
Department of Computer Science, Rensselaer Polytechnic Institute

Read Me

Lingxun Hu

October 2, 2012

1 The Matching Problem

In a social network, each node is able to send or receive messages. Each node can send
messages to any other nodes in the network except to itself. The only information we
can acquire is whether a node sent or received a message and the time it sent or received
that message.

Our goal is to find as many as possible valid matchings between the sent messages and
received messages, based on the information we can get. By analyzing the matchings, we
can conclude which nodes are communicating with each other and find the relationship
in the social network.

We use two different algorithms to do this work: dynamic programming method and
chain algorithm. You could find these two programs in "Dynamic Matching.cpp" and
"Chain Algorithm.cpp". More information about the solutions, the rules and the algo-
rithms will be provided in the following text.

2 Rules

2.1 Step Function Rule

We use a step function to determine whether a sent message and a received message
can be matched. We calculate a time interval : Tint = Treceive − Tsend . Apparently, a

1

message might not be received before it is sent. We also define Tmax and Tmin.

If Tint > Tmax , which means the time interval is too large, then the sent message and the
received message should not be matched. If Tint < Tmin , which means the time interval
is too small, then the sent message and received message should not be matched, either.
Only when Tmin < Tint < Tmax , we regard it as a valid matching.

We define Tmax and Tmin at the beginning of each program. Of course you may define
your own Tmax and Tmin according to the specific situations you are using our program.

2.2 Causality Rule

Causality rule in this matching problem means that a message sent earlier tends to be
received earlier.

Suppose we have two sent messages S1 and S2 (S1 is earlier than S2) and two received
messages R1 and R2 (R1 is earlier than R2). Simply using the step function, it is ok
to match S1 → R2 and S2 → R1. However, it is forbidden in causality rule.

2.3 No-Loop Rule

As mentions in Section 1, a node cannot send a message to itself. We may encounter
a possible matching, whose sent message and received message are from a same node.
Though this possible matching obeys step function and causality rule, it is still invalid.

3 Algorithms

3.1 Dynamic Programming

We use dynamic programming algorithm to find all valid matchings in the program
named "Dynamic Matching.cpp". This program finds the maximum weight matching
from the input. You can find more about dynamic programming method online or from
a textbook.

In order to find the maximum weight, we need a weight function. We define the weight
function as a linearly descending function. Thus a matching will have more weight,
if the time interval is smaller. (Of course the matching has to obey the three rules
mentioned above.) Certainly, you could define your own weight function. Please go to
"Match_Weight" function in "Dynamic Matching.cpp", if you would like to.

2

I set the program to output the running time of the program. It you change the size
of your input data, you will find that the running time is quadratic with respect to the
size of your input data. It is the best a dynamic programming method can do.

3.2 Chain Algorithm

The chain algorithm is mentioned on page 7 of the paper "Extracting Hidden Groups
and their Structure from Streaming Interaction Data" by Mark K. Goldberg, Mykola
Hayvanovych, Malik Magdon-Ismail, and William A. Wallace.

Our chain algorithm is a little bit different from the one in the paper, because we add a
"no loop" constraint. Therefore, every time the program encounters a loop it will get a
random number 0 or 1. 0 means to move the pointer of the sender vector forward, and
0 means to move the pointer of the receiver vector forward.

I set the program to output the running time of the program. It you change the size of
your input data, you will find that the running time is linear with respect to the size of
your input data, which is pretty efficient.

4 Input & Output

4.1 Input Format

Input data has two parts: "send.txt" and "receive.txt".

"send.txt" contains the information of all the 5000 sent messages. Each row represents
a sent message. The integer number is the number ID of a node. It indicates which node
sent this message. The double number indicates the time when the message was sent.

"receive.txt" has the same format as "send.txt". The integer indicates which node re-
ceived this message. The double indicates the time when the message was received.

4.2 Output Format

"Dynamic matching.cpp" has output named "dynamic_matching.txt". Each row rep-
resent a valid matching. The first column is the number ID of the node which sent the
message. The second column is the number ID of the node which received the message.
The third column is the time when the message was sent.

3

"Chain algorithm.cpp" has output named "chain algorithm.txt", which has the same
format as "dynamic_matching.txt".

4.3 Something About Input & Output

Because I do not have real network data available, I generated the input data to test my
programs. If you could use these program to work on real data, that’s pretty awesome!

I also set both programs to output the number of valid matchings it found. For dynamic
programming method it is 4950 out of 5000 messages. And for chain algorithm it is 4965
out of 5000 messages. Pretty good result!

The output of my program can be used as the input of the program "Extracting Hidden
Groups and their Structure from Streaming Interaction Data", which will help you find
the hidden groups and their structure by analyzing my output data. You can also find
that program on LFD-Lab website.

5 Something Else

If you could test the program on real data or have found a bug or have a problem, please
contact the programmer:

Lingxun Hu
hul5@rpi.edu

4

