximation

ratio is only O(log k) (in the exponent) worse than the optimal as we will show in

the next chapter.

33

4.1.2 Preliminaries and Notation

Let A = {v1, v2, . . . , vn} be given in column notation. The volume of A, V ol(A)

can be recursively defined as follows: if A contains one column, i.e. A = {v1}, then
V ol(A) = ∥v∥, where ∥ · ∥ is the Euclidean norm. If A has more than one column,

V ol(A) = ∥v − π(A−{v})(v)∥ · V ol(A − {v}) for any v ∈ A, where πA(v) is the

projection of v onto the space spanned by the column vectors of A. It is well known

that π(A−{v})(v) = AvA
+
v v, where Av is the matrix whose columns are the vectors

in A − {v}, and A+
v is the pseudo-inverse of Av (see for example [33]). Using this

recursive expression, we have

V ol(S) = V ol(A) = ∥v1∥ ·
n−1∏
i=1

∥vi+1 − AiA
+
i vi+1∥

where Ai = [v1 · · · vi] for ≤ i ≤ n− 1.

4.2 Hardness of Subset Selection Problems

We define four decision problems:

Problem: Min-MaxSingularValue

Instance: A matrix A ∈ Rm×n of rank at least k, and M ∈ R.

Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σ1(C) ≤M .

Problem: Max-MinSingularValue

Instance: A matrix A ∈ Rm×n of rank at least k, and M ∈ R.

Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σk(C) ≥M .

Problem: Min-SingularSubset

Instance: A matrix A ∈ Rm×n of rank at least k, and M ∈ R.

Question: Does there exist a sub-matrix C ∈ Rm×k of A such that σ1(C)/σk(C) ≤
M .

34

Problem: MAX-VOL

Instance: A matrix A ∈ Rm×n with normalized columns and of rank at least k,

and M ∈ [0, 1].

Question: Does there exist a sub-matrix C ∈ Rm×k of A such that V ol(C) ≥M?

Theorem 4.1. Max-MinSingularValue, Min-MaxSingularValue, Min-SingularSubset

and MAX-VOL are NP-Hard.

Proof. We give a reduction from ‘exact cover by 3-sets’, which is known to be NP-

complete (See for example [31, 41]). This reduction will provide the NP-hardness

result for all the problems.

Problem: Exact cover by 3-sets (X3C)

Instance: A set Q and a collection C of 3-element subsets of Q.

Question: Does there exist an exact cover for Q, i.e. a sub-collection C ′ ⊆ C such

that every element in Q appears exactly once in C ′?

We use the following reduction from X3C: let Q = {q1, q2, . . . qm} and C =

{c1, c2, . . . cn} be given as an instance of X3C. We construct the matrix A ∈ Rm×n,

in which each column A(j) corresponds to the 3-element set cj. The non-zero entries

in A(j) correspond to the elements in cj. Specifically, set

Aij =

 1/
√
3 if qi ∈ cj

0 otherwise

(Note that every A(j) has exactly 3 non-zero entries and has unit norm.) For the

reduced instances, we set k = m/3 and M = 1.

It is clear that the reduction is polynomial time. All that remains is to show

that the instance of X3C is true if and only if the corresponding instances of the

four decision problems are true.

Suppose the instance of X3C is true. Then, there is a collection C ′ = {ci1 , ci2 , . . . , cim/3
}

of cardinality m/3, which exactly covers Q. (Note that, m should be a multiple of

35

3, otherwise no solution exists.) Consider the sub-matrix C of A corresponding to

the 3-element sets in C ′. Since the cover is exact, cij ∩ cik = ∅ ∀j, k ∈ {1, . . . ,m/3}
where j ̸= k, which means that A(ij) · A(ik) = 0. Hence, C is orthonormal and all

its singular values are 1, which makes the instances of all four problems we consider

true.

Conversely, suppose the instance of Min-MaxSingularValue is true, i.e. there

exists C such that σ1(C) ≤ 1. We have σ1(C) = ∥C∥2 ≥ ∥C∥F/
√
k = 1, which gives

σ1(C) = 1. On the other hand,
∑k

i=1 σi(C)2 = ∥C∥2F = k. Thus, all the singular

values of C are equal to 1, i.e. C is an orthogonal matrix. Now, suppose the instance

of Max-MinSingularValue is true, namely there exists C such that σk(C) ≥ 1. Then,

the volume defined by the vectors in C, V ol(C) =
∏k

i=1 σi(C) ≥ 1. Since the vectors

are all normalized, we also have V ol(C) ≤ 1, which gives
∏k

i=1 σi(C) = 1. Thus,

all the singular values of C are equal to 1, which means that C is an orthogonal

matrix. If the instance of Min-SingularSubset is true, i.e. there exists C such that

σ1(C)/σk(C) ≤ 1, we immediately have that C is an orthogonal matrix. Finally,

suppose that the instance of MAX-VOL is true, this means that the columns are

pair-wise orthogonal and we have the desired result.

Thus, if any of the reduced instances are true, then there is a C in A whose

columns are pairwise orthogonal. We will now show that if such a C exists, then

the instance of X3C is true. Let u, v be two columns in C; we have u · v = 0. Since

the entries in C are all non-negative, ui · vi = 0 ∀i ∈ [1,m], i.e. u and v correspond

to 3-element sets which are disjoint. Hence, the columns in C correspond to a

sub-collection C ′ of 3-element sets, which are pair-wise disjoint. Therefore, every

element of Q appears at most once in C ′. C ′ contains m elements corresponding

to the m non-zero entries in C. It follows that every element of Q appears exactly

once in C ′, concluding the proof.

Our reduction in the NP-hardness proofs yields gaps, which also provides

hardness of approximation results for the optimization versions of the problems.

Theorem 4.2. Min-MaxSingularValue(k) is NP-hard to approximate within 2/
√
3−

ϵ.

36

Proof. We will provide a lower bound for σ1(C) for the reduced instance of X3C

when it is false, which will establish the hardness result. Assume the X3C instance

is not true. Then any collection of size m/3 has at least two sets which have non-

empty intersection. Let si and sj be two sets such that |si ∩ sj| = 1. And, let vi, vj

be the corresponding vectors in the Min-MaxSingularValue instance. Then, we have

v1 · v2 = 1/3. Hence, v1 and v2 correspond to the following matrix V up to rotation:

V =

 1 1
3

0 2
√
2

3

Note that, if |si∩sj| > 1, then the largest singular value of the corresponding matrix

will be greater than that of V as v1 · v2 will have a greater value. Also, it is a well

known fact that the largest eigenvalue of any symmetric matrix A is greater than

that of any principal sub-matrix of A. Thus, if we consider a matrix W of more

than two vectors which also contain vi and vj, its largest singular value (which is the

square root of the largest eigenvalue ofW TW) will be greater than that of V . Hence,

in order to find a lower bound for σ1(C), it suffices to analyze V . This amounts to

finding the square roots of the eigenvalues of V TV . Hence, we are seeking λ such

that

det(V TV − λI) =

∣∣∣∣∣∣
10
9
− λ 2

√
2

9

2
√
2

9
8
9
− λ

∣∣∣∣∣∣ = 0. (4.1)

λ = 4/3 and λ = 2/3 satisfy (4.1). Hence, σ1(C) ≥ 2/
√
3, which concludes the

proof.

Theorem 4.3. MAX-VOL(k) is NP-Hard to approximate within 2
√
2/3 + ϵ.

Proof. Assume the X3C instance is not true. Then, we have at least one overlapping

element between two sets. Any collection of size m/3 will have two sets v1, v2

which have non-zero intersection. The corresponding columns in A′ have d(v1, v2) =

∥v1 − (v1 · v2)v2∥ = ∥v1 − (1/3)v2∥ ≤ 2
√
2/3, where d(v1, v2) is the orthogonal part

of v1 with respect to v2. Since V ol(A′) ≤ d(v1, v2), we have V ol(A′) ≤ 2
√
2/3. A

polynomial time algorithm with a 2
√
2/3 + ϵ approximation factor for MAX-VOL

would thus decide X3C, which would imply P = NP .

37

4.3 The Greedy Approximation Algorithm for MAX-VOL

Having shown that the decision problem MAX-VOL is NP-hard, it has two

natural interpretations as an optimization problem for a given matrix A:

1. MAX-VOL(k): Given k, find a subset of size k with maximum volume.

2. MaxSubset(V): Given V and that A has unit norm vectors, find the largest

subset C ⊆ A with volume at least V .

The natural question is whether there exists a simple heuristic with some

approximation guarantee. One obvious strategy is the following greedy algorithm

which was also proposed in [11] to construct QR factorizations of matrices:

Algorithm 5 Greedy

1: C ← ∅
2: while |C| < k do
3: Select largest norm vector v ∈ A
4: Remove the projection of v from every element of A
5: C ← C ∪ v
6: end while

We would like to note that one can obtain a result related to the approximation

ratio of Greedy which is implicit in [37] via the following theorem:

Theorem 4.4. [37] For a matrix A ∈ Rn×n and an integer k(1 ≤ k < n), let

the first k columns of AΠ be the columns chosen by Greedy where Π ∈ Rn×n is a

permutation matrix and

AΠ = Q

 R11 R12

0 R22

Then, σi(R11) ≥ σi(A)/(

√
n− i 2i) for 1 ≤ i ≤ k.

Based on this theorem, one can easily derive the following result.

Theorem 4.5. Greedy has approximation ratio O(2−k(k−1)/2n−k/2).

38

Proof. Let C be the first k columns of AΠ, i.e. the columns chosen by Greedy.

Since, Q is orthogonal, we have

V ol(C) = V ol(R11) =
k∏

i=1

σi(R11) ≥
k∏

i=1

σi(A)/(
√
n− i 2i)

≥ 2−k(k−1)/2

(
k∏

i=1

σi(A)/n
1/2

)

≥ 2−k(k−1)/2n−k/2

(
k∏

i=1

σi(A)

)
≥ 2−k(k−1)/2n−k/2 · V olmax

where V olmax is the maximum possible volume a subset can attain.

This analysis is loose as the volume
∏k

i=1 σi(A) may not be attainable using

k columns of A. One major problem with this bound is that it has exponential

dependence on n. Our (almost) tight analysis will provide an improvement on the

approximation ratio of the theorem above in two ways: first, we will remove the

dependence on n, and second we get better than quadratic dependence on k in the

exponent. The outline of the remainder of this section is as follows: In Section

3.1, we analyze the performance ratio of Greedy. Section 3.2 presents an explicit

example for which Greedy is bad. We analyze Greedy for MaxSubset(V) in Section

3.3 where we require the columns of the matrix be unit norm, in which case the

volume is monotonically non-increasing or non-decreasing in the number of vectors

chosen by any algorithm.

4.3.1 Approximation Ratio of Greedy

We consider Greedy after k steps. First, we assume that the dimension of the

space spanned by the column vectors in A is at least k, since otherwise there is

nothing to prove. Let span(S) denote the space spanned by the vectors in the set

S, and let πS(v) be the projection of v onto span(S). In this section, let d(v, S) =

∥v−πS(v)∥ be the norm of the part of v orthogonal to span(S). Let Vk = {v1, . . . , vk}
be the set of vectors in order that have been chosen by the greedy algorithm at the

39

end of the kth step. Let Wk = {w1, . . . , wk} be a set of k vectors of maximum

volume. Our main result in this subsection is the following theorem:

Theorem 4.6. V ol(Vk) ≥ 1/k! · V ol(Wk).

We prove the theorem through a sequence of lemmas. The basic idea is to show

that at the jth step, Greedy loses a factor of at most j to the optimal. Theorem

4.6 then follows by an elementary induction. First, define αi = π(Vk−1)(wi) for

i = 1, . . . , k. αi is the projection of wi onto span(Vk−1) where Vk−1 = {v1, . . . , vk−1}.
Let βi = wi − π(Vk−1)(wi). Hence, we have

wi = αi + βi for i = 1, . . . , k. (4.2)

Note that the dimension of span(Vk−1) is k− 1, which means that the αi’s are

linearly dependent. We will need some stronger properties of the αi’s.

Definition 4.7. A set of m vectors is said to be in general position, if they are

linearly dependent and any m− 1 element subset of them are linearly independent.

It’s immediate from Definition 4.7 that

Remark 4.8. Let U = {γ1, . . . , γm} be a set of m vectors in general position. Then,

γi can be written as a linear combination of the other vectors in U , i.e.

γi =
∑
l ̸=i

λi
lγl (4.3)

for i = 1, . . . ,m. λi
l’s are the coefficients of γl in the expansion of γi.

Lemma 4.9. Let U = {γ1, . . . , γm} be a set of m vectors in general position. Then,

there exists a γi such that |λi
j| ≤ 1 for all j ̸= i.

Proof. Assume, without loss of generality that A = {γ2, γ3, . . . , γm} has the greatest
volume among all possible m − 1 element subsets of U . We claim that γ1 has the

desired property. Consider the set Bj = {γ1, . . . γj−1, γj+1, . . . , γm} for 2 ≤ j ≤
m. Let Cj = A − {γj} = Bj − {γ1}. Then, since A has the greatest volume,

V ol(A) = V ol(Cj) · d(γj, Cj) ≥ V ol(Bj) = V ol(Cj) · d(γ1, Cj). Hence, we have

d(γj, Cj) ≥ d(γ1, Cj). Then, using (4.3), we can write

40

γ1 = λ1
jγj +

∑
l ̸=j,l ̸=1

λ1
l γl (4.4)

Denoting δj = πCj
(γj) and θj = γj − δj, (4.4) becomes

γ1 =

(
λ1
jδj +

∑
l ̸=j,l ̸=1

λ1
l γl

)
+ λ1

jθj

where the term in parentheses is in span(Cj). Hence, the part of γ1 which is

not in span(Cj), θ1 = γ1 − πCj
(γ1) = λ1

jθj and so ∥θ1∥ = |λ1
j |∥θj∥. Note that

∥θ1∥ = d(γ1, Cj) and ∥θj∥ = d(γj, Cj), so d(γ1, Cj) = |λ1
j |d(γj, Cj). Since d(γ1, Cj) ≤

d(γj, Cj), we have |λ1
j | ≤ 1.

Lemma 4.10. If ∥αi∥ > 0 for i = 1, . . . , k and k ≥ 2, then there exists a set of m

vectors U = {αi1 , . . . , αim} ⊆ {α1, . . . , αk} with m ≥ 2 that are in general position.

Proof. Note that the cardinality of a set U with the desired properties should be

at least 2, since otherwise there is nothing to prove. We argue by induction on k.

For the base case k = 2, we have two vectors α1 and α2 spanning a 1-dimensional

space and clearly any one of them is linearly independent since neither is 0. Assume

that, as the induction hypothesis, any set of k ≥ 2 non-zero vectors {α1, . . . , αk}
spanning at most a k − 1 dimensional space has a non-trivial subset in general

position. Consider a k + 1 element set A = {α1, . . . , αk+1} with dim(span(A)) ≤ k.

If the vectors in A are not in general position, then there is a k element subset

A′ of A which is linearly dependent. Hence, dim(span(A′)) ≤ k − 1 for which, by

the induction hypothesis, we know that there exists a non-trivial subset in general

position.

The existence of a subset in general position guaranteed by Lemma 4.10 will

be needed when we apply the next lemma.

Lemma 4.11. Assume ∥αi∥ > 0 for i = 1, . . . , k. Then, there exists an αij such

that d(αij ,W
′
k−1) ≤ (m− 1) · d(vk, Vk−1), where W ′

k−1 = Wk − {wij}.

Proof. Let U = {αi1 , . . . , αim} ⊆ {α1, . . . , αk} be in general position where m ≥ 2

(the existence of U is given by Lemma 4.10). Assume αi1 has the property given

41

by Lemma 4.9. Let U ′ = {wi2 , . . . , wim}. We claim that αi1 has the desired prop-

erty. First, note that d(αi1 ,W
′
k−1) ≤ d(αi1 , U

′), since span(U ′) is a subspace of

span(W ′
k−1). We seek a bound on d(αi1 ,W

′
k−1). Using (4.3) and (4.2), we have

αi1 =
∑
l ̸=1

λ1
il
αil =

∑
l ̸=1

λ1
il
(wil − βil).

where αil ’s are the vectors in U and βil ’s are their orthogonal parts. Rearranging,

∑
l ̸=1

λ1
il
βil =

(∑
l ̸=1

λ1
il
wil

)
− αi1 .

Note that the right hand side is an expression for the difference between a vector in

span(U ′) and αi1 . Hence,

d(αi1 ,W
′
k−1) ≤ d(αi1 , U

′) = min
v∈span(U ′)

∥v − αi1∥

≤ ∥
∑
l ̸=1

λ1
il
wil − αi1∥

= ∥
∑
l ̸=1

λ1
il
βil∥

≤
∑
l ̸=1

λ1
il
∥βil∥

≤ (m− 1) ·max1≤l≤m∥βil∥

≤ (m− 1) · d(vk, Vk−1).

where the last two inequalities follow from Lemma 4.9 and the greedy property of

the algorithm, respectively.

Before stating the final lemma, which gives the approximation factor of Greedy

at each round, we need the following simple observation.

Lemma 4.12. Let u be a vector, V and W be subspaces and α = πV (u). Then

d(u,W) ≤ d(u, V) + d(α,W).

Proof. Let γ = πW (α). By triangle inequality for vector addition, we have

42

∥u − γ)∥ ≤ ∥u − α∥ + ∥α − γ∥ = d(u, V) + d(α,W). The result follows since

d(u,W) ≤ ∥u− γ∥.

Lemma 4.13. At the kth step of Greedy, there exists a wi such that d(wi,W
′
k−1) ≤

k · d(vk, Vk−1) where W ′
k−1 = Wk − {wi}.

Proof. For k = 1, there’s nothing to prove. For k ≥ 2, there are two cases.

1. One of the wi’s is orthogonal to Vk−1 (∥αi∥ = 0). In this case, by the greedy

property, d(vk, Vk−1) ≥ ∥wi∥ ≥ d(wi,W
′
k−1), which gives the result.

2. For all wi, ∥αi∥ > 0, i.e., all wi have non-zero projection on Vk−1. Assuming

that α1 = πVk−1
(w1) has the desired property proved in Lemma 4.11, we have

for the corresponding w1

d(w1,W
′
k−1) ≤ d(w1, Vk−1) + d(α1,W

′
k−1)

≤ ∥β1∥+ d(α1,W
′
k−1)

≤ ∥β1∥+ (m− 1) · d(vk, Vk−1)

≤ m · d(vk, Vk−1).

The first inequality is due to Lemma 4.12. The last inequality follows from the

greedy property of the algorithm, i.e. the fact that d(vk, Vk−1) ≥ ∥β1∥. The lemma

follows since m ≤ k.

The last lemma immediately leads to the result of Theorem 4.6, with a simple

inductive argument as follows:

Proof. The base case is easily established since V ol(V1) = V ol(W1). Assume that

V ol(Vk−1) ≥ 1/(k − 1)! · V ol(Wk−1) for some k > 2. By Lemma 4.13, we have a wi

such that d(wi,W
′
k−1) ≤ k · d(vk, Vk−1) where W ′

k−1 = Wk − {wi}. It follows that

43

V ol(Vk) = d(vk, Vk−1) · V ol(Vk−1)

≥
d(wi,W

′
k−1)

k
· V ol(Wk−1)

(k − 1)!

≥
d(wi,W

′
k−1)

k!
· V ol(W ′

k−1)

=
V ol(Wk)

k!
.

Theorem 4.6 combined with Theorem 2.4, we obtain the following result for

the RRQR factorization provided by the greedy algorithm:

Theorem 4.14. For a matrix A ∈ Rn×n, and an integer k (1 ≤ k < n), let

Π ∈ Rn×n be a permutation matrix such that the first k columns of AΠ are chosen

by Greedy k steps run. Then, for the QR factorization

AΠ = Q

 R11 R12

0 R22

 ,

we have σmin(R11) ≥ (1/
√
k(n− k)(k!)2 + 1)σk(A) and σ1(R22) ≤

√
k(n− k)(k!)2 + 1σk+1(A).

4.3.2 Lower Bound for Greedy

We give a lower bound of 1/2k−1 for the approximation factor of Greedy by

explicitly constructing a bad example. We will inductively construct a set of unit

vectors satisfying this lower bound. It will be the case that the space spanned by

the vectors in the optimal solution is the same as the space spanned by the vectors

chosen by Greedy. An interesting property of our construction is that both the

optimal volume and the volume of the vectors chosen by Greedy approach 0 in the

limit of a parameter δ, whereas their ratio approaches to 1/2k−1.

We will first consider the base case k = 2: let the matrix A = [v1w1w2] where

dim(A) = 2 and d(v1, w1) = d(v1, w2) = δ for some 1 > δ > 0 such that θ, the angle

between w1 and w2 is twice the angle between v1 and w1, i.e. v1 is ‘between’ w1

44

and w2. If the greedy algorithm first chooses v1, then limδ→0 V ol(V2)/V ol(W2) =

1/2 cos θ/2 = 1/2. Hence, for k = 2, there’s a set of vectors for which V ol(W2) =

(2− ϵ) · V ol(V2) for arbitrarily small ϵ > 0.

For arbitrarily small ϵ > 0, assume that there is an optimal set of k vectors

Wk = {w1, . . . , wk} such that V ol(Wk) = (1−ϵ)2k−1·V ol(Vk) where Vk = {v1, . . . , vk}
is the set of k vectors chosen by Greedy. The vectors in Wk and Vk span a subspace

of dimension k, and assume wi ∈ Rd where d > k. Let d(v2, V1) = ϵ1 = δ for some

1 > δ > 0, and d(vi+1, Vi) = ϵi = δϵi−1 for i = 2, . . . , k − 1. Thus, V ol(Vk) =

δk(k−1)/2 and V ol(Wk) = (1− ϵ)2k−1δk(k−1)/2. Assume further that for all wi in Wk,

d(wi, Vj) ≤ ϵj for j = 1, . . . , k − 2 and d(wi, Vk−1) = ϵk−1 so that there exists an

execution of Greedy where no {w1, . . . , wk} is chosen.
We will now construct a new set of vectorsWk+1 = W ′

k∪{wk+1} = {w′
1, . . . w

′
k, wk+1}

which will be the optimal solution. Let wj
i = πVj

(wi), and let eji = πVj
(wi)−πVj−1

(wi)

for j = 2, . . . , k and e1i = w1
i . Namely, eij is the component of wi which is in Vj,

but perpendicular to Vj−1 and e1i is the component of wi which in in the span of

v1. (Note that ∥eki ∥ = ϵk−1.) Let u be a unit vector perpendicular to span(Wk).

For each wi we define a new vector w′
i = (

∑k−1
j=1 e

j
i) +

√
1− δ2eki + δϵk−1u. Intu-

itively, we are defining a set of new vectors which are first rotated towards Vk−1 and

then towards u such that they are δϵk−1 away from Vk. Introduce another vector

wk+1 =
√
1− δ2v1 − δϵk−1u. Intuitively, this new vector is v1 rotated towards the

negative direction of u. Note that, in this setting ϵk = δϵk−1. We finally choose

vk+1 = wk+1.

Lemma 4.15. For any w ∈ Wk+1, d(w, Vj) ≤ ϵj for j = 1, . . . , k−1 and d(w, Vk) =

ϵk.

Proof. For w = wk+1, d(wk+1, Vj) = ϵk ≤ ϵj for j = 1, . . . , k. Let w = w′
i for some

1 ≤ i ≤ k. Then, for any 1 ≤ j ≤ k − 1, we have d(w′
i, Vj)

2 =
∑k−1

l=j+1 ∥eli∥2 + (1 −
δ2)∥eki ∥2 + δ2∥eki ∥2 =

∑k
l=j+1 ∥eli∥2 = d(wi, Vj)

2 ≤ ϵj
2 by the induction hypothesis.

Lemma 4.15 ensures that {v1, . . . , vk+1} is a valid output of Greedy. What

remains is to show that for any ϵ > 0, we can choose δ sufficiently small so that

45

V ol(Wk+1) ≥ (1− ϵ)2k ·V ol(Vk+1). In order to show this, we will need the following

lemmas.

Lemma 4.16. limδ→0 V ol(Wk+1) = 2ϵk · V ol(Wk).

Proof. With a little abuse of notation, let Wk+1 denote the matrix of coordinates

for the vectors in the set Wk+1.

Wk+1 =

w1,1 w1,2 · · · w1,k

√
1− δ2k

w2,1 w2,2 · · · w2,k 0
...

...
. . .

...
...

√
1− δ2wk,1

√
1− δ2wk,2 · · ·

√
1− δ2wk,k 0

δk δk · · · δk −δk

where wi,j is the i

th coordinate of wj, which is in Wk. (Note that this is exactly how

U is constructed in the inductive step). Expanding on the right-most column of the

matrix, we have

V ol(Wk+1) = |det(Wk+1)| = |
√

1− δ2k · det(A) + (−1)k+1δk · det(B)| (4.5)

where A and B are the corresponding minors of the coefficients, i.e. the left-most

lower and upper k×k sub-matrices of Wk+1, respectively. Clearly, we have det(B) =
√
1− δ2 · det(Wk) where Wk is the matrix of coordinates for the vectors in the set

Wk. Let C be the matrix obtained by replacing each w1,i by 1 in Wk. Then, using

row interchange operations on A, we can move the last row of A to the top. This

gives a sign change of (−1)k−1. Then, factoring out
√
1− δ2 and δk in the first and

last rows respectively, we have det(A) = (−1)k−1δk
√
1− δ2 · det(C). Hence, (4.5)

becomes

|det(Wk+1)| = (δk
√
1− δ2)|

√
1− δ2k · det(C) + det(Wk)| (4.6)

We will need the following lemma to compare det(Wk) and det(C).

46

Lemma 4.17. limδ→0 det(C)/ det(Wk) = 1.

Proof. For i > 1, the elements of the ith rows of both Wk and C has δi−1 as

a common coefficient by construction. Factoring out these common coefficients,

we have det(Wk) = δk(k−1)/2 · det(U) and det(C) = δk(k−1)/2 · det(U ′) where U

and U ′ are matrices with non-zero determinants as δ approaches 0. Furthermore,

limδ→0det(U) = det(U ′) as the elements in the first row of U approaches 1. The

result then follows.

Using Lemma 4.17 and (4.6), we have

limδ→0V ol(Wk+1) = limδ→0|det(Wk+1)| = 2δk|det(Wk)| = 2ϵk · V ol(Wk)

Theorem 4.18. V ol(Wk+1) ≥ (1− ϵ)2k · V ol(Vk+1) for arbitrarily small ϵ > 0.

Proof. Given any ϵ′ > 0 we can choose δ small enough so that V ol(Wk+1) ≥ 2ϵk(1−
ϵ′) · V ol(Wk), which is always possible by Lemma 4.16. Given any ϵ′′, we can apply

induction hypothesis to obtain Vk andWk such that V ol(Wk) ≥ (1−ϵ′′)2k−1·V ol(Vk).

Thus,

V ol(Wk+1) ≥ 2ϵk(1− ϵ′) · V ol(Wk)

≥ 2ϵk(1− ϵ′)(1− ϵ′′)2k−1 · V ol(Vk)

= (1− ϵ′)(1− ϵ′′)2k · V ol(Vk+1),

where we have used V ol(Vk+1) = ϵk ·V ol(Vk). Choosing ϵ′ and ϵ′′ small enough such

that (1− ϵ′)(1− ϵ′′) > 1− ϵ gives the result.

4.3.3 Maximizing the Number of Unit norm Vectors Attaining A Given

Volume

In this section, we give a result on approximating the maximum number of

unit norm vectors which can be chosen to have at least a certain volume. This

47

result is essentially a consequence of the previous approximation result. We assume

that all the vectors in A have unit norm, hence the volume is non-increasing in

the number of vectors chosen by Greedy. Let OPTk denote the optimal volume

for k vectors. Note that OPTk ≥ OPTk+1 and the number of vectors m, chosen by

Greedy attaining volume at least OPTk is not greater than k. Our main result states

that, if the optimal volume of k vectors is 2−Ω(k), then Greedy chooses Ω(k/ log k)

vectors having at least that volume. Thus, Greedy gives a log k-approximation to

the optimal number of vectors. We prove the result through a sequence of lemmas.

The following lemma is an immediate consequence of applying Greedy on Wk.

Lemma 4.19. Let Wk = {w1, . . . , wk} be a set of k vectors of optimal volume OPTk.

Then there exists a permutation π of the vectors in Wk such that dπ(k) ≤ dπ(k−1) ≤
. . . ≤ dπ(2) where dπi

= d(wπi
, {wπ1 , . . . , wπi−1

}) for k ≥ i ≥ 2.

We use this existence result to prove the following lemma.

Lemma 4.20. OPTm ≥ (OPTk)
(m−1)/(k−1) where m ≤ k.

Proof. Let Wk = {w1, . . . , wk} be a set of vectors of optimal volume OPTk. By

Lemma 4.19, we know that there exists an ordering of vectors in Wk such that

dπ(k) ≤ dπ(k−1) ≤ . . . ≤ dπ(2) where dπi
= d(wπi

, {wπ1 , . . . , wπi−1
}) for k ≥ i ≥ 2.

Let Wm
′ = {wπ(1), . . . , wπ(m)}. Then, we have OPTm ≥ V ol(Wm

′) =
∏m

i=2 dπi
≥

(
∏k

i=2 dπi
)(m−1)/(k−1) = (OPTk)

(m−1)/(k−1).

Lemma 4.21. Suppose OPTk ≤ 2(k−1)m logm/(m−k). Then, the greedy algorithm

chooses at least m vectors whose volume is at least OPTk.

Proof. We are seeking a condition for OPTk which will provide a lower bound for

m such that OPTm/m! ≥ OPTk. If this holds, then V ol(Greedym) ≥ Optm/m! ≥
OPTk and so Greedy can choose at least m vectors which have volume at least

OPTk. It suffices to find such an m satisfying (OPTk)
(m−1)/(k−1)/m! ≥ OPTk by

Lemma 4.20. This amounts to 1/m! ≥ (OPTk)
1−(m−1)/(k−1). Since 1/m! ≥ 1/mm for

m ≥ 1, we require 1/mm ≥ (OPTk)
1−(m−1)/(k−1). Taking logarithms of both sides

and rearranging, we have −(k − 1)m logm/(k −m) ≥ logOPTk. Taking exponents

of both sides yields 2(k−1)m logm/(m−k) ≥ OPTk.

48

In order to interpret this result, we will need to restrict OPTk. Otherwise,

for example if OPTk = 1, the greedy algorithm may never get more than 1 vector

to guarantee a volume of at least OPTk since it might be possible to misguess the

first vector. In essence, the number of vectors chosen by the algorithm depends

on OPTk. First, we discuss what is a reasonable condition on OPTk. Consider n

vectors in m dimensions which defines a point in Rm×n. The set of points in which

any two vectors are orthogonal has measure 0. Thus, define 2−α = maxij d(vi, vj).

Then, it is reasonable to assume that α > 0, in which case OPTk ≤ 2−αk = 2−Ω(k).

Hence, we provide the following theorem which follows from the last lemma under

the reasonable assumption that the optimal volume decreases by at least a constant

factor with the addition of one more vector.

Theorem 4.22. If OPTk ≤ 2−Ω(k), then the greedy algorithm chooses Ω(k/ log k)

vectors having volume at least OPTk.

Proof. For some α, OPTk ≤ 2−αk. Thus, we solve form such that 2−αk ≤ 2(k−1)m logm/(m−k).

Suitable rearrangements yield

m ≤ αk(k −m)

(k − 1) logm
≤ 2αk

logm

.

For m, the largest integer such that m ≤ 2αk/ logm, we have

m ≈ 2αk

log(2αk/ logm)
=

2αk

log(2αk)− log logm
= Ω

(
k

log k

)
.

In reality, for a random selection of n vectors in m dimensions, α will depend

on n and so the result is not as strong as it appears.

4.4 Discussion

Our analysis of the approximation ratio relies on finding the approximation

factor at each round of Greedy. Indeed, we have found examples for which the

volume of the vectors chosen by Greedy falls behind the optimal volume by as large

49

a factor as 1/k, making Lemma 4.13 tight. But it might be possible to improve the

analysis by correlating the ‘gains’ of the algorithm between different steps. Hence,

one of the immediate questions is that whether one can close the gap between

the approximation ratio and the lower bound for Greedy. We conjecture that the

approximation ratio is 1/2k−1.

We list other open problems as follows:

• Do there exist efficient non-greedy algorithms with better guarantees for MAX-

VOL?

• Volume seems to play an important role in constructing a low-rank approx-

imation to a matrix. Can the result of [35] be extended to yield a direct

relationship between low-rank approximations and large volume m × k sub-

matrices of a matrix? Or, can we establish a result stating that there must

exist a large volume k×k sub-matrix of a large volume m×k sub-matrix such

that one can find an approximation to the maximum volume k×k sub-matrix

by running the same algorithm again on the m× k sub-matrix?

We would like to note that the approximation ratio of Greedy algorithm is

considerably small because of the ‘multiplicative’ nature of the problem. Another

important problem which resembles MAX-VOL in terms of behavior (but not neces-

sarily in nature) is the Shortest Vector Problem (SVP), which is not known to have

a polynomial factor approximation algorithm. Indeed, the most common algorithm

which works well in practice has a 2O(n) approximation ratio [46] and non-trivial

hardness results for this problem are difficult to find.

CHAPTER 5

Exponential Inapproximability of MAX-VOL

This chapter proves the exponential inapproximability for MAX-VOL. We provide

a gap preserving reduction from the well known Label-Cover problem using the

Parallel Repetition Theorem [52]. In doing so, we will establish that the greedy

algorithm from previous chapter is about the best we could hope for.

5.1 Introduction

First, we briefly review simple facts about the inapproximability of NP-hard

problems. The following information can be found in a standard text about approx-

imation algorithms, e.g. [60]. Since we only consider maximization problems in this

chapter, we give all the definitions accordingly.

Consider a maximization problem Π for which we want to show an inapprox-

imability result. Namely, we would like to prove that there is no polynomial time

c approximation algorithm for Π assuming a complexity theoretic conjecture3. As-

suming x is an instance of Π, let OPT (x) denote the optimal value of problem Π

on x. There are two ways of proving inapproximability results:

1. Gap producing reduction: This is a polynomial time reduction from an NP-

complete problem to Π. Assume, for example, a reduction from SAT to Π.

This type of reduction maps an instance ϕ of SAT to x of Π. It comes with

two parameters f and α, and it satisfies

• if ϕ is satisfiable, OPT (x) ≥ f(x),

• if ϕ is not satisfiable, OPT (x) < α · f(x).

Note that this is the type of reduction that we provided in the previous chapter

to show inapproximability for MAX-VOL. This type of reduction shows α

inapproximability for Π.

3The conjecture is generally P ̸= NP in most cases. But weaker assumptions are also common.
c can be a function of the input

50

51

2. Gap preserving reduction: This is a polynomial time reduction from a max-

imization problem Π1 to another maximization problem Π2. It has four pa-

rameters f1, α, f2 and β. Given an instance x of Π1, it computes an instance

y of Π2 such that

• if OPT (x) ≥ f1(x), then OPT (y) ≥ f2(y),

• if OPT (x) < α · f1(x), then OPT (y) < β · f2(y).

Given that Π1 is α inapproximable, this reduction shows β inapproximability

for Π2.

The following can be easily obtained and is quite frequently used in proving inap-

proximability results:

Fact 5.1. If there is a gap producing reduction Γ from SAT to Π1 with parameters

f1 and α, and a gap preserving reduction Γ′ from Π1 to Π2 with parameters f1,

α, f2 and β, then there exists a gap producing reduction Γ′′ from SAT to Π2 with

parameters f2 and β.

5.1.1 Preliminaries and Notation

As a reminder, we introduce some preliminary notation. LetA = {v1, v2, . . . , vn}
be given in column notation. The volume of A, V ol(A) can be recursively de-

fined as follows: if A contains one column, i.e. A = {v1}, then V ol(A) = ∥v∥2,
where ∥ · ∥2 is the Euclidean norm. If A has more than one column, V ol(A) =

∥v − π(A−{v})(v)∥2 · V ol(A − {v}) for any v ∈ A, where πA(v) is the projection

of v onto the space spanned by the column vectors of A. It is well known that

π(A−{v})(v) = AvA
+
v v, where Av is the matrix whose columns are the vectors in

A − {v}, and A+
v is the pseudo-inverse of Av (see for example [33]). Using this

recursive expression, we have

V ol(S) = V ol(A) = ∥v1∥2 ·
n−1∏
i=1

∥vi+1 − AiA
+
i vi+1∥2

where Ai = [v1 · · · vi] for ≤ i ≤ n− 1.

52

We will also need the definition of “distance” of a vector to a subspace, and

the following lemma which will simplify the final proof:

Lemma 5.2 (Union Lemma). Given two sets of vectors P and Q = {q1, . . . , qm},
let d(q, P) = ∥q − πP (q)∥2 denote the distance of q ∈ Q to the space spanned by the

vectors in P . Then, V ol(P ∪Q) ≤ V ol(P) ·
∏n

i=1 d(qi, P).

Proof. We argue by induction on m. For m = 1, Q has one element and the

statement trivially holds. Assume that it is true for n = k where Q = {q1, . . . , qk}.
Then, for any qk+1

V ol(P ∪Q ∪ {qk+1}) =(a) V ol(P ∪Q) · d(qk+1, P ∪Q)

≤(b) V ol(P ∪Q) · d(qk+1, P)

≤ V ol(P) ·
k∏

i=1

d(qi, P) · d(qk+1, P)

= V ol(P) ·
k+1∏
i=1

d(qi, P).

(a) follows because d(q, A ∪ B) ≤ d(q, A) for any A, B and (b) follows by the

induction hypothesis.

5.2 Label-Cover Problem

Our reduction will be from the Label Cover problem. Label Cover combina-

torially captures the expressive power of a 2-prover 1-round proof system for the

problem Max-3SAT(5). Specifically, there exists a reduction from Max-3SAT(5) to

Label Cover and the well known parallel repetition technique for the specified proof

system corresponds to a new k-fold Label Cover instance. For simplicity, we prefer

to state our reduction from Label Cover and for the sake of completeness, we provide

the canonical reduction from Max-3SAT(5) to Label Cover.

Max-3SAT(5) is defined as follows: Given a set of 5n/3 variables and n clauses

in conjunctive normal form where each clause contains three distinct variables and

each variable appears in exactly five clauses, find an assignment of variables such

53

that it maximizes the fraction of satisfied clauses. The following result is well known

[4, 5]:

Theorem 5.3. There is a constant ϵ > 0, such that it is NP-hard to distinguish

between the instances of Max-3SAT(5) having optimal value 1 and optimal value at

most (1− ϵ).

Although the above result was proved for general 3CNF formulas, without

the requirement that each variable appears exactly 5 times, there is a standard

reduction from Max-3SAT to Max-3SAT(5) [29], which only results in a difference

in the constant ϵ.

A Label Cover instance L is defined as follows: L = (G(V,W,E), (ΣV ,ΣW),Π)

where

• G(V,W,E) is a regular bipartite graph with vertex sets V and W , and the

edge set E.

• ΣV and ΣW are the label sets associated with V and W , respectively.

• Π is the collection of constraints on the edge set, where the constraint on an

edge e is defined as a function Πe : ΣV → ΣW .

A labeling is an assignment to the vertices of the graph, σ : {V → ΣV }∪{W → ΣW}.
It is said to satisfy an edge e = (v, w) if Πe(σ(v)) = σ(w). The Label Cover problem

asks for an assignment σ such that the fraction of the satisfied edges is maximum.

In what follows, we describe a standard reduction from Max-3SAT(5) to Label

Cover: Given a Max-3SAT(5) instance with a 3CNF formula ϕ containing n clauses

and 5n/3 variables, let V be the vertices corresponding to each clause and W be

the vertices representing the variables. Let there be an edge between v ∈ V and

w ∈ W if the variable xw corresponding to w is contained (in any form) in the

clause Cv corresponding to v. Hence, we have defined the graph G(V,W,E). Let

ΣV = {1, . . . , 7} and let ΣW = {1, 2}. The labels for a vertex v ∈ V stand for the 7

different satisfying assignment for Cv in some order. And, the two labels for a vertex

w ∈ W correspond to the assignment given to the variable xw, i.e. true or false.

54

For an edge e = (v, w) and for 7 ≥ i ≥ 1, we define Πe(i) = 1 if the ith satisfying

assignment for Cv assigns false to xw, Πe(i) = 2 otherwise. Note that, in this Label

Cover instance, |V | = 5n/3, |W | = n, |E| = 5n; the degrees of the vertices in V

and W is 3 and 5, respectively. The following theorem can easily be derived and it

essentially states that the reduction above is a gap preserving one.

Theorem 5.4. There is a constant ϵ′ > 0, such that it is NP-hard to distinguish

between the instances of Label Cover having optimal value 1 and optimal value at

most (1− ϵ′).

In order to amplify the gap, one can define a new Label Cover instance for

which the vertex set is essentially a set Cartesian product of the original one. This

instance, as follows, captures a standard 2-prover 1-round protocol with parallel rep-

etition ℓ times applied. We first note that for a given set S = {s1, . . . , sn}, Sℓ consists

of all ℓ-tuples of the form (si1 , . . . , siℓ) where sij ∈ S and ij runs over {1, . . . , n} for
ℓ ≥ j ≥ 1. Given the original Label Cover instance L = (G(V,W,E), (ΣV ,ΣW),Π)

reduced from Max-3SAT(5), let Lℓ = (Gℓ(V ℓ,W ℓ, Eℓ),Σℓ
V ,Σ

ℓ
W ,Πℓ) where V ℓ, W ℓ,

Σℓ
V and Σℓ

W are the ℓ times Cartesian products of the sets V , W , ΣV and ΣW ,

respectively as defined above. Let

• Eℓ consist of all edges of the form e = (v, w) where v = (vi1 , . . . , viℓ) and

w = (wi1 , . . . , wiℓ) satisfying (vij , wij) ∈ E and for all l ≥ j ≥ 1.

• Πℓ be the collection of constraints on the edge set Eℓ. The constraint on an

edge e = (v, w) where v = (vi1 , . . . , viℓ) and w = (wi1 , . . . , wiℓ) is a function

Πℓ
e : Σ

ℓ
V → Σℓ

W which is essentially an l-tuple constraint (Πℓ
e1
, . . .Πℓ

el
), where

Πℓ
ej
= Π(vij ,wij

) for ℓ ≥ j ≥ 1.

A labeling σ of the vertices V ℓ and W ℓ is said to satisfy an edge e = (v, w) where v =

(vi1 , . . . , viℓ) and w = (wi1 , . . . , wiℓ), if Π
ℓ
e(σ(v)) = σ(w). Note that this requirement

is equal to Π(vij ,wij
)(σ(vij)) = σ(wij) for all ℓ ≥ j ≥ 1. It is easy to see that, in this

new Label Cover instance, |V | = (5n/3)ℓ, |W | = nℓ, |E| = (5n)ℓ, |Σℓ
V | = 7ℓ and

|Σℓ
W | = 2ℓ; the degrees of the vertices in V and W is 3ℓ and 5ℓ, respectively. The

following theorem is a well known result by Raz [52]:

55

Theorem 5.5. There is an absolute constant α > 0, such that it is NP-hard to

distinguish between the case that OPT (Lℓ) = 1 and OPT (Lℓ) ≤ 2−αℓ.

5.3 Exponential Inapproximability of MAX-VOL

5.3.1 The Basic Gadget

At the heart of our analysis is a set of vectors with a special property. We

will use a set of vectors (composed of binary entries for simplicity of construction)

such that any two of them have large dot-product. We will also require that the

dot product of a vector and the orthogonal complement of any other vector is also

large. More specifically, we need these dot products be proportional to the Euclidean

norms squared of the vectors.

Given a vector v = (v1 . . . vn) where vi ∈ {0, 1} for n ≥ i ≥ 1, we denote the

orthogonal complement of v by v = (v1 . . . vn) where vi = 1 if vi = 0, and vi = 0

otherwise. We begin with the following lemma:

Lemma 5.6. There exists a set of vectors B = {b1, . . . , b2n−1} of dimension 2n with

binary entries such that the following three conditions hold:

• ∥bi∥2 = 2(m−1)/2 for 2m− 1 ≥ i ≥ 1

• bi · bj = 2m−2 for 2m− 1 ≥ i > j ≥ 1.

• bi · bj = 2m−2 for 2m− 1 ≥ i > j ≥ 1.

Proof. We argue by induction on m. For m = 2, consider the following 3 vectors

which clearly satisfy the requirements:

p = 0011

q = 0101

r = 0110

We will use this simple observation in the inductive step. Now, assume the state-

ment holds for m = k, i.e. that there exists Bk = {b1, . . . , b2k−1} with the desired

56

properties. For a vector v = (v1 . . . v2k) in Bk, define a new vector v′ = (v′1 . . . v
′
2k+1)

such that v′2i−1 = v′2i = vi for 2
k ≥ i ≥ 1. In words, we define v′ by repeating the

elements of v twice in place. And, let B′
k be the set of all such vectors. To give

an example, let B2 be the set of three vectors described above. Then, representing

each vector row-wise, we have

B2 =

0 0 1 1

0 1 0 1

0 1 1 0

 , B′
2 =

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0

Note that ∥v′∥2 = 2k/2 and v · w = 2k−1 for all v′, w′ ∈ B′

k. Consider the last two

entries of all the vectors in Bk. By the inductive hypothesis, we have at least one

vector in B′
k ending with 0011 (or 1100 which will not change our argument as it is

symmetric). Consider the vectors

q′ = (q . . . q)︸ ︷︷ ︸
2k−1 times

r′ = (r . . . r)︸ ︷︷ ︸
2k−1 times

where q and r are defined as above. It is clear that ∥q′∥2 = ∥r′∥2 = 2k/2, q′ ·r′ = 2k−1,

and q′ · r′ = 2k−1. We claim that the set Bk+1 = B′
k ∪{q′}∪{r′} satisfies the desired

properties. For convenience, we explicitly show B3 continuing our example for k = 2:

B3 =

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0

0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0

For v′ ∈ B′

k, v
′ · q′ and v′ · r′ is exactly half of the number of 1’s in v′ since the

0’s of v′ do not contribute to the dot product and every block of two 1’s is multiplied

by the block 01 or 10. It is easy to see that this holds for the complement for q′ and

r′, too. Thus, v′ · q′ = v′ · r′ = v′ · q′ = v′ · r′ = 2k−1 completing our argument.

The proof of Lemma 5.6 actually yields an algorithm which starts with the

vectors p, q, r and inductively constructing the desired set by following the procedure

57

in the proof. It clearly works in time O(m2m).

5.3.2 The Reduction

According to Lemma 5.6, for m = 2ℓ−1+1, there exists a set of binary vectors

B = {b1, . . . , b2ℓ} of dimension 2(2
ℓ−1+1) such that the following three conditions

hold:

• ∥bi∥2 = 22
ℓ−2

for 2ℓ ≥ i ≥ 1

• bi · bj = 22
ℓ−1−1 for 2ℓ ≥ i > j ≥ 1.

• bi · bj = 22
ℓ−1−1 for 2ℓ ≥ i > j ≥ 1.

B can be constructed in time O(2ℓ22
ℓ
); note that this is a constant for constant ℓ.

For the sake of simplicity of our argument, we normalize the vectors in B, which

then clearly satisfies

• ∥bi∥2 = 1 for 2ℓ ≥ i ≥ 1

• bi · bj = 1/2 for 2ℓ ≥ i > j ≥ 1.

• bi · bj = 1/2 for 2ℓ ≥ i > j ≥ 1.

Given a Max-3SAT(5) instance and the reduction described in the previous

section, we will define a column vector for each vertex-label pair in Lℓ, making

(35n/3)ℓ + (2n)ℓ vectors in total. (Note that |V ℓ| = (5n/3)ℓ, |W ℓ| = nℓ, Σℓ
V =

{1, . . . , 7ℓ} and Σℓ
W = {1, . . . 2ℓ}). Each vector will be composed of |Eℓ| = (5n)ℓ

“blocks” which are either vectors from the set B or the zero vector according to

the adjacency information. More specifically, let Av,i be the vector for the vertex

label pair v ∈ V ℓ and i ∈ Σℓ
V . Similarly let Aw,j be the vector for the pair w ∈ W

and j ∈ Σℓ
W . Both of these vectors are (5n)ℓ2(2

ℓ−1+1) dimensional. The block of

Av,i corresponding to an edge e ∈ Eℓ is denoted by Av,i(e). The block of Aw,j

corresponding to an edge e ∈ Eℓ is denoted by Aw,j(e). We define

58

Av,i(e) =

bΠℓ

e(i)

3ℓ/2
if e is incident to v

−→
0 if e is not incident to v.

Aw,j(e) =

bj
5ℓ/2

if e is incident to w

−→
0 if e is not incident to w

In order to show how our reduction works, we present a part of a simple bipartite

graph in Figure 5.1 with all the edges drawn between two pairs of nodes, and

the corresponding (row) vectors computed by the reduction in Figure 5.2. Note

that Av,i has exactly 3ℓ non-zero blocks, and Aw,j has 5ℓ non-zero blocks. Hence,

according to the definition above, their Euclidean norm is 1. The column vector set

for the MAX-VOL instance is defined as

A ∈ RM×N = {Av,i|v ∈ V ℓ, i ∈ Σℓ
V } ∪ {Aw,j|w ∈ W ℓ, j ∈ Σℓ

W}.

Note thatM = (5n)ℓ2(2
ℓ−1+1) and N = (35n/3)ℓ+(2n)ℓ, both having polynomial size

in n for constant l. From an intuitive point of view, we define mutually orthogonal

subspaces for each edge, and then we “spread” the Euclidean norm of each vector

s

s

PPPPPPPPPPPPPPPPPP

s

s

v1

v2

w1

w2

e1

e3

e2

qqq
Figure 5.1: A part of a simple bipartite graph representing a Label-Cover
instance

59

Av1,1

Av1,2

Av2,1

Aw1,1

Aw2,1

e1 e2 e3

ae1(1) ae2(1)
−→
0

−→
0

ae1(2) ae2(2)
−→
0

−→
0

−→
0

−→
0 ae3(1)

−→
0

a(1) −→
0

−→
0

−→
0

−→
0 a(1) a(1) −→

0

qqq

qqq

qqq

q q q

q q q

q q q

q q q

ae(i) =
bΠℓ

e(i)

3ℓ/2

a(j) =
bj
5ℓ/2

Figure 5.2: The resulting (row) vectors in MAX-VOL instance computed
from the graph in Figure 5.1 by our reduction

to the subspaces corresponding to the edges incident to the vertex corresponding

to the vector. A crucial observation for this construction is that, vectors Av1,i1 and

Av2,i2 are orthogonal to each other for all v1, v2 ∈ V l, and i1, i2 ∈ Σℓ
V , since there

are no edges between the vertices in V ℓ. The same result holds for the vertices

in W ℓ. From now on, this fact will be used frequently without explicit reference.

We set the number of column vectors k to be chosen in the MAX-VOL instance to

|V ℓ|+ |W ℓ| = (5n/3)ℓ + nℓ.

5.3.3 The Analysis

We start with the completeness of the reduction:

Theorem 5.7. If the Label Cover instance Lℓ has a labeling that satisfies all the

edges, then in the MAX-VOL instance, there exists k column vectors with volume 1.

60

Proof. We show that there are at least k orthogonal vectors. For an edge e = (v, w),

let i ∈ Σℓ
V and j ∈ Σℓ

W be the labeling of v and w assigned by the optimal labeling

which satisfies all the edges. Then, in the MAX-VOL instance the dot product of

the vectors Av,i and Aw,j is

Av,i · Aw,j =
∑
e∈Eℓ

Av,i(e) · Aw,j(e) = bΠℓ
e(i)
· bj = bj · bj = 0. (5.1)

This is due to the fact that the labeling satisfies e, i.e. bΠℓ
e(i)

= bj. Since all the edges

are satisfied, and there exists a vector from each vertex corresponding to the optimal

labeling satisfying the equation (5.1), we have |V ℓ| + |W ℓ| orthogonal vectors, i.e.
we have k orthogonal vectors.

Before proving the soundness of the reduction, which will prove hardness of

approximation, we first give the intuition for the argument. According to our con-

struction of the MAX-VOL instance, there is a set of vectors corresponding to each

node in V ℓ and W ℓ. The set of vectors defined for a specific node has high pair-wise

dot products whereas a vector from a node v1 ∈ V ℓ and another from v2 in V ℓ are

orthogonal to each other. The same goes for the vectors defined for W ℓ. Hence, if

vectors are chosen from the same set corresponding to a single node, the total vol-

ume will decrease exponentially with respect to the number of such vectors. Let us

call these vectors duplicates in V ℓ and W ℓ. The more intricate part of the analysis

is due to the dot products between the vectors defined for V ℓ and W ℓ, which is en-

forced to be non-zero by the unsatisfied edges in the Label-Cover instance. We will

show that, in case the Label-Cover instance has few satisfied edges, any k vectors

chosen in the MAX-VOL instance should satisfy the following: either the number

of duplicates in V ℓ and W ℓ is large enough so that the total volume is small, or the

dot products between V ℓ and W ℓ leads to a small volume; this will prove our result.

Theorem 5.8. There exists absolute constants α and c such that, if the Label Cover

instance Lℓ does not have any labeling that satisfies more than 2−αℓ of the edges,

then the volume of any k vectors in the MAX-VOL instance is at most 2−ck.

Proof. Let V ℓ = {v1, . . . , v(5n/3)ℓ} and W ℓ = {w1, . . . , wnℓ}. Let Av be the vectors

corresponding to the vertex v ∈ V l: Av = {Av,i|i ∈ Σℓ
V }. Similarly, let Aw =

61

{Aw,j|j ∈ Σℓ
W} for w ∈ W ℓ. Let AV ℓ be the set of all vectors corresponding to the

nodes in V ℓ, and AW ℓ be the set of all vectors corresponding to the nodes in W ℓ,

i.e.

AV ℓ =

(5n/3)ℓ∪
i=1

Avi , AW ℓ =
nℓ∪
i=1

Awi
.

For a set of vectors C of size k, let Cu = C∩Au for all u ∈ {V ℓ∪W ℓ}, CV ℓ = C∩AV ℓ

and CW ℓ = C ∩ AW ℓ . Let V ℓ(C) and W ℓ(C) be the set of vectors for which C

“selects” at least one vector from V ℓ and W ℓ, respectively.

V ℓ(C) = {v ∈ V ℓ|Cv ̸= ∅}, W ℓ(C) = {w ∈ W ℓ|C(Aw) ̸= ∅}.

For ease of notation, we let kVC
= |CV ℓ |, kWC

= |CW ℓ |, dVC
= kVC

− |V ℓ(C)|, dWC
=

kWC
− |W ℓ(C)|. Note that kVC

and kWC
denote how many vectors are chosen by

C from V ℓ and W ℓ, respectively. Whereas dVC
and dC(W) are the total number of

duplicates in CV ℓ and CW ℓ , respectively. The following lemma relates the number

of duplicates on one side with its volume.

Lemma 5.9. V ol(CV ℓ) ≤ (
√
3/2)dVC and V ol(CW ℓ) ≤ (

√
3/2)dWC .

Proof. Let P be the set of |V ℓ(C)| elements which contains exactly one vector of the

form Av,i for each v ∈ V ℓ(C). In words, we consider the vectors of C corresponding

to the nodes in the Label-Cover instance minus all the duplicates. For the duplicate

vector Av,j, we have Av,i · Av,j = 1/2. Hence, d(Av,j, P) ≤ d(Av,j, Av,i) =
√
3/2. By

the definition of dVC
and by the Union Lemma, we get V ol(CV ℓ) ≤ (

√
3/2)dVC . The

argument for V ol(CW ℓ) is similar.

Let the constant c = 1/(3 · 5ℓ+1). We will show that Theorem 5.8 holds for

this value of c; we will prove that V ol(C) ≤ 2−ck for any set C of k vectors. To

this aim, we argue by contradiction. The next lemma roughly states that if the

volume of C is large enough, then its vectors are almost equally distributed among

the nodes of the Label-Cover instance. This condition will in turn imply a small

volume completing our argument.

62

Claim 5.10. If V ol(C) ≥ 2−ck for c = 1/(3 · 5l+1), then

(1− ϵ1)(5n/3)
ℓ < kVC

< (1 + ϵ1)(5n/3)
ℓ, (5.2)

(1− ϵ2)n
ℓ < kWC

< (1 + ϵ2)n
ℓ, (5.3)

where ϵ1 =
1

3l+1

(
(3/5)ℓ + (3/5)2ℓ

)
and ϵ2 =

1
3l+1

(
(3/5)l + 1

)
.

Proof. First, we note that V ol(C) ≤ V ol(CV ℓ) since all the vectors in the MAX-

VOL instance have unit norm. Similarly, V ol(C) ≤ V ol(CW ℓ). Thus, by the premise

of the claim, we have V ol(CV ℓ) ≥ 2−ck and V ol(CW ℓ) ≥ 2−ck. By Claim 5.9, we get

(
√
3/2)dVC = 2dVC (−1+log 3/2) = V ol(CV ℓ) ≥ 2−ck

which implies dVC
≤ ck/(1− log 3/2) < 5ck since log 3 < 1.6. The analysis for dWC

along exactly the same lines also yields dWC
< 5ck. Noting the expressions for c and

k, and following the definitions, we obtain

kVC
= |V ℓ(C)|+ dVC

< |V ℓ|+ 5ck

= (5n/3)ℓ +
1

3 · 5ℓ
((5n/3)ℓ + nℓ)

= (1 + ϵ1)(5n/3)
ℓ.

Similarly,

kWC
= |W ℓ(C)|+ dWC

< |W ℓ|+ 5ck

= nℓ +
1

3 · 5ℓ
((5n/3)ℓ + nℓ)

= (1 + ϵ2)n
ℓ

which proves the right hand sides of (5.2) and (5.3). Noting that kVC
+ kWC

= k =

(5n/3)ℓ + nℓ, we get

63

kVC
= k − kWC

> (5n/3)ℓ + nℓ − (1 + ϵ2)n
ℓ

= (5n/3)ℓ − 1

3ℓ+1
((3n/5)l + nl)

= (1− ϵ1)(5n/3)
ℓ

and

kWC
= k − kVC

> (5n/3)ℓ + nℓ − (1 + ϵ1)(5n/3)
ℓ

= nℓ − 1

3ℓ+1
((3n/5)ℓ + nℓ)

= (1− ϵ2)n
ℓ

which proves the left hand sides.

Lemma 5.10 ensures that if the volume of a set of k vectors exceeds 2−ck, then

some certain concentration result should hold, namely Equation (5.2) and Equation

(5.3). We will now show that, these equations imply V ol(C) < 2−ck which is our

contradiction.

Without loss of generality, let V ℓ(C)) = {v1, . . . , vq}, W ℓ(C) = {w1, . . . , wp}.
Note that these sets contain the nodes of the Label-Cover instance from which C

“selects” at least one vector. Let Q = {Av1,i1 , . . . , Avq ,iq} where Avs,is ∈ Cvs for

s = 1, . . . , q. Let P = {Aw1,j1 , . . . , Awp,jp} where Avs,is ∈ Cvs for s = 1, . . . , p. By

definition,

q = kVC
− dVC

> (1− 2ϵ1)(5n/3)
ℓ, p = kWC

− dWC
> (1− 2ϵ2)n

ℓ.

In words, the set of nodes from which C selects at least one vector essentially

covers V ℓ and W ℓ. These vectors are all orthogonal. From this point of view,

V ℓ(C)) and W ℓ(C)) play an important role in our argument. Since C “covers” V l

and W l and since the Label-Cover instance has many unsatisfied edges, it means

64

that the dot products of many vectors in CV ℓ with many vectors in CW ℓ will be

large. This will lead to small volume. Hence, we are essentially interested in the

number of unsatisfied edges between V ℓ(C) andW ℓ(C). Since there are at most 2−αℓ

satisfied edges in the Label-Cover instance, and there are exactly 3ℓ edges incident

to a node in V ℓ, the number of unsatisfied edges incident to V ℓ(C) is greater than

(1− 2ϵ1 − 2−αℓ)(5n)ℓ. Similarly, the number of unsatisfied edges incident to W ℓ(C)

is greater than (1− 2ϵ2 − 2−αℓ)(5n)ℓ. Thus, the number of unsatisfied edges whose

end points are in V ℓ(C) and W ℓ(C), is greater than (1− 2ϵ1 − 2ϵ2 − 2−αℓ+1)(5n)ℓ.

We now give an upper bound for the distance of the vectors in Q to P ,

namely ∥Avs,is − πP (Avs,is)∥2 for each Avs,is ∈ Q. To this end, we define the set

N(Avs,is) = {Cw|e = (Avs,is , w) is unsatisfied}. Note that the vectors in different

sets are mutually orthogonal, and by the reduction we have

Avs,is · Aw,j =
∑
e∈Eℓ

Avs,is(e) · Aw,j(e) = bΠℓ
e(i)
· bj =

1

2 · 3ℓ/2 · 5ℓ/2

for Aw,j ∈ N(Avs,is) since e = (Avs,is , Aw,j) is unsatisfied. Thus, by the Pythagoras

Theorem, we obtain

d(Avs,is , P) = ∥Avs,is − πP (Avs,is)∥2 <
(
1− |N(Avs,is)|

4 · 3ℓ · 5ℓ

) 1
2

.

Using the Union Lemma, we get

V ol(P ∪Q) ≤ V ol(P) ·
q∏

s=1

d(Avs,is , P)

< V ol(P) ·
q∏

s=1

(
1− |N(Avs,is)|

4 · 3ℓ · 5ℓ

) 1
2

.

The product in the last expression is maximized when all the factors are equal to each

other. We also previously showed that
∑q

s=1 |N(Avs,is)| > (1−2ϵ1−2ϵ2−2−αℓ+1)(5n)ℓ

and that q, the number of distinct nodes hit in V ℓ satisfies, q > (1 − 2ϵ1)(5n/3)
ℓ.

Hence, we obtain

65

V ol(P ∪Q) < V ol(P) ·
q∏

s=1

(
1−

∑q
s=1 |N(Avs,is)|
q · 4 · 3ℓ · 5ℓ

) 1
2

< V ol(P) ·
q∏

s=1

(
1− (1− 2ϵ1 − 2ϵ2 − 2−αℓ+1)(5n)l

(5n/3)ℓ · 4 · 3ℓ · 5ℓ

) 1
2

= V ol(P) ·
(
1− (1− 2ϵ1 − 2ϵ2 − 2−αℓ+1)

4 · 5ℓ

) q
2

< V ol(P) ·
(
1− (1− 2ϵ1 − 2ϵ2 − 2−αℓ+1)

4 · 5ℓ

) (1−2ϵ1)(5n/3)ℓ

2

.

To simplify, let t = 4·5ℓ
(1−2ϵ1−2ϵ2−2−αℓ+1)

. For ℓ ≥ 1, we have ϵ1 =
1

3l+1

(
(3/5)ℓ + (3/5)2ℓ

)
≤

1
32
((3/5) + (3/5)2) < 3/20. Noting that log e ≥ 10/7, we obtain log e(1 − 2ϵ1) ≥

10/7 · 7/10 = 1. Then, we have

V ol(P ∪Q) < V ol(P) ·
(
1− 1

t

)t· (1−2ϵ1)(5n/3)ℓ

2t

≤ e−
(1−2ϵ1)(5n/3)ℓ

2t

= 2− log e· (1−2ϵ1)(5n/3)ℓ

2t

≤ 2−
(5n/3)ℓ

2t ,

where e is the base of the natural logarithm. For ℓ ≥ 2, we have 2ϵ1 < 1/27 and

2ϵ2 < 3/27. Let ℓ′ be the smallest integer such that 2−αℓ+1 < 11/27. Then, for ℓ ≥ ℓ′,

we get t = 4·5ℓ
(1−2ϵ1−2ϵ2−2−αℓ+1)

< 4·5ℓ
(4/9)

= 9·5ℓ. Since nℓ = k/(1+(5n/3)ℓ) > k/(5/3)ℓ+1,

we finally obtain

V ol(P ∪Q) < 2−
(5n/3)ℓ

9·5ℓ = 2−
nℓ

3ℓ+2 < 2−
k

3·5ℓ+1 = 2−ck,

which is our contradiction. Thus, the volume of a set of k vectors in a negative

instance of MAX-VOL cannot exceed 2−ck for c = 1
3·5ℓ+1 . Combining this with Fact

5.1, we have shown that MAX-VOL does not admit a 2−ck approximation algorithm,

assuming P ̸= NP .

66

We have shown that

• if the optimal value of the Label Cover instance is 1, then the optimal value

of the MAX-VOL instance is 1

• if the optimal value of the ℓ-fold Label Cover instance is less than 2−αℓ, then

the optimal value of the MAX-VOL instance is less than 2−ck.

We know that there exists a gap producing reduction from SAT to ℓ-fold Label Cover

by the combination of Theorem 5.3 and Theorem 5.5 with parameters 1 and 2−αℓ.

This means that there is a polynomial time reduction from a SAT to MAX-VOL

such that, given a formula ϕ

• if ϕ is satisfiable , then OPT (MAX-VOL) = 1.

• if ϕ is not satisfiable , then OPT (MAX-VOL) = 2−ck.

Now, assume that there exists an algorithm for MAX-VOL with approximation ratio

greater than or equal to 2−ck. Then,

• if ϕ is satisfiable , the algorithm returns a subset with volume at least 2−ck.

• if ϕ is not satisfiable, then the volume of the subset returned by the algorithm

is smaller than 2−ck.

which means that we can solve SAT in polynomial time. Thus, unless P = NP ,

MAX-VOL is inapproximable to within 2−ck for some c > 0.

5.4 Discussion

Our reduction heavily relies on the Raz’ Parallel Repetition Theorem [52]. It is

not possible to get an exponential inapproximability result without parallel repeti-

tion. But, since the degrees of the vertices in the Label-Cover instance exponentially

increases with respect to the number of repetitions, our constant c depends on the

constant α in Raz’ result. It might be possible to improve this constant by making

use of more sophisticated parallel repetition theorems, but we did not proceed so

67

far. Indeed, the exact analysis is irrelevant as the constant will be too small in all

cases. Overall, the strength of our result is is directly related to the underlying

theorems for the inapproximability of Label-Cover.

Another way of getting a stronger hardness result is to find a more sophis-

ticated reduction. In our MAX-VOL instance, the subspaces “reserved” for each

edge in the Label-Cover instance are orthogonal to each other. This dramatically

simplifies the analysis, yielding perfect completeness, i.e. volume 1 in MAX-VOL.

It might be possible to construct a MAX-VOL instance for which these subspaces

have some pair-wise angle, so that we sacrifice the perfect completeness, but at the

same time get a much smaller soundness. This would improve the inapproximability

result.

The obvious open problem is whether the inapproximability can be strength-

ened to 2−k+1. Recall that this is the lower bound for the greedy algorithm for

MAX-VOL. It seems that with the techniques we have used, it is impossible to

break the dependence on the constant in the parallel repetition theorems.

CHAPTER 6

Deterministic Low-Rank Approximation

6.1 Introduction

In this chapter, we give a deterministic greedy algorithm for the low-rank

matrix approximation problem which is based on the sparse approximation of the

SVD of A. We first generalize the problem of sparse approximation in [47] to one of

approximating a subspace, using the columns from A. We then propose and analyze

a greedy algorithm for this problem and get our main result in the special case where

the subspace to be approximated is the best rank-k approximation to A.

In words, our algorithm first computes the top k left singular vectors of A,

and then selects columns of A in a greedy fashion so as to “fit” the space spanned

by the singular vectors, appropriately scaled according to the singular values. The

performance characteristics of the algorithm depend on how well the greedy algo-

rithm approximates the optimal choice of such columns from A, and on how good

the optimal columns themselves are. We combine an existence result on the quality

of the optimal columns with the analysis of the greedy algorithm to arrive at the

following result:

Theorem 6.1. For ϵ ≤
√
k∥Ak∥F

e·∥A−Ak∥F
, the greedy algorithm chooses a column sub-matrix

C ⊆ A with c = O
(

k2 log k
ϵ2

µ2(A) ln
(√

k∥Ak∥F
ϵ∥A−Ak∥F

))
columns such that

∥A− CC+A∥F ≤ (1 + ϵ) ∥A− Ak∥F .

For ϵ >
√
k∥Ak∥F

e·∥A−Ak∥F
, the greedy algorithm chooses a column sub-matrix C ⊆ A with

c = O
(

k log k∥A−Ak∥2F
∥Ak∥2F

µ2(A)
)

columns such that

∥A− CC+A∥F ≤ (1 + ϵ) ∥A− Ak∥F .

In the first case (for small values of ϵ), the term k2 log k
ϵ2

arises from an upper

bound on the number of columns the optimal solution would choose (the existence

68

69

result), and the remaining terms are contributed by the analysis of the greedy algo-

rithm. The coherence parameter µ(A), restricts the class of matrices for which the

bound is useful. Note that, in order to achieve this approximation ratio, we choose

more than k columns, which is reminiscent of the results provided by the theoretical

computer science community. The second case in the theorem makes sure that the

logarithmic expression does not evaluate to a negative value.

The term µ(A), which is related to the smallest singular value of a certain sub-

matrix of A, arises from the sparse approximation problem. We believe that a result

without the parameter µ(A) should be possible, however we have not been able to

construct one. Improving either the upper bound on the optimal reconstruction of

the singular vectors, or improving the analysis of the greedy algorithm would yield

a tighter result.

6.1.1 Preliminaries and Notation

For this chapter, we define the maximum column norm of a matrix A, ∥A∥col =
maxni=1{∥A(i)∥2}. We also define S⊥, the space orthogonal to the space spanned by

the vectors in S.

6.2 Generalized Sparse Approximation

Instead of seeking sparse approximation to a single vector [47], we propose the

following generalization: given a matrix A ∈ Rm×n, a set of vectors B ∈ Rm×k, and

ϵ > 0, find a matrix X ∈ Rn×k satisfying

∥AX −B∥F ≤ ϵ, (6.1)

such that
∑n

i=1 νi(X) is minimum over all possible choices of X, where νi(X) = 1

if the row X(i) contains non-zero entries, νi(X) = 0 if X(i) =
−→
0 . Intuitively, the

problem asks for a minimum number of column vectors of A whose span is “close”

to the span of B.

70

6.2.1 The Algorithm

A greedy strategy for solving this problem is to choose the column v from A

at each iteration, for which ∥BTv∥2 is maximum, and project the column vectors

of B and the other column vectors of A onto the space orthogonal to the chosen

column. The algorithm proceeds greedily on these residual matrices until the norm

of the residual B drops below the required threshold ϵ. Naturally, if the error ϵ

cannot be attained, the algorithm will fail after selecting a maximal independent

set of columns.

Algorithm 6 Greedy

1: normalize each column of A to have norm 1.
2: l← 0, Λ← ∅, A0 ← A, B0 ← B.
3: while ∥Bl∥F > ϵ do

4: choose i ∈ {1, . . . , n} − Λ such that ∥BT
l A

(i)
l ∥2 is maximum

5: B
(j)
l+1 ← B

(j)
l −

(
B

(j)
l

T
A

(i)
l

)
A

(i)
l for i = 1, . . . , k, i.e. project B

(j)
l ’s onto {A(i)

l }⊥.
6: Λ← Λ ∪ {i}.
7: A

(j)
l+1 ← A

(j)
l −

(
A

(j)
l

T
A

(i)
l

)
A

(i)
l for j ∈ {1, . . . , n} − Λ, i.e. project A

(j)
l ’s onto

{A(i)
l }⊥.

8: normalize A
(j)
l+1 for j ∈ {1, . . . , n} − Λ.

9: l← l + 1.
10: end while
11: return C = Λ(A), the selected columns.

6.2.2 Implementation Details and Running Time Analysis

Line 1,7 and 8 of Greedy takes O(mn) time. Line 5 takes O(mk) time since

B ∈ Rm×k. The computationally intensive part of the algorithm in the while loop

is the 4th step, which takes O(mnk) time with a naive implementation, since there

are n matrix-vector multiplications of cost O(mk). This makes a total of O(mnkc)

running time complexity which amounts to O(mnk2) in case k vectors are chosen.

We make note of a simple observation which is akin to the pivoted QR algorithms

and is called a norm update: instead of performing matrix-vector multiplications

at each iteration, we remember the dot products of the chosen column with the

columns of B and the other columns in A. We also introduce a matrix D ∈ Rk×n,

where (Dl)ij denotes the the dot product of the i
th column of B and the jth column

71

of A in the lth iteration, i.e. (Dl)ij = B
(i)
l

T
A

(j)
l . At the end of each iteration, we

update Dl to get Dl+1 where the update of each entry requires constant time. Hence,

the 4th step takes O(nk) time complexity for each iteration. Overall, the running

time of the algorithm is O((2mn+mk + nk)c) = O(mnc).

The norm update is as follows: Suppose a column vector v is chosen at iteration

l. Noting that vTv = 1, Dl+1 satisfies

(Dl+1)ij = B
(i)
l+1

T
A

(j)
l+1 =

(
B

(i)
l −

(
B

(i)
l

T
v
)
v
)T (

A
(j)
l −

(
A

(j)
l

T
v
)
v
)

∥∥∥A(j)
l −

(
A

(j)
l

T
v
)
v
∥∥∥
2

=
B

(i)
l

T
A

(j)
l +

(
B

(i)
l

T
v
)(

A
(j)
l

T
v
) (

vTv − 2
)∥∥∥A(j)

l −
(
A

(j)
l

T
v
)
v
∥∥∥
2

=
(Dl)ij −

(
B

(i)
l

T
v
)(

A
(j)
l

T
v
)

∥∥∥A(j)
l −

(
A

(j)
l

T
v
)
v
∥∥∥
2

.

The update per entry can be performed in constant time given the other values in

the last expression, which are already computed.

6.2.3 Performance Analysis

Our analysis yields an approximation factor which includes a term related to

the smallest singular value of a certain sub-matrix, which is relevant to the analysis.

We begin with the following definition, which provides a general upper bound for

the spectral norm of the pseudo-inverse of any sub-matrix of a matrix. We would

like to note that similar definitions have appeared in [59] while analyzing algorithms

for the sparse approximation problem.

Definition 6.2. [Coherence] Given a matrix A ∈ Rm×n of rank r, let A be the

matrix A with normalized columns. Then, µ(A) is the maximum of the inverse of

the least singular value over all m× r full-rank sub-matrices of A. Namely,

72

µ(A) = max
C⊆A

C∈Rm×r

rank(C)=r

1

σr(C)
. (6.2)

Remark 6.3. 1 ≤ µ(A) < ∞. Small values of µ(A) indicate a matrix with near

orthonormal columns.

Theorem 6.4. The number of columns chosen by Greedy is at most

O

(
Opt(ϵ/2)µ2(A) ln

(
∥B∥F
ϵ

))
,

where Opt(ϵ/2) is the optimal number of columns at error ϵ/2.

We will establish Theorem 6.4 through a sequence of lemmas. The proof

follows similar reasoning to the proof in [47]. Let t be the total number of iterations

of Greedy. At the beginning of the lth iteration of the algorithm, for 0 ≤ l <

t, let Ul be an optimal solution to the generalized sparse approximation problem

with error parameter ϵ/2, i.e. Ul minimizes
∑n

i=1 νi(X) over X ∈ Rn×k such that

∥AlUl −Bl∥F ≤ ϵ/2, where νi(X) = 1 if the row X(i) contains non-zero entries,

νi(X) = 0 if X(i) =
−→
0 . Let Nl =

∑n
i=1 νi(Ul) and Ql = AlUl. Define

λ = 4 max
0≤l<t

Nl∥Ul∥2F
∥Bl∥2F

. (6.3)

Assuming that the Greedy has not terminated, the following lemma states

that the next step makes significant progress.

Lemma 6.5. For the lth iteration of Greedy, ∥BT
l Al∥col ≥

∥Bl∥2F
2
√
Nl∥Ul∥F

.

Proof. Let E ∈ Rm×k be a generic error matrix such that ∥E∥F ≤ ϵ/2, and Let

∥E(j)∥2 = ϵj/2 for i = 1, . . . , k. Hence,
∑k

i=1 ϵ
2
j ≤ ϵ2. Now, we can write B

(j)
l =(∑n

i=1 A
(i)
l Ulij

)
+ E(j) for j = 1, . . . , k. Then,

∥Bl∥2F =
k∑

j=1

B
(j)
l

T
B

(j)
l =

k∑
j=1

n∑
i=1

UlijB
(j)
l

T
A

(i)
l +

k∑
j=1

B
(j)
l

T
E(j). (6.4)

We will first bound the double summation in the above expression.

73

k∑
j=1

n∑
i=1

UlijB
(j)
l

T
A

(i)
l ≤

n∑
i=1

(k∑
j=1

Ul
2
ij

)1/2(k∑
j=1

(
B

(j)
l

T
A

(i)
l

)2)1/2

≤ max
1≤i≤n

(

k∑
j=1

(
B

(j)
l

T
A

(i)
l

)2)1/2

n∑
i=1

(
k∑

j=1

Ul
2
ij

)1/2

≤ ∥BT
l Al∥col

√
Nl∥Ul∥F .

The first line is due to Cauchy-Schwartz inequality. The last inequality bounds the

double summation in the second line as follows. Define n dimensional vectors a and b

such that ai =
(∑k

j=1 Ul
2
ij

)1/2
and bi = 1 if there exists a non-zero entry in the ith row

of Ul, and bi = 0 if all the elements in the ith row of Ul are zero, for i = 1, . . . , n. Then,

applying Cauchy-Schwartz inequality to a and b, we obtain
∑n

i=1

(∑k
j=1 Ul

2
ij

)1/2
=∑n

i=1 aibi ≤ (
∑n

i=1 a
2
i)

1/2
(
∑n

i=1 b
2
i)

1/2
. Since

∑n
i=1 a

2
i =

∑n
i=1

∑k
j=1 Ul

2
ij = ∥Ul∥F

2,

and
∑n

i=1 b
2
i = Nl, we have that

∑n
i=1

(∑k
j=1 Ul

2
ij

) 1
2 ≤
√
Nl∥Ul∥F .

We will now bound the second term in (6.4).

k∑
j=1

B
(j)
l

T
E(j) ≤

k∑
j=1

∥B(j)
l

T
∥2∥E

(j)∥2 (Cauchy − Schwartz)

=
1

2

k∑
j=1

ϵj∥B(j)
l

T
∥2

≤ 1

2

(
k∑

j=1

ϵ2j

)1/2(k∑
j=1

∥B(j)
l

T
∥
2

2

)1/2

(Cauchy − Scwartz)

≤ 1

2
ϵ∥Bl∥F

≤ 1

2
∥Bl∥2F ,

where the last inequality is due to the fact that ∥Bl∥F > ϵ, i.e. the algorithm is still

running.

Combining these bounds in (6.4), we have ∥Bl∥2F ≤ ∥BT
l Al∥col

√
Nl∥Ul∥F +

1/2∥Bl∥2F , which gives ∥Bl∥2F ≤ 2∥BT
l Al∥col

√
Nl∥Ul∥F . The lemma then immedi-

74

ately follows.

Thus, there exists a column in the residual Al which will reduce the residual

Bl significantly, because Bl has a large projection onto this column. Therefore, since

every step of Greedy makes significant progress, there cannot be too many steps,

which is the content of the next lemma.

Lemma 6.6. t ≤
⌈
2λ ln

(
∥B∥F

ϵ

)⌉
, where t is the number of Greedy iterations.

Proof. Let i be the index of the chosen column at step l and let j be a column

index of B. Then, by the execution of the algorithm, B
(j)
l+1 = B

(j)
l −

(
B

(j)
l

T
A

(i)
l

)
A

(i)
l .

Since B
(j)
l+1 is orthogonal to A

(i)
l and ∥A(i)

l ∥2 = 1, we can write ∥B(j)
l+1∥

2

2
= ∥B(j)

l ∥
2

2 −

|B(j)
l

T
A

(i)
l |

2

. Summing over all column indices of Bl+1, we obtain

∥Bl+1∥2F =
k∑

j=1

∥B(j)
l+1∥

2

2
=

k∑
j=1

∥B(j)
l ∥

2

2 −
k∑

j=1

|B(j)
l

T
A

(i)
l |

2

= ∥Bl∥2F − ∥B
T
l A

(i)
l ∥

2

2

= ∥Bl∥2F − ∥B
T
l Al∥

2

col

≤ ∥Bl∥2F −
∥Bl∥4F

4Nl∥Ul∥2F
(Lemma 6.5)

= ∥Bl∥2F
(
1− 1

λ

)
(Equation (6.3)),

where the third line follows since the algorithm chooses i to maximize ∥BT
l A

(i)
l ∥2.

Hence, ∥Bl∥2F ≤ (1 − 1/λ)∥B0∥2F . Since the algorithm stops when ∥Bt∥2F ≤ ϵ2, it

suffices for t to satisy (1 − 1/λ)t∥B0∥2F ≤ ϵ2. Rearranging, and taking logarithms

we obtain t ln(1− 1/λ) ≤ ln(ϵ2/∥B0∥2F). Since ln(1− 1/λ) ≤ −1/λ, we get that t ≥
λ ln(∥B∥2F/ϵ2) = 2λ ln(∥B∥F/ϵ) iterations are enough for Greedy to terminate.

What remains is to bound λ. First, we will bound ∥Ul∥F in terms of ∥Bl∥F ,
both of which appear in the expression for λ. Let πl = {i|Ul(i) ̸=

−→
0 } be the indices

of rows of Ul which are not all zero. Recall that these indices denote which columns

are chosen by the optimal solution for Al. Let τl = {i1, i2, . . . , il} be the indices of

75

the first l columns picked by the algorithm. Given an index set γ, let the set of

column vectors {A(i)|i ∈ γ} be denoted by γ(A).

Lemma 6.7. πl(A) ∪ τl(A) is a linearly independent set for all l ≥ 0.

Proof. Note that for l = 0, we only have σ0(A) and by the definition of the opti-

mality of U0, this set should be linearly independent. For l ≥ 1, we will argue by

contradiction. Assume that the given set, πl(A)∪τl(A) is not a linearly independent

set. Hence, some linear combination of some vectors from the set sum to 0. Since,

by the execution of the algorithm, τl(A) is a linearly independent set, at least one

of these vectors should be from πl(A), and this vector u can be written as a linear

combination of some other vectors in πl(A) ∪ τl(A). To this end, recall that πl de-

notes the indices of columns of Al chosen by the optimal solution Ul, and πl(A) is

the set of columns of A with these indices. Consider a column vector v in πl(A).

According to the algorithm, at the end of the lth iteration, the residual vector vl

(which is in πl(Al)) is precisely the projection of v onto the space orthogonal to the

vectors chosen by the algorithm, namely τl(A). Since this is the case for all possible

v’s, we have that πl(Al) is the projection of πl(A) onto the space orthogonal to τl(A).

Hence, according to our last assumption, ul which is the projection of u onto the

space orthogonal to τl(A) can be expressed as a linear combination of some other

vectors in πl(Al) since no vector from τl(A) can contribute in the expansion of ul.

This contradicts the optimality of Ul, i.e. that the number of columns it “selects”

from Al is the fewest among all possible choices.

Lemma 6.8. For 0 ≤ l < t, ∥Ul∥F ≤
3
2
µ(A)∥Bl∥F .

Proof. Consider the column indices {i1, i2, . . . , il} of the first l vectors chosen by

the algorithm. Specifically, let τl(Al) = {A(i1)
l , A

(i2)
l , . . . , A

(il)
l } be the columns in Al

chosen by the algorithm in the order selected. Note that these vectors are orthogonal

due to the algorithm. At the end of the lth iteration of the algorithm, for i ∈ πl, we

can write

A
(i)
l =

A
(i)
l−1 − v

(i)
l√

1− ∥v(i)l ∥
2

2

, (6.5)

76

where v
(i)
l is in the span of A

(il)
l . Similarly, we can express A

(i)
l−1 in terms of A

(i)
l−2, i.e.

A
(i)
l−1 =

A
(i)
l−2 − v

(i)
l−1√

1− ∥v(i)l−1∥
2

2

,

where v
(i)
l−1 is in the span of A

(il−1)
l . Note that, since the vectors in τl(Al) are or-

thogonal, we have ∥v(i)l + v
(i)
l−1∥

2

2
= ∥v(i)l ∥

2

2 + ∥v
(i)
l−1∥

2

2
. Using this, we can recursively

express A
(i)
l in (6.5) as

A
(i)
l =

A(i) − v(i)√
1− ∥v(i)∥22

, (6.6)

for some v(i) ∈ span(τl(A)). (Note that span(τl(Al) = span(τl(A0) = span(τl(A)

and the columns of A are normalized). Thus, noting that Q
(j)
l =

∑
i∈πl

A
(i)
l Ulij, and

v(i) can be expressed as a linear combination of the column vectors of τl(A), we have

Q
(j)
l =

∑
i∈πl

Ulij

A(i) − v(i)√
1− ∥v(i)∥22

=
∑
i∈πl

Ulij√
1− ∥v(i)∥22

A(i) +
∑
i∈τl

δiA
(i), (6.7)

where δi’s are appropriate coefficients in the expansion of v(i). Now, let Sl be the

matrix of the columns from πl(A) ∪ τl(A). Note that, Sl is a column sub-matrix of

A which has full rank by Lemma 6.7. Since Sl is a linearly independent set, Ql has

a unique expansion in the basis Sl given by Wl = S+
l Ql. Specifically, for i ∈ πl,

Wlij = Ulij/
√

1− ∥v(i)∥22, and for i ∈ τl, Wlij = δi. Since
√

1− ∥v(i)∥22 < 1, |Ulij| ≤
|Wlij| for i ∈ πl. For i ∈ τl, we have Ulij = 0 and hence trivially |Ulij| ≤ |Wlij|.
Applying this inequality to the jth column of Ul, we obtain ∥U (j)

l ∥2 ≤ ∥Wl
(j)∥2 ≤

∥S+
l ∥2∥Q

(j)
l ∥2. The last inequality is due to sub-multiplicativity of the spectral norm.

Noting that Q
(j)
l = B

(j)
l +E(j), where E is a generic error matrix with ∥E∥F ≤ ϵ/2,

we obtain

77

∥Ul∥2F =
k∑

j=1

∥U (j)
l ∥

2

2

≤ ∥S+
l ∥

2

2

k∑
j=1

∥Q(j)
l ∥

2

2

≤ ∥S+
l ∥

2

2

k∑
j=1

(
∥B(j)

l + E(j)∥
2

2

)
≤ ∥S+

l ∥
2

2

k∑
j=1

(
∥B(j)

l ∥2 + ∥E
(j)∥2

)2
,

where the last step is due to the triangle inequality. We continue by expanding the

last expression and note that ∥E∥F ≤ ϵ/2 =
∑k

j=1 ∥E(j)∥22 ≤ ϵ2/4:

∥Ul∥2F ≤ ∥S
+
l ∥

2

2

k∑
j=1

(
∥B(j)

l ∥2 + ∥E
(j)∥2

)2
= ∥S+

l ∥
2

2

(
k∑

j=1

∥B(j)
l ∥

2

2 +
k∑

j=1

∥E(j)∥22 + 2
k∑

j=1

∥B(j)
l ∥2∥E

(j)∥2

)

≤ ∥S+
l ∥

2

2

(
∥Bl∥2F +

ϵ2

4
+ 2

k∑
j=1

∥B(j)
l ∥2∥E

(j)∥2

)

≤ ∥S+
l ∥

2

2

(
5

4
∥Bl∥2F + 2

k∑
j=1

∥B(j)
l ∥2∥E

(j)∥2

)
(∥Bl∥F > ϵ).

Applying the Cauchy-Schwartz inequality to the second term in the parentheses, we

obtain

78

∥Ul∥2F ≤ ∥S
+
l ∥

2

2

5

4
∥Bl∥2F + 2

(
k∑

j=1

∥B(j)
l ∥

2

2

)1/2(k∑
j=1

∥E(j)∥22

)1/2

= ∥S+
l ∥

2

2

(
5

4
∥Bl∥2F + 2∥Bl∥F∥E∥F

)
≤ ∥S+

l ∥
2

2

(
5

4
∥Bl∥2F + ϵ∥Bl∥F

)
(∥E∥F ≤ ϵ/2)

≤ ∥S+
l ∥

2

2

(
5

4
∥Bl∥2F + ∥Bl∥2F

)
(∥Bl∥F > ϵ)

=
9

4
∥S+

l ∥
2

2∥Bl∥2F .

Hence, we have ∥Ul∥F ≤
3
2
∥S+

l ∥2∥Bl∥F . Now, note that the rank of Sl is less than

or equal to r, the rank of A. Sl can be obtained by deleting columns of a full-rank

sub-matrix Z of A, which has exactly r columns. ∥S+
l ∥2, which is the inverse of the

least singular value of Sl is smaller than that of such a matrix Z (see [33]). Then,

by the definition of µ(A), we clearly have ∥S+
l ∥2 ≤ ∥Z

+∥2 ≤ µ(A) and the lemma

follows.

We can now prove the main theorem.

Proof of Theorem 6.4: First, we note that the number of non-zero rows in the

optimal solution is non-increasing as the algorithm proceeds, that is Nl ≥ Nl+1 for

l > 0, which follows from an argument identical to the proof of Lemma 3 in [47].

Since Opt(ϵ/2) = N0, we have

λ ≤ 4 max
0≤l<t

N0∥Ul∥2F
∥Bl∥2F

≤ 9Opt(ϵ/2)µ2(A),

where the last inequality is due to the result of Lemma 6.8. Combining this with

Lemma 6.6, we have that the number of iterations of the algorithm is bounded by

t ≤
⌈
18Opt(ϵ/2)µ2(A) ln

(
∥B∥F
ϵ

)⌉
.

79

6.3 Deterministic Low-Rank Matrix Approximation

In this section, we give a deterministic algorithm for low-rank matrix approxi-

mation based on the greedy approach that we have introduced and analyzed for the

generalized sparse approximation problem.

Algorithm 7 The low-rank approximation algorithm

1: compute Uk and Σk of A
2: return Greedy(A, UkΣk, ϵ∥A− Ak∥F)

The algorithm first computes Uk, the top k left singular vectors of A and Σk

the first k singular values of A, which can be performed by standard methods like

Lanczos. The columns of A are then selected in a greedy fashion so as to “fit” them

to the subspace spanned by the columns of UkΣk. Intuitively, we select columns

of A which are close to the columns of UkΣk and our analysis will show that the

sub-matrix C of A we obtain is provably close to the “best” rank-k approximation

to A. The error parameter which is given as an input to Greedy is ϵ∥A− Ak∥F . The
following result provides an upper bound on the number of columns of the optimal

solution at error ϵ∥A− Ak∥F/2.

Lemma 6.9. There exists a column sub-matrix C of A with c = O(k log k/ϵ2)

columns such that ∥UkΣk − CC+UkΣk∥F ≤ ϵ∥A− Ak∥F/2.

Proof. We will make use of the following result which is proved in [27]. They give a

randomized algorithm which constructs, with non-zero probability a set of columns

with a particular approximation property which immediately translates to an exis-

tence result. For a set of columns C ∈ A, denote the sampling matrix which selects

the columns by S; so C = AS. Let Vk be the matrix of the first k right singular

vectors of A. Let Vr−k be the matrix containing the last r− k right singular vectors

of A, and let Σk and Σr−k be the diagonal matrices containing the first k and the

last r − k singular values of A.

Lemma 6.10 ([27]). There exists a set of c = O(k log k/ϵ2) columns from A and

corresponding sampling matrix S, with C = AS such that rank(V T
k S) = rank(Vk),

∥Σr−kV
T
r−kS(V

T
k S)+∥

F
≤ ϵ∥A−Ak∥F where Σr−k is the diagonal matrix containing

80

the smallest r − k singular values of A, and Vr−k is the matrix containing the last

r − k right singular vectors of A.

To proceed with the proof of the main lemma, let C = AS be the column sub-matrix

whose existence is guaranteed by the theorem above. We have

ϵ2∥A− Ak∥2F ≥ ∥Σr−kV
T
r−kS(V

T
k S)+∥2

F

= ∥Σk − ΣkV
T
k S(V T

k S)+∥2F + ∥Σr−kV
T
r−kS(V

T
k S)+∥2

F
,

where the first term in the last expression is just 0 as V T
k S(V T

k S)+ = Ik. Combining

the last two terms into one expression, we have

ϵ2∥A− Ak∥2F ≥

∥∥∥∥∥∥
 Σk

0

−
 ΣkV

T
k

Σr−kV
T
r−k

S(V T
k S)+

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
 Σk

0

−
 Σk 0

0 Σr−k

 V T
k

V T
r−k

S(V T
k S)+

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
 Σk

0

− (ΣV TS)(ΣkV
T
k S)+Σk

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
 Σk

0

− (ΣV TS)Y

∥∥∥∥∥∥
2

F

,

where Y = (ΣkV
T
k S)+Σk. LetA,B be arbitrary matrices. Then, minX ∥A−BX∥F

2 =

∥A−BB+A∥F
2
(see [33]). We continue as follows:

81

∥∥∥∥∥∥
 Σk

0

− (ΣV TS)Y

∥∥∥∥∥∥
2

F

≥ min
X∈Rc×k

∥∥∥∥∥∥
 Σk

0

− (ΣV TS)X

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
 Σk

0

− (ΣV TS)(ΣV TS)+

 Σk

0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
 Ik

0

Σk − (ΣV TS)(ΣV TS)+

 Ik

0

Σk

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥U
 Ik

0

Σk − (UΣV TS)(ΣV TS)+UTUkΣk

∥∥∥∥∥∥
2

F

=
∥∥UkΣk − (UΣV TS)(UΣV TS)+UkΣk

∥∥2
F

=
∥∥UkΣk − CC+UkΣk

∥∥2
F
,

where we have used UΣV T = A and C = AS. Choosing an error parameter ϵ′ = ϵ/2

gives the desired result.

We now give the proof of Theorem 6.1.

Proof of Theorem 6.1: By the algorithm, we have

UkΣk = CC+UkΣk + E,

for some generic error matrix E satisfying ∥E∥F ≤ ϵ∥A− Ak∥F . Multiplying both

sides by V T
k , we get

UkΣkV
T
k = CC+UkΣkV

T
k + EV T

k ,

which is clearly

Ak = CC+Ak + EV T
k .

Rearranging and adding A to the both sides of the equation, we obtain A−CC+Ak =

82

A−Ak +EV T
k . Taking norms of both sides, and noting that C+A is the minimizer

of ∥A− CX∥F over X, we obtain

∥A− CC+A∥F ≤ ∥A− CC+Ak∥F
= ∥A− Ak + EV T

k ∥F ,

≤ ∥A− Ak∥F + ∥E∥F∥V T
k ∥F

≤ ∥A− Ak∥F + ϵ
√
k∥A− Ak∥F

= (1 + ϵ
√
k)∥A− Ak∥F .

The third line follows due to the triangle inequality and sub-multiplicativity of the

Frobenius norm. The fourth line is due to the fact that ∥E∥F ≤ ϵ∥A− Ak∥F and

∥V T
k ∥F ≤

√
k. Choosing an error parameter ϵ′ = ϵ/

√
k and combining Theorem 6.4

and Lemma 6.9, we have that the algorithm chooses c = O
(

k2 log k
ϵ2

µ2(A) ln
(√

k∥Ak∥F
ϵ∥A−Ak∥F

))
columns such that

∥A− CC+A∥F ≤ (1 + ϵ) ∥A− Ak∥F .

Note that, in order this statement to be meaningful, one should require ϵ ≤
√
k∥Ak∥F

e·∥A−Ak∥F
,

so that the logarithmic expression evaluates to at least 1. In the complementary case,

where ϵ >
√
k∥Ak∥F

e·∥A−Ak∥F
, the number of columns chosen by the algorithm cannot exceed

the number of columns chosen for ϵ =
√
k∥Ak∥F

e·∥A−Ak∥F
since the set of columns returned

by the algorithm for this value of ϵ is enough to guarantee a (1 + ϵ) approximation

ratio for larger values of ϵ. Hence, in this case, putting the value of ϵ into the expres-

sion above, we have that the algorithm chooses at most c = O
(

k log k∥A−Ak∥2F
∥Ak∥2F

µ2(A)
)

columns such that

∥A− CC+A∥F ≤ (1 + ϵ) ∥A− Ak∥F .

83

6.4 Numerical Results

In this section, we present numerical experiments using our algorithm Greedy,

comparing it to a few other significant algorithms providing bounds for the perfor-

mance metric we have analyzed. We report the error ratios ∥A− CC+A∥2/∥A− Ak∥2,
∥A− CC+A∥F/∥A− Ak∥F for various matrices and different values of k along with

the running times on one of the matrices. We make use of 3 different types of

n × n matrices for n = 400 and n = 1000, a total of 6 different matrices. Running

times are only reported for n = 1000. Below are the matrices that are used in our

experiments:

• Log: a random matrix A with singular values equally spaced between 1 and

10− logn. More specifically, A = UΣV T , where Σ is the diagonal matrix with

entries of the logarithmic distribution, and U and V are random orthogonal

matrices.

• Scaled Random: a random matrix A created by assigning each entry a number

between −1 and 1 from uniform distribution, and then scaling the ith row

of that matrix by (20ϵ)i/n where ϵ is the machine precision. In our case,

ϵ = 2.22 · 10−16. This matrix was utilized in [37].

• Kahan: a matrix

A =

1 0 . . . 0

0 ζ . . . 0
...

...
. . .

...

0 0 . . . ζn−1

 ·

1 −ϕ . . . −ϕ
0 1 . . . −ϕ
...

...
. . .

...

0 0 . . . 1

with ζ, ϕ > 0, and ϕ2 + ζ2 = 1. Kahan matrices are first mentioned in

[40]. These matrices are low-rank and they provably yield bad results for the

commonly used pivoted QR algorithm [11]. Along the same lines in [37], we

set ϕ = 0.285 for our experiments.

The variation in the results were negligible with respect to the random choices

in the construction of the first two classes of matrices, hence we report results of

84

one randomly generated matrix in each class. We have implemented the following 3

algorithms in C++ along with Greedy and performed experiments on an Intel Core

2 Duo T4200 at 2.16 Ghz, 4 GB machine:

• Pivoted-QR: The algorithm of Golub and Businger [11]. [37] shows that it

chooses a sub-matrix C satisfying ∥A− CC+A∥2 ≤ 2k
√
n− k∥A− Ak∥2. We

report the running times of choosing exactly k columns, not of a complete

decomposition.

• Low-RRQR: The algorithm introduced by Chan and Hansen in [17], which

provides ∥A− CC+A∥2 ≤ 2k+1
√
(k + 1)n∥A− Ak∥2. This algorithm also in-

volves computation of a singular vector at each iteration, and requires a full

QR decomposition as a preliminary step. We report the running times in-

cluding this preliminary step for which we used pivoted-QR, followed by k

iterations of the algorithm.

• Hybrid: The algorithm by Boutsidis et al. [9], which combines random sam-

pling techniques and deterministic approaches. It guarantees ∥A− CC+A∥2 ≤
O
(
k

3
4 log

1
2 (k)(n− k)

1
4

)
∥A− Ak∥2, and ∥A− CC+A∥F = O

(
k
√
log k

)
∥A− Ak∥F ,

by using different sampling distributions for spectral and Frobenius norms. We

report the error ratios of the algorithm run using the specific sampling dis-

tribution tailored to the norm. This algorithm first chooses (on average) c

columns randomly of the matrix A. These columns are related to the right

singular vectors of A. It then makes use of a deterministic procedure to cut

down the number of columns to k. The number c is theoretically of order

O(k log k), but in practice the authors suggest to use a value between 2k and

10k [8]. We have chosen c = 6k and used Pivoted-QR algorithm as the deter-

ministic step. We run the algorithm 40 times to boost the success probability

and get the best error ratio, as suggested in [9].

For the computation of a partial SVD (top k singular values and singular

vectors), which are required for Hybrid and Greedy, we have used a C version of the

SVDPACK library [6], which utilizes Lanczos methods.

85

We show the error ratios of the algorithms on matrices of size 400 × 400 in

Tables 6.1, 6.2 and 6.3. The behavior of the algorithms on the matrices of size

1000 × 1000 are quite similar, and for convenience we give the results for these

matrices in Figures 6.1 to 6.6. In Frobenius norm, Greedy consistently outperforms

the other algorithms tested, especially when k is small. This is due to the rationale

of the algorithm, that it is trying to choose column vectors whose span is as close

as possible to Ak. It is intuitively reasonable to expect that the distance between

any column vector to the subspace chosen by Greedy should be close to the distance

between that vector to the optimal subspace, which is quantitatively expressed via

the ratio of the Frobenius norm errors. The only exception is the matrix Scaled

Random for large values of k. Note that, even the Pivoted-QR algorithm works

very well for this type of matrix. Greedy also presents very good results in spectral

norm except small values of k on Kahan. Low-RRQR gives the best results for

small k on this matrix. We would like to note that, Low-RRQR is an algorithm that

greedily selects a column which is close to the singular vector associated with the

largest singular value of the “uncovered” space at each step, whereas our algorithm

computes the k dimensional space to be approximated at the beginning. Hence,

Low-RRQR gives better results in spectral norm for low-rank matrices with rapidly

decreasing singular values, like Kahan. Pivoted-QR performs poorly on Kahan as

expected.

Table 6.4 gives the running times of the algorithms on the 1000× 1000 Scaled

Random matrix. Pivoted-QR is the fastest algorithm, and Greedy is faster than

Low-RRQR. If the time-consuming preliminary decomposition in Low-RRQR is dis-

regarded, these two algorithms have quite similar behavior in terms of running time.

Hybrid is the slowest of all due to the large number of repetitions.

6.5 Discussion

We have presented an algorithm that approximates the space spanned by the

top k left singular vectors of a matrix by introducing a generalization of the sparse

approximation problem. The analysis of the algorithm is based on the generalized

case of approximating an arbitrary subspace. Hence, the term µ(A) that appears in

86

k
∥A− CC+A∥2/∥A− Ak∥2 ∥A− CC+A∥F/∥A− Ak∥F

P-QR L-RRQR Hybrid Greedy P-QR L-RRQR Hybrid Greedy
1 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035
2 1.042 1.058 1.007 1.003 1.030 1.029 1.039 1.020
3 1.069 1.093 1.019 1.005 1.042 1.045 1.049 1.034
4 1.105 1.101 1.060 1.045 1.055 1.062 1.068 1.042
5 1.137 1.116 1.117 1.035 1.072 1.074 1.072 1.051
6 1.130 1.144 1.079 1.042 1.089 1.092 1.089 1.064
7 1.153 1.160 1.114 1.093 1.098 1.104 1.109 1.075
8 1.192 1.195 1.125 1.094 1.111 1.120 1.114 1.083
9 1.233 1.213 1.189 1.110 1.128 1.136 1.145 1.097
10 1.275 1.220 1.202 1.130 1.145 1.147 1.151 1.107
20 1.500 1.404 1.409 1.256 1.274 1.266 1.296 1.222
30 1.508 1.678 1.533 1.406 1.372 1.395 1.404 1.327
40 1.813 1.678 1.668 1.536 1.483 1.509 1.522 1.432
50 1.935 1.896 1.851 1.612 1.596 1.621 1.582 1.539

Table 6.1: Error ratios of Low-Rank Approximation Algorithms for Log
400× 400. In bold for each k is the best method.

the analysis is a general bound for a term for which there is not an “easy” function

to bound. We believe that a more refined analysis focusing on the specific problem

of approximating Ak will yield much better theoretical guarantees. The experiments

also suggest that one might get bounds in spectral norm. In practice, the algorithm

gives far superior results to the theoretical guarantees, which suggests that smoothed

analysis [57] might give further insight into the performance of the algorithm.

87

k
∥A− CC+A∥2/∥A− Ak∥2 ∥A− CC+A∥F/∥A− Ak∥F

P-QR L-RRQR Hybrid Greedy P-QR L-RRQR Hybrid Greedy
1 1.015 1.015 1.015 1.015 1.080 1.080 1.080 1.080
2 1.119 1.042 1.067 1.016 1.067 1.048 1.073 1.040
3 1.118 1.060 1.115 1.024 1.085 1.080 1.097 1.069
4 1.231 1.185 1.108 1.042 1.119 1.121 1.129 1.095
5 1.101 1.164 1.120 1.078 1.135 1.136 1.160 1.111
6 1.183 1.213 1.192 1.079 1.154 1.158 1.218 1.142
7 1.225 1.173 1.213 1.132 1.191 1.167 1.223 1.168
8 1.276 1.234 1.161 1.090 1.219 1.192 1.215 1.190
9 1.339 1.257 1.305 1.158 1.249 1.210 1.258 1.231
10 1.317 1.328 1.307 1.307 1.265 1.233 1.282 1.241
20 1.577 1.597 1.676 1.417 1.450 1.435 1.451 1.456
30 1.673 2.137 1.527 1.723 1.621 1.705 1.695 1.708
40 2.067 2.171 1.997 1.912 1.753 1.833 1.845 1.905
50 2.222 1.939 1.936 2.244 1.936 1.935 1.929 2.085

Table 6.2: Error ratios of Low-Rank Approximation Algorithms for
Scaled Random 400× 400. In bold for each k is the best method.

k
∥A− CC+A∥2/∥A− Ak∥2 ∥A− CC+A∥F/∥A− Ak∥F

P-QR L-RRQR Hybrid Greedy P-QR L-RRQR Hybrid Greedy
1 10.343 10.343 10.343 10.343 4.383 4.383 4.383 4.383
2 8.539 1.342 1.314 1.308 2.759 1.064 1.103 1.063
3 9.401 1.308 1.387 1.381 2.879 1.084 1.069 1.068
4 9.806 1.320 1.388 1.381 2.989 1.083 1.068 1.068
5 10.218 1.343 1.394 1.381 3.102 1.083 1.068 1.068
6 10.638 1.264 1.383 1.381 3.216 1.103 1.069 1.068
7 11.063 1.273 1.594 1.381 3.332 1.101 1.123 1.068
8 11.496 1.296 1.619 1.381 3.450 1.099 1.121 1.068
9 11.988 1.248 1.622 1.381 3.579 1.122 1.141 1.068
10 12.449 1.250 1.642 1.381 3.705 1.119 1.113 1.068
20 17.340 1.321 1.612 1.381 5.055 1.136 1.114 1.068
30 18.477 1.406 1.612 1.382 5.373 1.183 1.117 1.068
40 18.215 1.589 1.612 1.382 5.300 1.181 1.133 1.068
50 15.633 1.437 1.612 1.382 4.580 1.141 1.114 1.068

Table 6.3: Error ratios of Low-Rank Approximation Algorithms for Ka-
han 400× 400. In bold for each k is the best method.

88

Figure 6.1: Error ratios of Low-Rank Approximation Algorithms for Log
1000× 1000 in Spectral Norm

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60 70 80 90 100

k

Pivoted-QR
Low-RRQR

Hybrid
Greedy

Figure 6.2: Error ratios of Low-Rank Approximation Algorithms for Log
1000× 1000 in Frobenius Norm

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 10 20 30 40 50 60 70 80 90 100

k

Pivoted-QR
Low-RRQR

Hybrid
Greedy

89

Figure 6.3: Error ratios of Low-Rank Approximation Algorithms for
Scaled Random 1000× 1000 in Spectral Norm

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10 20 30 40 50 60 70 80 90 100

k

Pivoted-QR
Low-RRQR

Hybrid
Greedy

Figure 6.4: Error ratios of Low-Rank Approximation Algorithms for
Scaled Random 1000× 1000 in Frobenius Norm

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60 70 80 90 100

k

Pivoted-QR
Low-RRQR

Hybrid
Greedy

90

Figure 6.5: Error ratios of Low-Rank Approximation Algorithms for
Kahan 1000× 1000 in Spectral Norm

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 0 10 20 30 40 50 60 70 80 90 100

k

Low-RRQR
Hybrid

Greedy

Figure 6.6: Error ratios of Low-Rank Approximation Algorithms for
Kahan 1000× 1000 in Frobenius Norm

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 0 10 20 30 40 50 60 70 80 90 100

k

Low-RRQR
Hybrid

Greedy

91

Table 6.4: Running times of Low-Rank Approximation Algorithms for
Scaled Random 1000× 1000

k P-QR L-RRQR Hybrid Greedy
5 0.047 2.359 2.235 0.375
10 0.078 2.625 3.235 0.501
20 0.140 3.047 4.875 0.891
30 0.203 3.468 7.001 1.079
40 0.265 4.234 8.985 1.468
50 0.359 4.313 12.359 1.922
75 0.453 5.109 19.078 2.798
100 0.578 6.063 25.546 3.687

CHAPTER 7

Conclusion

We have provided algorithms and complexity theoretic results on the problems re-

lated to selecting a subset of columns of a matrix with the general goal of those

columns being a good representation of the information in the matrix. In doing so,

we presented a simple application as a motivating point and tried to answer the

following questions in order:

• How do we know a subset of columns is good? What metrics can we use as a

measure of quality? We considered volume and subspaces spanned by singular

vectors.

• Is it possible to find subsets of columns that optimize such metrics? If not, do

there exist approximation algorithms?

• What are the inherent hardness of these problems?

Hence, this thesis not only provides practical algorithms like the ones in Chap-

ter 3 and Chapter 6, it also brings a complexity theoretic perspective to the matrix

approximation problem, which has been mainly studied from an algorithmic point of

view. One of our main contributions in this respect, is the study of MAX-VOL prob-

lem, which has connections with low-rank approximation and RRQR factorizations.

There are many open questions remaining:

• Do there exist functions of a subset of columns of a matrix with good closed

form expressions that will provide matrix approximation?

• Can we establish stronger relations between such different metrics of quality?

• Can we determine how strong randomness is in constructing matrix approxi-

mations? In other words, why is it difficult to prove approximation for deter-

ministic algorithms?

92

93

• Can we extend the inapproximability result for MAX-VOL to other related

problems?

• To what extent is our deterministic low-rank approximation algorithm suc-

cessful in real world data?

• Our experimental results indicate that the deterministic algorithms work very

well in practice. Was this a fluke or is the model for complexity analysis

wrong? The worst case bound may not nearly be an average case bound.

For example, the vectors which break the greedy algorithm for MAX-VOL

are indeed peculiar, and we suspect that with slight perturbations, the greedy

algorithm would be fine. Thus, perhaps a smoothed complexity analysis is

more appropriate.

• We studied MAX-VOL and matrix approximation problem assuming the ma-

trix A is known. In reality, our heuristic approach to approximating MDS did

not sample the whole distance matrix. What algorithms and classes of matri-

ces (e.g. finite metrics) exist for which such zero-pass algorithms are provably

effective?

REFERENCES

[1] http://www.dis.uniroma1.it/~challenge9/data/tiger/.

[2] http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/

PART/graphs.html.

[3] http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification

and the hardness of approximation problems. Journal of the ACM,

45(3):501–555, 1998.

[5] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization

of np. Journal of the ACM, 45(1):70–122, 1998.

[6] M. Berry, T. Do, G. O’Brien, V. Krishna, and S. Varadhan. SVDPACKC

(version 1.0) User’s Guide. Technical report, 1993.

[7] I. Borg and P. Groenen. Modern Multidimensional Scaling. Springer-Verlag,

1997.

[8] C. Boutsidis, M. W. Mahoney, and P. Drineas. Unsupervised feature selection

for principal components analysis. In KDD ’08: Proceeding of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 61–69, 2008.

[9] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation

algorithm for the column subset selection problem. In SODA ’09: Proceedings

of the 19th Annual ACM -SIAM Symposium on Discrete Algorithms, pages

968–977, 2009.

[10] U. Brandes and C. Pich. Eigensolver methods for progressive

multidimensional scaling of large data. In GD ’06: Proceedings of the 14th

International Symposium on Graph Drawing, pages 42–53, 2006.

94

95

[11] P. A. Businger and G. H. Golub. Linear least squares solutions by

Householder transformations. Numerische Mathematik, (7):269–276, 1965.

[12] A. Çivril and M. Magdon-Ismail. Deterministic sparse column based matrix

reconstruction via greedy approximation of svd. In ISAAC ’08: Proceedings of

the 19th International Symposium on Algorithms and Computation, pages

414–423, 2008.

[13] A. Çivril and M. Magdon-Ismail. On selecting a maximum volume sub-matrix

of a matrix and related problems. Theoretical Computer Science,

410(47-49):4801–4811, 2009.

[14] A. Çivril, M. Magdon-Ismail, and E. Bocek-Rivele. SDE: Graph drawing

using spectral distance embedding. In GD’05: Proceedings of the 13th

International Symposium on Graph Drawing, pages 512–513, 2005.

[15] A. Çivril, M. Magdon-Ismail, and E. Bocek-Rivele. SSDE: Fast graph drawing

using sampled spectral distance embedding. In GD’06: Proceedings of the 14th

International Symposium on Graph Drawing, pages 30–41, 2006.

[16] T. F. Chan. Rank revealing QR factorizations. Linear Algebra and Its

Applications, (88/89):67–82, 1987.

[17] T. F. Chan and P. Hansen. Low-rank revealing QR factorizations. Numerical

Linear Algebra with Applications, (1):33–44, 1994.

[18] T. F. Chan and P. C. Hansen. Computing truncated singular value

decomposition least squares solutions by rank revealing QR-factorizations.

SIAM Journal on Scientific and Statistical Computing, 11(3):519–530, 1990.

[19] T. F. Chan and P. C. Hansen. Some applications of the rank revealing QR

factorization. SIAM Journal on Scientific and Statistical Computing,

13(3):727–741, 1992.

[20] S. Chandrasekaran and I. C. F. Ipsen. On rank-revealing factorizations. SIAM

Journal on Matrix Analysis and Applications, 15:592–622, 1994.

96

[21] F. R. de Hoog and R. M. M. Mattheijb. Subset selection for matrices. Linear

Algebra and its Applications, (422):349–359, 2007.

[22] V. de Silva and J. Tenenbaum. Global versus local methods in nonlinear

dimensionality reduction. In NIPS ’03: Proceedings of the 17th Annual

Conference on Neural Information Processing Systems, page 721728, 2003.

[23] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix

approximation and projective clustering via volume sampling. In SODA ’06:

Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1117–1126, 2006.

[24] A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix

approximation. In RANDOM’06: 10th International Workshop on

Randomization and Computation, pages 292–303, 2006.

[25] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in

large graphs and matrices. In SODA ’99: Proceedings of the 10th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 291–299, 1999.

[26] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for

matrices II: Computing a low-rank approximation to a matrix. SIAM Journal

on Computing, 36(1):158–183, 2006.

[27] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Subspace sampling and

relative-error matrix approximation: Column-based methods. In RANDOM

’06: 10th International Workshop on Randomization and Computation, pages

316–326, 2006.

[28] C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for indexing,

data-mining and visualization of traditional and multimedia datasets. In

SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD international

conference on Management of data, pages 163–174, 1995.

[29] U. Feige. A threshold of lnn for approximating set cover. Journal of the

ACM, 45(4):634–652, 1998.

97

[30] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for

finding low-rank approximations. Journal of the ACM, 51(6):1025–1041, 2004.

[31] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.

Freeman, 1979.

[32] G. H. Golub, V. Klema, and G. W. Stewart. Rank degeneracy and least

squares problems. Technical report, Dept. of Computer Science, Univ. of

Maryland, 1976.

[33] G. H. Golub and C. V. Loan. Matrix Computations. Johns Hopkins U. Press,

1996.

[34] S. A. Goreinov and E. E. Tyrtyshnikov. A theory of pseudoskeleton

approximations. Linear Algebra and its Applications, (261):1–21, 1997.

[35] S. A. Goreinov and E. E. Tyrtyshnikov. The maximal-volume concept in

approximation by low-rank matrices. In Contemporary Mathematics, volume

280, pages 47–51. AMS, 2001.

[36] S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov. Pseudo-skeleton

approximations by matrices of maximal volume. Matematicheskie Zametki,

62:619–623, 1997.

[37] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong

rank-revealing QR factorization. SIAM Journal on Scientific Computing,

17(4):848–869, 1996.

[38] D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. In

GD’02: Proceedings of the 10th International Symposium on Graph Drawing,

pages 207–219, 2002.

[39] Y. P. Hong and C. T. Pan. Rank-revealing QR factorizations and the singular

value decomposition. Mathematics of Computation, 58:213–232, 1992.

[40] W. Kahan. Numerical linear algebra. Canadian Mathematical Bulletin,

9:757–801, 1966.

98

[41] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and

J. W. Thatcher, editors, Complexity of Computer Computations, pages

85–103. Plenum Press, 1972.

[42] Y. Koren. One dimensional layout optimization, with applications to graph

drawing by axis separation. Computational Geometry: Theory and

Applications, 32:115–138, 2005.

[43] Y. Koren, D. Harel, and L. Carmel. Drawing huge graphs by algebraic

multigrid optimization. Multiscale Modeling and Simulation, 1(4):645–673,

2003.

[44] J. B. Kruskal and J. B. Seery. Designing network diagrams. In Proc. First

General Conference on Social Graphics, pages 22–50, 1980.

[45] F. G. Kuruvilla, P. J. Park, and S. L. Schreiber. Vector algebra in the

analysis of genome-wide expression data. Genome Biology, 3(3), 2002.

[46] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials with

rational coefficients. Mathematische Annalen, (261):515–534, 1982.

[47] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM

Journal on Computing, 24(2):227–234, 1995.

[48] C. T. Pan. On the existence and computation of rank-revealing LU

factorizations. Linear Algebra and its Applications, 316(1-3):199–222, 2000.

[49] C. T. Pan and P. T. P. Tang. Bounds on singular values revealed by QR

factorizations. BIT Numerical Mathematics, 39:740–756, 1999.

[50] P.Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for

matrices III: Computing a compressed approximate matrix decomposition.

SIAM Journal on Computing, 36(1):184–206, 2006.

[51] J. C. Platt. FastMap, MetricMap, and LandmarkMDS are all Nystrom

algorithms. In Proceedings of the 10th International Workshop on Artificial

Intelligence and Statistics, pages 261–268, 2005.

99

[52] R. Raz. A parallel repetition theorem. SIAM Journal of Computing,

27(3):763–803, 1998.

[53] M. Rudelson and R. Vershynin. Sampling from large matrices: An approach

through geometric functional analysis. Journal of the ACM, 54(4), 2007.

[54] T. Sarlos. Improved approximation algorithms for large matrices via random

projections. In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium

on Foundations of Computer Science, pages 143–152, 2006.

[55] N. D. Shyamalkumar and K. Varadarajan. Efficient subspace approximation

algorithms. In SODA ’07: Proceedings of the 18th Annual ACM-SIAM

Symposium on Discrete algorithms, pages 532–540, 2007.

[56] A. Sommariva and M. Vianello. Computing approximate fekete points by QR

factorizations of vandermonde matrices. Computers and Mathematics with

Applications, 57(8):1324–1336, 2009.

[57] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the

simplex algorithm usually takes polynomial time. Journal of the ACM,

51(3):385–463, 2004.

[58] W. S. Torgerson. Multidimensional scaling: I. theory and method.

Psychometrika, (17):401–419, 1952.

[59] J. A. Tropp. Greed is good: algorithmic results for sparse approximation.

IEEE Transactions on Information Theory, 50(10):2231–2242, 2004.

[60] V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[61] J. T.-L. Wang, X. Wang, K.-I. Lin, D. Shasha, B. A. Shapiro, and K. Zhang.

Evaluating a class of distance-mapping algorithms for data mining and

clustering. In KDD ’99: Proceedings of the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 307–311, 1999.

