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ABSTRACT

Portfolio optimization algorithms were tested using historical S&P100 data. A tra-

ditional Mean-Var algorithm is tested as well as two alternative risk methods. The

alternative risk methods used the maximum drawdown (MDD) as the measure of

risk rather than the standard deviation of returns. The long term performance of

each portfolio produced by these algorithms was compared to various benchmarks.

It was found that the algorithms often outperformed the benchmarks in real rate

of return. However, when return was adjusted for risk, the algorithms generally

underperformed the benchmarks. A hierarchical method involving clustering stocks

before allocation was also tested, but was found to underperform allocation without

clustering. MDD-minimization subject to a return constraint was found to be the

only optimization algorithm that outperformed the benchmarks in each measure of

performance. Closer examination revealed that this algorithm closely matched the

benchmarks during periods of continuous market growth, but significantly outper-

formed them during periods of continuous market decline. This result supports the

use of maximum drawdown as an alternative measure of risk in portfolio optimiza-

tion when investors are assumed to be risk-averse.
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1. INTRODUCTION AND HISTORICAL REVIEW

Although formal mathematical models for diversification are relatively new, diversi-

fication has been practiced by investors, merchants, farmers, and more throughout

history as a way to reduce the risks they face. Harry Markowitz, who is widely

considered to be the father of modern portfolio theory, stated that diversification

of investments long predated his work on portfolio selection (Markowitz, 1999). He

even quotes Shakespeare to prove his point:

My ventures are not in one bottom trusted,

Nor to one place; nor is my whole estate

Upon the fortune of this present year:

Therefore my merchandise makes me not sad.

(Merchant of Venice, Act 1, Scene 1)

Written at the end of the sixteenth century, this quote clearly presents an un-

derstanding of diversifcation long before Markowitz’s seminal work. Even earlier

examples of diversifcation also exist. Ancient Chinese merchants would divide their

shipments among a fleet of junks. If one ship sank, only a fraction of the ship-

ment would be lost. In the fourth century, Rabbi Isaac Bar Aha proposed that

”One should always divide his wealth into three parts: a third in land, a third in

merchandise, and a third ready to hand” (Tractate Baba Mezi’a, folio 42a). Even

though these heuristic and naive methods of diversification have existed for centuries,

only in the last sixty years have formal models for diversification been extensively

developed and studied.

1.1 Modern Portfolio Theory

The overall goal of modern portfolio theory is to maximize risk adjusted return.

Adjusting for risk is desirable as investors have long been shown to be risk averse

(Menezes & Hanson, 1970; Pratt, 1964; Tobin, 1958). Using mathematical models

of risk and diversification, investors attempt to optimize their portfolios to produce

1



2

the greatest risk adjusted return. Various representations and estimations of risk

exist resulting in various methods of optimization. In this research, the traditional

Markowitz Mean-Variance, and two MDD optimization methods are examined.

1.1.1 Markowitz or Mean-Variance Model

Harry Markowitz was not the first to show that diversification can reduce risk,

but he was among the first to develop a formal model for reducing risk without

reducing return. He showed that portfolios constructed from risky instruments can

be mapped in a space of expected return versus risk. When all possible portfolios fall

in this space, those portfolios which minimize risk at given levels of expected return,

or maximize return at a given level of risk, can be identified. These portfolios are

called efficient, because no other portfolio will offer the same return with less risk

or more return with the same risk. This model is considered to be a two-moment

decision model as the allocation is decided based on the first and second moments

of the portfolio’s returns. Not only did Markowitz establish this model, he also

showed how to construct a quadratic program capable of finding efficient portfolios

when the second central moment, the variance, of the portfolio’s returns is used as

the measure of risk (Markowitz, 1952). This quadratic program is discussed in the

following chapter and used in this paper’s experiments.

1.1.2 MDD Models

The maximum drawdown of an investment (MDD) is considered to be an

alternative measure of risk in modern portfolio theory. MDD is defined as the

maximum peak to trough difference in the cumulative return series of an investment

over a specific time horizon. This measure is especially important to fund managers

as large draw downs are unacceptable to investors. This makes maintaining a small

MDD critical to the survival of most managed funds. The use of MDD as a risk

measure has become more attractive as recent studies have suggested that returns

are positively skewed (Defusco et al., 1996; Simkowitz & Beedles, 1978; Singleton &

Wingender, 1986). The Mean-Variance method assumes that returns are normally

distributed. Positively skewed returns disrupt this assumption leading to suboptimal

portfolio allocations. Many researchers are taking this issue seriously and the current
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trend is to develop new higher moment optimizations (Jondeau & Rockinger, 2006).

Rather than develop optimizations of higher moments, it is possible that researchers

should simply optimize using a different risk measure. The MDD of a portfolio

depends on the mean and volatility of its returns; however, simulation experiments

have shown that the MDD depends very little on skewness or kurtosis (Burghardt et

al., 2003). A possible explanation for the observations made in these experiments is

provided by the author. Drawdowns are constructed by summing over a sequence of

returns. Considering the central limit theorem, adding returns drawn from a skewed

distribution is expected to produce a sample that is closer to normally distributed

(Burghardt et al., 2003). If these results hold true, then an optimization using MDD

as the measure of risk should produce a superior allocation than the flawed Mean-

Variance optimization. An analysis by Hamelink and Hoesli shows that portfolios

optimized using MDD, rather than standard deviation, as the measure of risk result

in a lower MDD and only a slightly larger standard deviation for the same level

of return (Hamelink & Hoesli, 2004). An additional benefit of using MDD as the

risk measure is that the optimization problem can be solved using a linear program

instead of a quadratic program. This makes it much simpler to solve both sides of the

allocation problem: minimizing risk subject to a return constraint, and maximizing

return subject to a risk constraint. Minimizing MDD subject to a return constraint

and maximizing return subject to an MDD constraint will be the remaining methods

tested in this research and will be discussed in the next chapter.

1.1.3 Contributions

This research provides new empirical data for the Mean-Var method by cal-

culating the Calmar ratios produced by the method. Some of the first empirical

results for the MDD Constraint and Min-MDD methods are presented in this re-

search. Additionally, optimal choices for risk constraints and length of history for

each method are determined and presented in Table 5.1.



2. METHODS

2.1 Selection Algorithms

The general problem is, given N instruments and a history of their prices

produce a portfolio using those instruments which maximizes risk-adjusted return.

For each method, the output is Θ, a N×1 vector of portfolio weights with
N∑
i=1

Θi = 1.

In general, it is possible for weights to be negative which represents the short selling

of a stock. However, this research ignores short selling and enforces the the condition

that ∀iΘi ≥ 0. Each method, besides the uniform method, is given a T ×N matrix

of prices as input. This matrix contains the price for each of the N instruments on

T different days. These T days will be sequentially ordered, and the T×N matrix of

prices will represent a window of pricing history. The different selection algorithms

build their portfolios using the prices in the [0, T ] time horizon. The expected return

of the portfolio is µT · Θ, where µT is the vector containing the average return for

each usable stock. The MDD methods can be found in standard form in Appendix

A.

2.1.1 Uniform

This is the simplest method to create a diversified portfolio and will be used

as one of the benchmarks to compare the other methods against.

for all i = 1, .., N, Θi =
1

N
(2.1)

Using this method, an equal amount of capital is allocated to each stock during each

trading period. Allocating capital in this manner protects the portfolio from sudden

crashes in individual instruments, but also hinders large gains from overachieving

instruments.

4
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2.1.2 Volatility Weighted

This method is similar to the uniform method as capital will be allocated to

each usable stock in the universe. However, the amount of capital allocated to each

stock will be proportional to the inverse of the volatility of the stock’s returns in

the recent past.

∀iΘi =
1
σi

N∑
i=1

1

σi

(2.2)

σi = std dev(Ri)

Volatility is measured using the standard deviation of the stock’s returns and is

reprsented by the symbol σ. Using the T × N matrix of prices, the T × N matrix

of returns for each stock over the [0, T ] time horizon is constructed. This matrix

is denoted R, and Ri is the column vector of returns for stock i. Each volatility

quotient is divided by the sum of all volatility quotients so as to maintain the
N∑
i=1

Θi = 1 condition. This method serves as the second benchmark against which

the other methods will be compared.

2.1.3 Mean-Variance Method

Σ is the covariance matrix of the returns for the usable instruments in the

universe. ΘTΣΘ is the variance of the returns of the portfolio described by Θ.

This method minimizes the risk factor subject to a return constraint. The return

constraint used in this research is a weighted average of the minimum and maximum

average returns amongst all usable instruments.

min
Θ

ΘTΣΘ, (2.3)

s.t.

µT ·Θ ≥ λ ·max(µ) + (1− λ) ·min(µ),

∀iΘi ≥ 0
N∑
i=1

Θi = 1
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2.1.4 Maximizing Return Subject to an MDD Constraint

Chekhlov et al. (2005) provides an example of maximising expected return

subject to various draw down constraints and provides several empirical results

using a universe of 32 instruments. The major distinctions between this previous

work and the work presented in this paper is the method for selecting the MDD

constraint, the number of instruments in the universe, and the types of instruments

in the universe. In Chekhlov et al. (2005), the constraint is defined as a fraction

of the capital value of the portfolio, and the instruments used are from a variety of

liquid markets including currency markets, equity indices, and precious metals. In

this research the constraint is simply the MDD of a uniform portfolio constructed

over the same [0, T ] time horizon, and the universe is composed of all stocks that

were members of the S&P100 at the time of the portfolio’s construction.

max
Θ

RT ·Θ, (2.4)

s.t.

MDD(RΘ) ≤ λ ·MDD(Uni),

∀iΘi ≥ 0
N∑
i=1

Θi = 1

2.1.5 Minimizing MDD Subject to a Return Constraint (Min-MDD)

The MDD Constraint method maximizes return for a given level of risk while

this method minimizes the risk factor for a given level of return. This makes it more

comparable to the Mean-Var method as they both attempt to construct efficient

portfolios by minimizing risk. Similar to the Mean-Var method, this method also

uses a weighted average of the minimum and maximum average returns to determine
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the target level of return.

min
Θ
MDD(RΘ), (2.5)

s.t.

µT ·Θ ≥ λ ·max(µ) + (1− λ) ·min(µ),

∀iΘi ≥ 0
N∑
i=1

Θi = 1

A benefit of this method is that comparing it to the Mean-Var method is simple as

both methods can be tested using the same return constraint.

2.2 Clustering

Clustering is used to group highly correlated stocks and to ensure that the

correlation between separate groups is as low as possible. Diversification is ac-

complished by allocating within groups, followed by allocating between groups. As

separate groups are constructed to be uncorrelated, diversifying between groups

should reduce risk.

2.2.1 Clustering Algorithm

First, the 1×T performance vector A is contrsucted for each stock. For stock

i, Ai is built using the 1× T vector of daily returns for stock i, R
′
i.

for j = 1..T , Aij =


1 if R

′
ij > µ(R

′
ij) + σR′

i

−1 if R
′
ij < µ(R

′
ij)− σR′

i

0 o.w.

(2.6)

where,

σR′
i

= std dev(R
′

i),

µ(R
′

i) = mean(R
′

i)

Next, a stock si is selected at random to serve as the first center, c1. The correlation

between its returns and the returns of each other stock is computed, using their
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corresponding A vectors. This 1 × N vector of correlations will be the first row in

a k × N matrix of correlations, ρ, where k = number of clusters. Until k centers

have been chosen, the stock most uncorrelated with the previous center becomes

the next center. The next row of the correlations matrix is built once the new

center is determined. Once the correlations matrix is filled, ρi will be the vector of

correlations between stock i and each center. For each stock i, i = 1..N , i is placed

in the cluster with center cj, where j satisfies ρij = max(ρi).



3. DATA AND EXPERIMENTS

3.1 Data

The closing stock prices for 1220 publicly traded companies from 12/30/1983

to 12/15/2011 were compiled from historical stock market data. Along with the daily

closing prices for each stock, binary indicators for membership in the S&P 500 and

the S&P 100 were also compiled. Membership in the S&P 500 was tracked for the

entire time period, and membership in the S&P 100 was tracked from 09/11/1989

to the end of the period. The period from 09/11/1989 to 12/15/2011 spans 5614

trading days, giving a history of 1220 × 5614 prices. The 1220 × 5614 matrix of

prices and equivalently sized matrix of S&P 100 indicators serve as the input for the

simulations.

3.2 Simulations

Each method is tested by simulating investing in the portfolios constructed by

the method using the S&P 100 or S&P 500 data. Simulations begin with a capital

investment of 1, and shares are assumed to be infinitely divisible. To simulate

long-term investing, portfolios are constructed, held, and rebalanced multiple times

throughout the simulation. Each constructed portfolio is held for a predetermined

number of trading days and then rebalancing occurs. To rebalance, the chosen

allocation algorithm is used to create a new set of portfolio weights using the current

trading day as the starting time. Figure 3.1 shows how rebalancing creates a

moving history window. nhor is the length of the period in which the portfolio is

held, and phor is the length of the history given to the allocation algorithm. When

phor > nhor, there is a gradual change in the history provided to the allocation

algorithms. When the first allocation occurs, the history is composed of the last

phor days. At the next allocation, the history loses the oldest nhor days and gains

the newest nhor days. This change occurs at every allocation except for the first.

Rebalancing is critical to ensure that the portfolio remains in the efficient set despite

changing market conditions. When portfolios are rebalanced, the captial available

9
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Figure 3.1: Rebalancing and the Moving History Window

is decreased by 3 basis points to simulate transaction costs.

The capital worth of each constructed portfolio is recorded for each day in the

simulation. Records for each method are used to calculate the average daily return,

average annual rate of return, and average annual MDD when investing using that

method. The risk-adjusted performance metrics discussed in the following chapter

require these calculations.

3.3 Simulation with Clustering

Simulations with clustering require a few additional steps. At the beginning of

each trading period, the usable stocks are clustered into groups using the clustering

algorithm. For each cluster, a vector of weights is produced using one of the selection

algorithms. This vector of weights will be γ. The length of γ will be equal to the

size of the cluster it was produced from, and
∑
i

γi = 1. After portfolios have been

constructed from each cluster, meta-stocks representing each cluster are built. A

meta-stock is essentially a representative of a cluster. It takes the T×M , where M is

the number of stocks in the cluster, history of prices for the cluster, and consolidates

them into a single T × 1 history for a single stock. Let C be the T ×M history of

prices for the cluster and S be the T × 1 meta-stock history. The price history of

the meta-stock is weighted using γ.

for i=1..T Si =
M∑
j=1

γj · Cij (3.1)
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Using the price histories for each meta-stock as input, an allocation algorithm is

used once again to produce a set of weights denoted ω. The final weight for each

stock in Θ is found by multiplying the stock’s corresponding γ by its cluster’s weight

in ω. The portfolio described by Θ is then held for nhor days before rebalancing,

at which point the process is repeated.



4. RESULTS

Simulations were run for each algorithm with nhor set to 20 trading days and phor

set to either 60, 120, 250, or 500 trading days. For the Markowitz and MDD-

Minimization methods, 0.1, 0.2, . . . , 0.9 are used as values of λ. When maximizing

return subject to an MDD constraint, 0.1, 0.2, . . . , 2.0 are used as the values of λ.

Clustering was simulated for k=3 and k=5. All compiled results can be found in

Appendix B.

4.1 Measuring Portfolio Performance

Three metrics for measuring portfolio performance are used to compare the

different optimization methods, one raw measure, and two risk adjusted measures.

4.1.1 Rate of Return

The simplest method of measuring porfolio performance is to examine its real

rate of return. This shows exactly how much return on investment a strategy pro-

vided during the simulation period. Due to the length of the simulation period,

average annual rate of return is used. Several configurations of λ, phor, and opti-

mization method produced returns well above the benchmarks. As seen in Figure

4.1, each optimization method produces greater returns than the benchmarks for

several values of λ when phor = 500. However, a high rate of return does not guar-

antee that an investment was optimal. Figure 4.2 depicts the returns realized by

the method with the highest rate of return and the method with the largest Sharpe

ratio. While the method with the high Sharpe ratio produced a much lower return,

it did so without wild gains or losses. The high return method experienced massive

swings in gains and losses, losing more than fifty percent of its total value at several

points. One method presents high risk and high reward while the other low risk

and low reward. This example shows the desirability of adjusting returns for risk.

Without adjustment, it is unclear which method should be chosen. After adjusting

for the risk involved, the lower return method is to be preferred.

12
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Figure 4.1: Average Annual Rate of Return when PHOR = 500 Days

Figure 4.2: Highest Rate of Return vs. Largest Sharpe Ratio
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4.1.2 Sharpe Ratio

Let RD(T) = average daily return over [0, T], and σ(T) = standard deviation

of daily returns over [0, T]. To compute an annualized Sharpe ratio, the ratio is

multiplied by the square root of the number of trading days in a year.

Sharpe(T ) =
RD(T )

σ(T )
·
√

250 (4.1)

The Sharpe ratio has long been used as a measure of risk adjusted performance

as it rewards larger returns while penalizing large swings in those returns. Ideally,

an investment will provide consistent large returns. Investments that approach this

ideal will have high Sharpe ratios. While the optimization algorithms often outper-

formed the benchmarks in annual rate of return, they often generated lower Sharpe

ratios than the benchmarks. This means that the optimization algorithms generally

produced higher variance returns than the benchmarks, which is undesirable. Fig-

ures 4.3 and 4.4 clearly present this phenomenon. The annual rate of return for

the MDD constraint method approaches twenty percent; however, its Sharpe ratio

plummets as the rate of return increases. This suggests that the additonal return

was gained by taking on a substantial amount of risk.
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Figure 4.3: Average Annual Rate of Return when PHOR = 120 Days

Figure 4.4: Sharpe Ratio when PHOR = 120 Days
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4.1.3 Calmar Ratio

Let RA(T) = average annual return over [0, T], and MDD(T) = average annual

MDD over [0, T].

Calmar(T ) =
RA(T )

MDD(T )
(4.2)

The Calmar ratio is a risk adjusted measure which resembles the Sharpe ratio. Both

ratios are constructed by dividing return by risk. In the case of the Sharpe ratio

the risk factor is the standard deviation of the returns. For the Calmar ratio, the

risk factor is the MDD of the cumulative returns. Suprisingly, the MDD Constraint

method generally had a lower Calmar ratio than the benchmarks. However, the

Min-MDD algorithm produced the highest Calmar ratios amongst all of the methods

tested and generally beat the benchmarks.

4.1.4 Clustering

Clustering did not appear to improve the performance of any of the tested

algorithms. In several cases it diminished performance. Figure 4.5 shows the dete-

rioration of the Calmar ratio for the Min-MDD algorithm when clustering is used.

This is not the only example of performance degradation, but it is an important ex-

ample as the Min-MDD algorithm without clustering produced some of the highest

Calmar ratios. Thus clustering harmed the primary reason for using the Min-MDD

allocation algorithm.
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Figure 4.5: Calmar Ratio for Clustered and Unclustered Min-MDD

4.2 Min-MDD During Growth Periods and Recessions

Min-MDD was the only optimization algorithm that produced results that beat

the benchmarks in all three measures of performance. To better understand why it

was able to do so, four additional simulations were conducted using the benchmark

algorithms and the Min-MDD algorithm. Each simulation uses data from a different

time period. Two simulations use data from growth periods, periods of continuous

stock price growth. The other two use data from recessions, periods of continuous

decreases in stock price. The performance metrics collected from each simulation

can be found on the following page.
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Table 4.1: Growth Period (07/1/1996–06/16/2000) Performance
Volatility Weighted Uniform MDD-Minimization

Sharpe Ratio 1.5334 1.5009 1.3117
Rate of Return 0.1589 0.1682 0.1566
Calmar Ratio 2.7391 2.7165 2.4085

Table 4.2: Growth Period (05/1/2003–04/23/2007) Performance
Volatility Weighted Uniform MDD-Minimization

Sharpe Ratio 0.9742 1.0405 0.984
Rate of Return 0.1525 0.1688 0.1701
Calmar Ratio 1.3976 1.4588 1.6064

Table 4.3: Recession (09/11/2000–04/02/2003) Performance
Volatility Weighted Uniform MDD-Minimization

Sharpe Ratio -0.5635 -0.6072 -0.4387
Rate of Return -0.1214 -0.1444 -0.804
Calmar Ratio -1.9208 -2.2932 -1.1842

Table 4.4: Recession (05/1/2007–05/22/2009) Performance
Volatility Weighted Uniform MDD-Minimization

Sharpe Ratio -0.5096 -0.4896 -0.3276
Rate of Return -0.1616 -0.1754 -0.0752
Calmar Ratio -2.1804 -2.2479 -1.1337



5. DISCUSSION AND CONCLUSION

5.1 Mean-Var and MDD Constraint Methods

These methods are undesirable for the same reasons. Whenever they produced

large Sharpe ratios, they also produced large drawdowns and low Calmer ratios. On

the occasion that they produced large Calmar ratios, they also produced low Sharpe

ratios. As such, an investor who is aware of each type of risk would never chose to

use one of these methods.

5.2 Min-MDD Method

The results of the Min-MDD algorithm show that MDD should be consid-

ered seriously as a measure of risk. The additional simulations to test Min-MDD’s

performance in different market conditions provide solid evidence as to why MDD

is a useful measure of risk. Min-MDD performed far better during the recession

periods, especially during the 2007–2009 period, than the benchmark algorithms.

An analytical study of MDD by Magdon-Ismail and Atiya found that instruments

with negative returns can actually be beneficial to a portfolio when considering the

Calmar ratio as an acceptable risk adjusted measure of performance (Magdon-Ismail

& Atiya, 2004). These impressive results during recessions come without sacrificing

performance during boom periods, as the Min-MDD algorithm performed similarly

to the benchmarks in both growth periods. These results make sense intuitively as

minimizing the MDD should be expected to protect an investment from large losses.

5.3 Clustering

A possible explanation for why clustering fails to improve or maintain per-

formance is that not enough clusters are being used. Having more clusters could

improve the optimality of the allocation amongst meta-stocks as the presence of

more assets generally allows for greater diversification. This could then improve the

optimality of overall allocation. The downside of increasing the number of clusters is

19
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that the size of each cluster will decrease potentially ruining the allocations withing

clusters. Further research should be conducted to determine the optimal number of

clusters.

5.4 CONCLUSION

The performances of various portfolio allocation algorithms were compared in

a simulation environment using real stock market data. The traditional Markowitz

Mean-Var method and a new MDD Constraint method were found to sometimes

outperform benchmarks in one or two performance metrics, but never in all three

tested metrics. These methods more often underperformed the benchmarks. The

Sharpe ratio was also shown to be insufficient as a measure of risk when investors

are concerned about large drawdowns. Several configurations tested in simulation

produced large Sharpe ratios and small Calmar ratios. It is the opinion of the

author that MDD as a measure of risk should continue to be studied. Investors are

already allocating in such a way as to prevent large drawdowns, and the Min-MDD

optimization algorithm has been shown in this research to produce good performance

results. Specifically, Min-MDD with phor = 500 days and λ = 0.6 or 0.7 which

were found to beat the benchmarks in every performance metric considered. Table

5.1 shows the author’s suggested choices for λ and phor for each method when

considering each measure of performance as important.

Table 5.1: Optimal λ and phor for Different Risk Measures
Method λ∗ phor∗ Annual Rate of Return Sharpe ratio Calmar ratio
Mean-Var 0.8 500 0.1027 0.6130 0.4106
Min-MDD 0.7 500 0.1155 0.7368 0.4405
MDD Constraint 0.6 500 0.1074 0.5989 0.4055
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APPENDIX A

LINEAR PROGRAMS IN STANDARD FORM

The linear programs used in this research are presented below in standard form.

min f ′ · x,

s.t.

A · x ≤ b,

Aeq · x ≤ beq,

lb ≤ x ≤ ub

A.1 Maximizing Return Subject to an MDD Constraint

Let IT be a TxT identity matrix, 0T be a Tx1 matrix of zeros, 0n be a Nx1

matrix of zeros, and RT be the vector containing the cumulative returns for each

stock at the end of the [0,T] period.

x =


z0

z

Θ

 , f = −


0

0T

R
′
T



A =


0T IT −R
0T −IT R[

IT 0T

]
+

[
0T −IT

]
0T · 0

′
n

 , b =


λ ·MDD(Uni) · 1T

0T

0T



Aeq =

1 0
′
T 0

′
n

0 0
′
T 1

′
n

 , beq =

0

1
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lb =


0

0T

0n

 , ub =


∞
∞ · 1T

1


A.2 Minimizing MDD Subject to a Return Constraint

Let IT be a TxT identity matrix, 0T be a Tx1 matrix of zeros, 0n be a Nx1

matrix of zeros, and RT be the vector containing the cumulative returns for each

stock at the end of the [0,T] period. Target specifies the level of return for which

risk is being minimized.

x =


z0

z

Θ

m

 , f =


0

0T

0n

1



A =


0 0

′
T −RT 0

0T IT −R −1T

0T −IT R 0T[
IT 0T

]
+

[
0T −IT

]
0T · 0

′
n 0T

 , b =


−target
−1T

0T

0T



Aeq =

1 0
′
T 0

′
n 0

0 0
′
T 1

′
n 0

 , beq =

0

1



lb =


0

0T

0n

0

 , ub =


∞
∞ · 1T

1

∞





APPENDIX B

ALL RESULTS

B.1 PHOR=60 days, No Clustering
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B.2 PHOR=120 days, No Clustering
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B.3 PHOR=250 days, No Clustering
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B.4 PHOR=500 days, No Clustering



31



32

B.5 PHOR=60 days, 3-Clustering
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B.6 PHOR=120 days, 3-Clustering
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B.7 PHOR=250 days, 3-Clustering
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B.8 PHOR=500 days, 3-Clustering
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B.9 PHOR=60 days, 5-Clustering
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B.10 PHOR=120 days, 5-Clustering
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B.11 PHOR=250 days, 5-Clustering
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B.12 PHOR=500 days, 5-Clustering
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