
1

iHypR: Prominence Ranking in Networks of Collaborations with
Hyperedges 1

Sibel Adalı, Department of Computer Science, Renssealer Polytechnic Institute
Malik Magdon-Ismail, Department of Computer Science, Renssealer Polytechnic Institute
Xiaohui Lu, Department of Computer Science, Renssealer Polytechnic Institute

We present a new algorithm called iHypR for computing prominence of actors in social networks of collabora-
tions. Our algorithm builds on the assumption that prominent actors collaborate on prominent objects, and
prominent objects are naturally grouped into prominent clusters or groups (hyperedges in a graph). iHypR
makes use of the relationships between actors, objects and hyperedges to compute a global prominence score
for the actors in the network. We do not assume the hyperedges are given in advance. Hyperedges computed
by our method can perform as well or even better than ‘true’ hyperedges. Our algorithm is customized for
networks of collaborations, but it is generally applicable without further tuning. We show, through exten-
sive experimentation with three real life data sets and multiple external measures of prominence, that our
algorithm outperforms existing well known algorithms. Our work is the first to offer such an extensive eval-
uation. We show that unlike most existing algorithms, the performance is robust across multiple measures
of performance. Further, we give a detailed study of the sensitivity of our algorithm to different data sets and
the design choices within the algorithm that a user may wish to change. Our paper illustrates the various
trade-offs that must be considered in computing prominence in collaborative social networks.

Categories and Subject Descriptors: H.3.1 [Content Analysis and Indexing]; H.3.3 [Information Search
and Retrieval, Relevance Feedback]; J.4 [Social and Behavioral Sciences]

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Prominence, Collaboration, Social networks

ACM Reference Format:
Adalı, S., Magdon-Ismail, M., and Lu, X. 2012. iHypR: Prominence Ranking in Networks of Collaborations
with Hyperedges. ACM Trans. on Knowl. Disc. from Data 1, 1, Article 1 (March 2012), 32 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
A social collaborative network contains actors (for example authors) who collaborate
on creating objects (for example papers). In today’s online world, social collaborative

1Note: A preliminary version of this paper appears in ICWSM 2011 under the title “Prominence Ranking in
Graphs with Community Structure”.

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agree-
ment Number W911NF-09-2-0053. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation here on.
Author’s addresses: Sibel Adalı, Department of Computer Science, Renssealer Polytechnic Institute; Malik
Magdon-Ismail, Department of Computer Science, Renssealer Polytechnic Institute; Xiaohui Lu, Depart-
ment of Computer Science, Renssealer Polytechnic Institute.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/03-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:2 Adalı, Magdon-Ismail and Lu

networks surround us, perhaps the most famous being Wikipedia where the authors
are editors and the objects they collaborate on are Wikipedia articles. Similarly, au-
thors in academic social networks collaborate to create papers; bloggers collaborate
to create blogs; actors collaborate to create movies; employees in a firm ‘collaborate’ to
create email threads. In general, such social collaborative networks can be represented
by a bipartite graph as illustrated in Figure 1. The actors and objects are the nodes,

.

.

.

Actors

.

.

.

Objects
collaborate

on

Fig. 1. Illustration of a social collaborative network.

forming the two partitions in the graph and an edge from an actor to an object means
that the actor collaborated on that object. An actor can collaborate on multiple objects
and multiple actors can collaborate on the same object.

We address the problem of ranking the actors according to prominence; the input
is the social collaborative network. The rationale for why one should be able to infer
prominence from a social collaborative network is that the objects have some value.
Hence, even a crude estimate such as just the number of objects an actor has collabo-
rated on (the actor node’s degree) can be a useful measure of prominence. We can do
better than such crude estimates because prominent actors would rather collaborate
on more valuable objects. Even more is true: objects are generally viewed by an exter-
nal audience (for example readers of papers; viewers of movies); hence, a prominent
actor gains social status from being associated to high value objects and tries to be dis-
associated from low value objects. As a result, there is a tendency for those actors who
collaborate on a particular object to be of comparable prominence. This basic notion is
the general idea behind any algorithm which attempts to determine promince from an
observed social collaborative network. In general, one starts with a crude estimate of
prominence, such as node degree and then refines it.

We introduce a new algorithm called iHypR (iterative Hyperedge2 Ranking) that
ranks actors in the order of prominence in such social collaborative networks. Our
algorithm is specifically designed for a network of collaborations which satisfies the
following conditions:

— The collaborations of people (actors) produce objects with external value.
— The prominence of the individuals are linked to the prominence of the objects they

have collaborated on.

Many of the algorithms introduced for prominence computation either consider graphs
induced on only the actors or only the objects. For example actor to actor graphs [Faust

2In graph theory [West 2000], a hyperedge is a set of (possibly) more than two vertices as opposed to an edge
which is a set of exactly two vertices

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:3

and Wasserman 1994], object to object graphs [Brin and Page 1998; Kleinberg 1999].
Some algorithms consider the actor to object graphs [Hotho et al. 2006]. Our algorithm
will use group structure among the objects to compute prominence scores for actors.
There are a number of algorithms that use group structure in different ways: some
require setting values of several tunable parameters specific to the data [Balmin et al.
2004; Sun et al. 2009a]; others operate on data sets that do not correspond to collabo-
rations [Hotho et al. 2006; Bao et al. 2007] and employ different hypotheses [Sun et al.
2009b]. For example, rankclus and netclus [Sun et al. 2009b] compute a prominence
ranking in different actor communities separately (the rationale is that actors in dif-
ferent communities may be incomparable); these communities must be specified ahead
of time. The group structure among objects which are the basis for our algorithm may
be specified by hyperedges, which we now describe.

1.1. Hyperedges
It is often the case that the objects in the collaborative network fall into natural groups.
For example, papers belong to conferences and fields; movies into genres and sequels
or trilogies, etc. A group of objects is a hyperedge. Prominent, high value objects tend to
belong to prominent hyperedges. If we augment the social collaborative network with
hyperedges, the resulting picture of the network is illustrated in Figure 2. Actors are
linked to objects that they create and objects are linked together in hyperedges. As an
example, consider a network of academic collaborations. The actors, i.e. researchers,
collaborate on papers (objects). Objects are naturally placed in hyperedges like con-
ferences or journals. High quality conferences and prominent individuals tend to have
high value publications.

.

.

.

Objects

.

.

.

Actors

.

.

.

Hyperedges
collaborate

on belong to

Fig. 2. A collaborative social network with hyper-edges. For example, the actors can be authors; the objects
are papers; and, the hyperedges are conferences. A hyperedge is a collection of objects.

Hyperedges can help with computing prominence for two reasons. First, is the in-
formative aspect; an object in a hyperedge (group) with other high value objects will
likely have high value. Thus, the hyperedges allow one to impute the value of an object
from the values of other objects in the group. Second, is the noise dampening effect.
An object’s value is hard to evaluate and may not be a direct consequence of the actors
who collaborate on it: for academic collaborations on papers one might argue that it is
the authors who are solely responsible for the quality of a paper; on the other hand,
the actors alone are not responsible for the quality of a movie (many other ingredients
such as special effects etc. have an impact). Thus, a single object’s value is a noisy in-
dicator of the prominence of an actor, and a group of objects (a hyperedge) can give a
more stable estimate.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:4 Adalı, Magdon-Ismail and Lu

We emphasize that the hyperedges are not specified in the data. In some networks,
natural hyperedges exist; for example, academic papers are naturally grouped into
conferences. In general, such natural hyperedges are not available. Our algorithm
iHypR does not need the hyperedges to be prespecified. Algorithms which use some form
of hyperedge structure typically assume that these hyperedges are prespecified. For
example [Sun et al. 2009a; Sun et al. 2009b] assumes actor communities are given.
Our approach is based on inferring the hyperdeges.

1.2. Our Contributions
We give a method for ranking actors in an actor-object collaborative network. One im-
portant aspect of our algorithm is the use of hyperedge structure among the objects.
This hyperedge structure is computed within the algorithm using an external clus-
tering algorithm, and we show results with two algorithms that work well for this
purpose. Furthermore, we also show that hyperedges found by clustering algorithms
actually perform better than ‘true’ hyperedges (for example conferences in academic
networks) since the inferred hyperedges reduce the noise present in the true hyper-
edges.

Most algorithms for prominence computation are carefully tuned to a particular net-
work, for example [Balmin et al. 2004; Nie et al. 2005; Hotho et al. 2006; Bao et al.
2007]. Such algorithms assume a great deal of information about the underlying data
which limits their applicability. There is often no discussion of how sensitive the algo-
rithm is to this tuning. These methods are not competitive for the datasets we study
here because they either suppress too much relevant data or introduce too much noise.
In our algorithm there are a few design choices to be fixed. We present a default ver-
sion of our algorithm which can be applied to any network without any further tuning.
We use this single algorithm in all our experiments. We also study how the different
design choices affect the performance.

Evaluation. Most of the work that ranks objects in multi-genre networks rely on
anecdotal evidence or limited evaluation of the performance of the algorithms. Here,
we use three real life datasets containining tens of thousands to millions of nodes and
many different outside measures of prominence to validate our algorithm. We compare
against many known algorithms and show that our algorithm is robust across many
different application domains. In particular, we study a dataset of academic collabora-
tions based on peer review (Digital Bibliography & Library Project, DBLP), a dataset
of e-mail communications in a hierarchical organization (Enron dataset) and a dataset
of movies from Hollywood as well as other movie industries (Internet Movie Database,
IMDB). These datasets of collaborations offer us interesting case studies and we ex-
amine them in depth in our tests. The following are the unique contributions of our
paper:

1. iHypR: iterative Hyperedge Ranking. A novel algorithm for ranking in an (actor)-
(object) bi-partite collaborative social network that is based on constructing an
(actor)-(object)-(hyperedge) tri-partite social network (Figure 2). iHypR is iterative
and is based on the assumption that actors derive prominence from their objects
and objects derive prominence from the hyperedges they belong to.

2. We demonstrate improved ranking performance when using hyperedges as com-
pared with ignoring them. We demonstrate this by using conference venues as ‘true’
hyper edges in DBLP to significantly improve the ranking of DBLP authors. We
measure the quality of results using a ground truth defined from citation counts.
This conclusion holds not only for our algorithm but also the natural extensions of
existing algorithms to our tri-partite setting. Thus, hyperedges are important for
ranking.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:5

3. We show that it is possible to infer the hyperedges as overlapping clusters of the ob-
jects. We show improved performance when using the inferred hyperedges as com-
pared to the ‘true’ hyperedges (which we take to be publication venue in DBLP).
Inferred hyperedges can be more robust than proclaimed hyperedges.

4. We study the impact of various network environments on ranking performance.
Specifically, we use Enron data to explore the affect of an hierarchical or organi-
zational structure amongst actors; and, we use IMDB data to explore the effect of
intrinsic object value and capital gain for collaborating actors. We show that our
algorithm significantly outperforms all other well-known algorithms for all these
data sets.

5. We study how ranking performance using hypergraphs changes when we change
how social ties and objects are valued. In particular we observe that the Jaccard
measure, which favors a pairwise notion of social distance, performs better for clus-
tering algorithms that have a more localized view of distance, and the Adamic/Adar
measure, which favors a more global value for social distance, performs better for
clustering algorithms that incorporate more global information.

6. We give extensive experimentation with real datasets using external measures of
prominence to show that iHypR provides superior performance and is robust across
a number of different criteria. This is the first large scale study of such ranking
algorithms with multiple data sets and external performance criteria.

The basis for our computation of actor prominence is that objects have value and the
actors are directly responsible for the value of these objects; higher prominence actors
create higher value objects. This is explicitly the case in academic networks and only
loosely the case in an email network (emails generally have little value and not all
correspondents in an email thread are responsible for that albeit little noisy value). We
present two versions of our algorithm that are applicable to each of these types of cases.
Loosely speaking, represent the actor-object-hyperedge graph as A−O−H. The basic
algorithm applicable to the case where objects have value that is the direct result of the
prominence of the actors (for example academic networks) is based on this A− O −H
graph. When object values are more noisy and not necessarily directly reflecting the
prominence of the actors (for example movie or email networks) the noise in the object
values can be misleading and it is the noise dampening effect of the hyperedges that
is responsible for most of the improvement. In such types of networks it is advisable to
bypass the object network and only consider the ‘smoothed’ actor-hyperedge network
A − H. We show results for our algorithm based on both the A − O − H and A − H
networks. As expected the A−O−H algorithm dominates in the academic network and
the A−H algorithm dominates in the other networks. In all networks, our algorithms
dominate algorithms based on prior literature.

2. THE IHYPR ALGORITHM
In this section, we introduce an algorithm for ranking objects based on hyperedge
structure. We consider a bi-partite graph G = (V,E) where each node v ∈ V has a type:
either an actor or an object. We use A to denote all nodes in V of type actor, and B to
denote all nodes in V of type object, where V = A∪B and A∩B = ∅. Actors collaborate
on objects and this collaboration constitutes a tie between the actor and the object.
Thus, each undirected edge in E is of the form (a, b), between an actor a ∈ A and an
object b ∈ A. For example, in an academic setting actors are researchers and objects
are papers and edges are from authors to papers. In the movie industry, the actors
collaborate on movies as objects. In a communication data set, emails could be the
objects and the sender and plus recipients are the actors ‘collaborating’ on the object.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:6 Adalı, Magdon-Ismail and Lu

A hyperedge [West 2000] is an edge that connects multiple vertices, instead of just
two. Hence, a hyperpedge c connects a set of objects c ⊆ B that are related to each
other somehow. We would like to find a set C of hyperedges, each connecting a set
of objects from B. Note that in some cases, the hyperedges may be disjoint: in other
words no two hyperedges may connect to the same vertex. This is true if hyperedges
represent conferences containing sets of papers (the objects). However, if hyperedges
represent research areas, then they can also be overlapping. A certain paper may be-
long to multiple research areas. Even for conferences, there are multiple ways to de-
fine hyperedges, using different conference series (like WWW) or each specific year of a
conference (WWW2012). Regardless of the underlying definition, we would like to find
hyperedges that represent objects of similar prominence such as those in the same
conference.

One conclusion we can draw from this discussion is that the appropriate hyperedge
for a dataset may not be obvious. Furthermore, some datasets may have natural hy-
peredges, and some may not. In our algorithm, we do not make the assumption that
hyperedges are known. We first describe how to find hyperedges. We will later examine
the impact of using our algorithm as opposed to the natural hyperedges (eg. venues in
DBLP such as conferences, journals and books).

2.1. Computing Hyperedges
To compute hyperedges, given G = (V,E), we first construct a new graph GO =
(VO, EO) on the objects with undirected weighted edges as follows.

VO = B

EO = {(b1, b2) | b1, b2 ∈ VO and {(a, b1), (a, b2)} ⊆ E for some a ∈ A}

That is, an edge in the object graph exists between two objects if the same author col-
laborated on both objects. We then define weights as the distance between two objects,
denoted by waa(b1, b2) for each edge as follows: the weight measure we choose is in-
spired by the Adamic-Adar measure [Adamic and Adar 2003] given for actor to actor
graphs. Here, we apply it to actor-object graphs to determine an object-object distance.
The distance between the objects depends on the common actors. For each common
actor, the distance is larger if that actor is linked to many other objects and therefore
spent ‘less energy’ on these objects (as each of the object gets less attention from the
actor); if the actor links to many other objects, it means the actors link between any
two is weaker. We sum this distance over all the common authors to the two objects to
find the weight.

waa(b1, b2) =
1∑

b1,b2∈Γ(a)

1
log |deg(a)|

where Γ(a) is the neighborhood of actor a, the set of objects a collaborated on; and ,
deg(a) = |{b | (a, b) ∈ E}| is the total number of objects that are adjacent to actor a.

Now, given GO, we find clusters C1, . . . , Cm of nodes in VO using the SSDE-Cluster
algorithm [Magdon-Ismail and Purnell 2011], which is based on metric embeddings
followed by soft Gaussian Mixture Model clustering to find a prespecified number m
of overlapping clusters. We choose this algorithm from among those available because
it a) provides overlapping clusters; b) is very efficient; the level of cluster overlap can
be tweaked easily. One property of SSDE-cluster is that it constructs overlapping clus-
ters which is appropriate since objects could belong to multiple clusters. Categorical

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:7

clustering algorithms such as [Gibson et al. 2000] could also be used (but these typi-
cally give non-overlapping clusters). We mention that there is significant literature in
clustering and a comprehensive overview is beyond the scope of this paper.

Each cluster will be treated as a hyperedge by our algorithm, representing a set of
objects that are related to each other due to their relationship through common actors.
We will use H(G) = {C1, . . . , Cm} to denote the set of hyperedges for the input graph
of objects. More details about the clustering algorithm can be found in the Appendix.

Later in the paper, we will investigate the choice of the above distance (weight)
function. We will compare this function waa to the simpler Jaccard function

wjac(b1, b2) =
|ΓA(b1) ∪ ΓA(b2)|
|ΓA(b1) ∩ ΓA(b2)|

where ΓA(b) = {a | (a, b) ∈ E} is the set of neighbors of b of type A.

2.2. Computing Scores
We now get to the meat of the algorithm. We are given a bipartite graphG = (V,E) and
a set H(G) of hyperedges of objects in G. The aim is to compute prominence scores va,
vb and vc for each actor, object and hyperedge. Our algorithm is based on the following
assumptions:

— Prominent actors contribute to prominent objects.
— Prominent objects tend to be in prominent hyperedges.

However, both relationships tend to be noisy. As a result, we need a robust method
to merge values of a set of objects. Suppose X is a set of values. The top function aims
to improve robustness for this purpose:

top(β,X) = {x | x is in the top β ∗ |V | highest values in X},
where 0 ≤ β ≤ 1; top(β,X) contains the top-β fraction of elements in X. Given the
noisy set X of values, we are only going to consider the top β percent of the values in
determining the quality of the entire set X. As an example, let us consider an author.
Suppose X is the set of values for all the papers of the author. If β = 1, to be a good
author all the values in X should be good. However, if we consider someone a good
author if their top papers are very good, then we would use β < 1.

We can also improve the assesment of the setX by also taking into account the worst
papers of the author. You might expect that a good author writes a few exceptional
papers but no bad ones. For the bulk of the paper we stick to the simpler top(β,X)
measure; we will explore enhancements later. For now, we will simply fix β = 0.5.

We now give the iHypR algorithm. It has four basic steps which it repeats in a cycle.
First compute the values of the objects based on the values of the authors contribut-
ing to each object. Next compute the values of the hyperedges from the values of the
objects, and then do the reverse by using the values of the hyperedges to infer values
of the objects. Finally, to complete the cycle, use these new values of the objects to
recompute values for the actors. The algorithm is summarized in Algorithm 1.

iHypR has similarities to Hits [Kleinberg 1999] and its variations [Borodin et al.
2005]. We highlight the differences: First, iHypR computes scores for three types of
nodes: actors, objects and hyperedges. The hyperedges are computed from an object
to object graph that is weighted based on the relationships between the actors. Fur-
thermore, it treats actors, objects and hyperedges differently. For actors and objects,
it is desirable to have many connections (using Sum like in Hits). For hyperedges,
the average value is considered. Finally, the top function introduces robustness while
preserving the bias towards bigger sets when necessary.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:8 Adalı, Magdon-Ismail and Lu

Algorithm 1 iHypR (G = (V,E))
1: Input: Bi-partite G = (V,E), Compute actor to actor graph aa based on waa, and

hyperedges H(G) based on aa.
2: For a ∈ VA, let va = deg(a)/

∑
a∈VA

deg(a).
3: while not converged do
4: for all b ∈ B do vb = sum({va | (a, b) ∈ E})
5: normalize vb values to sum up to 1
6: for all C ∈ H(G) do vC = avg(top(0.5, {vb | b ∈ C}))
7: normalize vC values to sum up to 1
8: for all b ∈ B do vb = avg({vc | ∃C ∈ H(G) & b ∈ C})
9: normalize vb values to sum up to 1

10: for all a ∈ A do va = sum(top(0.5, {(vb
deg(b)) | (a, b) ∈ E}))

11: normalize va values to sum up to 1
12: end while
13: return {va}, {vb}, {vC}

Note that the scores of hyperedges in step 6 (similar for authors in step 10) are not
a linear function of the input scores due to the top function. As a result, it is not easy
to analyze the convergence of the algorithm. However, in practice, the algorithm con-
verges with less than 300 iterations based on all the datasets and settings we have
tried. The iHypR algorithm has tunable parameters and its performance can be im-
proved further if additional ground truth data is available. However, the algorithm
does not assume the existence of such data or hyperedges. It uses a fixed set of pa-
rameters in all datasets we tested. As we will illlustrate in the next sections, the most
crucial change that can be made to the algorithm depends on how noisy the underlying
data is. In more noisy data sets, a more robust version of the algorithm that does not
consider objects is preferred.

Computational Complexity of iHypR. The first step for iHypR computes the object
hyperedges. The running time of this step is dependent on the specific clustering algo-
rithm and can be zero if real hyperedges are used. Due to this, we omit it in the over-
all computational cost. Let |E| be the number of edges in the actor-object-hyperedge
tri-partite graph. A single iteration of iHypR takes time O(|E|). The number of edges
between actors and objects is specified in the input. The number of edges between the
objects and hyperedges depends on the clustering algorithm. Typically an object is in
a small (constant) number of hyperedges in which case the number of such object-
hyperedge edges is order the number of objects. Since selection is linear, the top func-
tion can be computed in linear time as well, and so the running time of the algorithm
is essentially linear in the size of the input.

3. EXPERIMENTAL SETUP
3.1. Datasets Used
In our tests, we use three different data sets: DBLP, Enron and IMDB. The details of
how these data sets are processed are given in the Appendix. For all these datasets, we
have a different external measure of prominence, which is explained below. The details
of how these measures are computed are also given in the Appendix.

DBLP. (the Digital Bibliography & Library Project) 3 is a dataset containing in-
formation about scientists (actors) from Computer Science, papers (objects) that they

3http://www.informatik.uni-trier.de/∼ley/db/

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:9

publish and the venues (true hyperedges) that these publications appear in. We use the
citations that authors receive for their publications as the external measure of perfor-
mance. Note that citations are not part of the prominence computation and therefore
they are suitable for validating the ranking. It is also widely accepted that citations
are a useful measure of prominence. We consider two measures:

— h: The H-index value [Hirsch 2005] of an author is h if she has at least h papers with
h or more citations.

— t: The tc-10 value of an author is the total number of citations of the author’s top 10
papers (or all if the author has less than 10 papers).

The H-index incorporates both quality and how prolific an author is, while tc-10
mostly focuses on quality, in particular how well the top papers of the author are
viewed in the scientific community.

Enron. email data set 4 contains emails (objects) between employees (actors) of En-
ron. For prominence, we consider the position (p) of the employee in the organization
assigned numerical values between 1-7 (1 for CEO and 7 for employee) based on an
earlier study [Diesner et al. 2005].

IMDB. (the Internet Movie Database 5) contains information about movie stars (ac-
tors) who star in films (objects). For prominence, we consider the movie budget as a
measure of prominence. To overcome problems of inflation and the fact that the movie
budget is more like an upfront investment as opposed to a measure of life-long achieve-
ment like citations, we consider movie budget info for each decade separately. We first
partition the movies into years, then rank them by their budget within the decade it
belongs to. Finally, we assign a value to the movie (normalized movie value) by the
equation:

mv(i) =
k − r(i)
k − 1

The prominence of the actor in a specific decade is given by the average value (av) of
her movies given by the above method.

3.2. Performance measures
To measure the performance of an algorithm, we first run it and then rank the actors
based on the scores returned. Then, we consider two types of performance measure in
this paper:

— avgx is the average value of the prominence measure x (such as h,t, p or av) for
the top 20 actors returned by the studied algorithm. This computes how well the
algorithm performs at the top.

— kx is the Kendall-tau measure between the ranking returned by the algorithm and
the ranking given by the measure x. This measures the overall performance of the
algorithm.

The Kendall-tau measure is given by the number of pairs ordered correctly by the
algorithm (as compared to the ground truth ordering) minus the number of pairs or-
dered incorrectly, all divided by the total number of pairs compared. A Kendall-tau of
1 corresponds to identical orderings whereas -1 corresponds to full reversal. For both
measures, higher is better.

4www.cs.cmu.edu/∼enron/
5www.imdb.com

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:10 Adalı, Magdon-Ismail and Lu

To compare the performance of a set of algorithms a1 . . . an for a specific performance
measure, we first compute the performance perf(ai) of each algorithm ai. We then com-
pute the regret of choosing one specific algorithm ai from the set as the performance
loss when choosing ai versus choosing the best algorithm:

regret(ai) =
(max1≤k≤n perf(ak))− perf(ai)

max1≤k≤n perf(ak)

The best algorithm has regret 0. Algorithms with worse performance have more
positive regret values, normalized to a percentage of the max value. The higher the
regret, the worse it is to choose this algorithm over the one with the best performance.
Note that, as the regret value is relative, when comparing the same result to a different
set of results, we may get different regret values.

3.3. Algorithms Studied
We compared iHypR to several well known benchmark algorithms described below. The
input to all the algorithms are the actor-object (A0) bi-partite graph, the inferred hy-
peredges (H), and, if available, a proxy for true hyperedges (T) (for example conference
venues in DBLP). The output is a ranking of the actors (nodes of A).

Our algorithm iHypR can use either the true hyperedges (T) or inferred hyperedges
(H). The benchmark algorithms typically do not use hyperedges. In fact, all other algo-
rithms have been designed for some default input that is not AOH. In such cases, these
algorithms will ignore some of the input. We will consider some natural extensions of
these existing benchmarks to use more of the input than their default, and so there
are multiple versions of an algorithm. For example, algorithms may only consider two
parts of the input and use A0 or AH; or, they may just consider an induced graph on
actors A. When just using A, the performance of algorithms may vary depending on
how the weights in this graph are computed. We consider 4 approaches to computing
such weights:

Name w(ai, aj)

aa (Adamic-Adar)
∑

b∈Γ(ai)∩Γ(aj)

1

log |Γ(b)|
symmetric edges

jac (Jaccard)
|Γ(ai) ∩ Γ(aj)|
|Γ(ai) ∪ Γ(aj)|

symmetric edges

log log |Γ(ai) ∩ Γ(aj)| symmetric edges

norm
|Γ(ai) ∩ Γ(aj)|
|Γ(Γ(ai))| − 1

asymmetric edges

where Γ(x) is the neighborhood of the set x in A0; note that |Γ(Γ(ai))|−1 is the number
of distinct ‘co-actors’ of actor ai.

— Hits [Kleinberg 1999] is typically used for directed graphs with a single type of object
(in our-case actors). We extend it to a bi-partite graph of two types of objects, t1, t2
and compute scores for each type separately. We implement an iterative method that
uses the scores of all type t2 nodes to update the scores of type t1 nodes and vice versa
uxntil convergence. We consider two types of graphs actor-object, actor-hyperedge.
So, we tested HitsAO, HitsAH , HitsAT , HitsAnorm

. HitsAO is a version of iHypR that
ignores the hyperedges, and we will use it as the benchmark to see what added value
can be gained from hyperedges.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:11

Algorithm avgh avgt kth ktt avg. regret
iHypRAOH 0.000 0.000 0.005 0.000 0.001
iHypRAT 0.031 0.208 0.124 0.070 0.108
PGAOT 0.163 0.271 0.000 0.057 0.123
PGAOH 0.16 0.26 0.01 0.07 0.125
PGAnorm

0.107 0.093 0.114 0.202 0.129
iHypRAOT 0.055 0.326 0.098 0.052 0.133
PGAO 0.24 0.23 0.01 0.06 0.136
PGAaa

0.211 0.329 0.045 0.165 0.188
iHypRAH 0.37 0.17 0.09 0.17 0.200
DegAnorm

0.18 0.11 0.39 0.13 0.201
PGAlog

0.07 0.51 0.02 0.20 0.203
InDegAnorm

0.160 0.373 0.364 0.129 0.256
HitsAO 0.725 0.879 0.273 0.311 0.547
HitsAH 0.669 0.850 0.227 0.456 0.551
HitsAnorm 0.855 0.926 0.455 0.456 0.673

Fig. 3. The regret of tested algorithms across multiple performance measures, sorted by average regret.
iHypR is clearly the superior algorithm, with essentially zero regret across the board. The true performance
numbers corresponding to this table is given in the Appendix in Figure 13.

— PG: Pagerank [Brin and Page 1998] can be extended to run on directed versions of our
graphs. We set α in the pagerank algorithm to α = 0.85. We tested PGAOH , PGAOT ,
PGAO, PGAH , PGAaa , PGAjac , PGAlog

, PGAnorm .
— iHypR I hyper can easily be run AO (only running steps 4,5 and 10 and 11) or on
AH (compute steps 6 (substitute a for b),7,10 (substitute c for b) and 11). So we tested
iHypRAOH , iHypRAOT , iHypRAO, iHypRAH , iHypRAT .

— InDeg: Indegree, the indegree of an actor in AO (the number of objects the actor
collaborated on). Prior work [Borodin et al. 2005] has suggested that indegree is a
good substitute for many link based algorithms.

—Deg: Degree, |Γ(Γ(ai))| − 1, which is the total number of distinct actors ai has collab-
orated with.

— Centrality: We also tested betweeness and closeness centrality [Faust and Wasser-
man 1994] using the actor graphAjac. Betweeness computes, for an actor, the number
of shortest paths that pass through the given actor, normalized by the total number
of nodes. Closeness computes the average distance from an actor to every other node.

4. ALGORITHM PERFORMANCE
Our main experimental test bed is the DBLP data set, because it is huge and we have
an accurate external measure of performance based on citation counts.

To measure performance based on citation counts, We consider four measures: avgh,
avgt are the average h-index and tc-10 values for the top 20 actors, and kth, ktt are
the Kendall-tau of the same measures for the whole dataset. As mentioned in the
previous section, we plot regret, which shows how much worse an algorithm does when
compared to best. The best algorithm for a particular measure has regret 0.

Figures 3 and 4 shows the regret of the algorithms we tested, results are ordered
by the average regret. Hits overall is not competitive. Clearly iHypRAOH is the top
performer. In all except one case, iHypRAOH is the top performing algorithm. Only for
kth PGAOT outperforms iHypR slightly, by half a percent. Furthermore, there is no
other algorithm that performs uniformly well across multiple performance metrics.

We now analyze performance in detail. For avgh, we are interested in authors who
have a large number of publications that are well cited. Given that iHypRAT outper-
forms iHypRAOT , it means that the additional paper information seems to increase the

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:12 Adalı, Magdon-Ismail and Lu

avghavgt kth ktt
0

0.1

0.2

re
gr

et

iHypR
AOH

avghavgt kth ktt
0

0.1

0.2

re
gr

et

iHypR
AOT

avghavgt kth ktt
0

0.1

0.2

re
gr

et

iHypR
AT

avghavgt kth ktt
0

0.1

0.2

re
gr

et

PG
AOT

avghavgt kth ktt
0

0.1

0.2

re
gr

et

PG
A

norm

avghavgt kth ktt
0

0.1

0.2

re
gr

et

PG
A

aa

Fig. 4. The regret of top performing algorithms

noise in the data. However, iHypRAOH is not impacted by this and seems to outperform
the other versions. We interpret this as follows. True hyperedges are inherently noisy:
a conference may have some good and some not so good papers. When we disregard the
papers, these noisy values are aggregated at the author level which reduces the noise.
When papers are included, the paper value computed from multiple authors counter-
acts this noise reduction process. However, when we do the same for iHypR, this is no
longer a problem. We attribute this to the fact that the inferred hyperedges are not as
noisy, i.e. inferred hyperedges captures the true correlations between papers and are
better at doing so than true edges.

For avgt, iHypR is the best. But, other variations of iHypR perform poorly. The second
best algorithm, by a large margin over the others, is PGAnorm

. If we examine PGAnorm

closely, we see that it pays attention to the social link between the people, but nor-
malized to the energy of each person. All other algorithms perform rather poorly for
this measure. This shows that avgh and avgt are fairly different measures: avgh is
concerned with “authorities” in the Kleinberg sense, people who are connected to the
best venues. However, avgt is more concerned with the individual relationships which
impacts their centrality. People who have made a big impact are likely to be central fig-
ures in the community, but not necessarily those with large number of papers or strong
collaborations. Note that in both cases, our algorithm outperforms both Hits and the
Pagerank variations. We again attribute the performance of iHypR to the computation
of the hyperedges, which incorporates this notion of community and an author’s place
in a community seamlessly.

For kth and ktt, we are interested in the overall performance of the algorithm. The
centrality based approach seems to work well for this measure. But, pagerank is not
robust across various types of graphs considered. iHypR seems to be best performing
for ktt and almost as good as pagerank for kth. We interpret this as that the hyper-
edges computed by the algorithm contain sufficient information to rank all the authors
appropriately.

Based on this, we conclude that iHypR can incorporate a number of important factors
in ranking, including a notion of authority and centrality in and across multiple com-
munities. By incorporating these measures, it provides a robust ranking method for
social graphs of collaborative activities. No other ranking algorithm is robust across
these large number of measures of performance.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:13

4.1. Impact of Hyperedges
Hyperedges vs. No Hyperedges. First we address the question, “Are hyperedges
useful?” The answer is yes, and we present the evidence below. For illustration, we
compare the performance of algorithms with and without hyperedges. In particular
iHypR and HitsAO which is a version of iHypR that does not use hyperedges. We also
look at pagerank to conclude that the hyperedges are not only useful for our algorithm
but also other standard algorithms. The relevant data from Figure 3 is summarized
below,

avg. regret
iHypRAOH 0.001
iHypRAOT 0.133
HitsAO 0.547

avg. regret
PGAOT 0.123
PGAOH 0.125
PGAnorm 0.129
PGAO 0.547

As can be seen, the addition of hyperedges helps considerably. It is possible to get close
to the performance with hyperedges using carefully constructed actor-actor weights in
the actor graph, but even still the hyperedges win.

Choice of Hyperedges. Later we will see how the choice of clustering algorithm to
obtain the inferred hyperedges impacts the rankings of iHypR. However, with DBLP,
we have lots of hyperedge type information: journals, conferences, books, etc. One
might argue that a more careful choice of hyperedges from the available ones might
help. Indeed this is the case, as indicated by the following table of average regret
among the three algorithms below.

avg. regret
iHypRAOH 0.085
iHypRAOT :conf 0.107
iHypRAOT 0.191

In the computer science field the conferences are important and are faithful aggrega-
tors of topic and stature. Journals are more “noisy” in that a much wider variety of
authors and papers may appear in the same journal. Thus, one might postulate that
‘truer’ hyperedges are likely to result by ignoring the hyperedges defined by journal
venues. This is what the T : conf are. However, we observe that i) inferred hyperedges
are still better than carefully chosen true hyperedges; ii) considerable insight into the
data is needed to obtain such true hyperedges, and such information would not be
available in most data sets. To some extent, these results are also revealing about the
nature of DBLP, in that our initial hypothesis seems to be correct: conferences are the
more reliable source of hyperedges.

To summarize, hyperedges are important; and, if using true hyperedges, the choice ot
the hyperedges needs some thought. However, inferred hyperedges require no thought
and perform better!

4.2. Actor hyperedges vs. Object hyperedges
In this section, we consider whether actor hyperedges found by clustering actors adds
any value. We consider the graph Aaa cluster actors using the same algorithm and
test three versions of our algorithm: (1) iHypRAOH is the regular iHypR algorithm, (2)
iHypRHAO considers actor hyperedges, actors and objects, and (3) iHypRHAO considers
actor hyperedges, actors, objects and object hyperedges. Note that the algorithm iter-
ates from left to right and right to left over the input types. When considering actor
hyperedges, we use the same aggregation method as object hyperedges. The results
given in Figure 5 show that object hyperedges are much more useful in ranking than
actor hyperedges, even though both types of hyperedges are overlapping. One possible

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:14 Adalı, Magdon-Ismail and Lu

Algorithm avgh avgt kth ktt
SSDE 0.00 0.00 0.00 0.00
RC20 0.79 0.92 0.09 0.11
RC50 0.77 0.89 0.14 0.18
FC 0.61 0.53 0.11 0.11

Fig. 6. Impact of clustering algorithm on iHypR performance: regret of using different clustering algorithms

explanation for this is that people may belong to many different groups of collabora-
tions. But even overlapping clusters tend to put people in boxes, groups that they best
fit. Given an actor may have many objects, one can capture this multi-faceted nature
of actor’s interest by finding common groups of objects.

Algorithm avgh avgt kth ktt
iHypRAOH 0 0 0 0
iHypRHAOH 0.04 0.06 0 0.04
iHypRHAO 0.17 0.26 0.02 0.07

Fig. 5. Regret of using actor and object hyperedges in the DBLP dataset.

4.3. Impact of clustering algorithm choice
The above results use the SSDE-clustering algorithm [Magdon-Ismail and Purnell
2011] by default. The algorithm determines the number of clusters using a specific
methodology described in the Appendix. In particular, we find first a set of top clusters
roughly corresponding to research areas and then cluster within each cluster which
finds the research collaborations within each research area. SSDE finds overlapping
clusters. The total clusters used in the case of DBLP was 100.

We may also use hyperedges found by different clustering algorithms for compar-
ison. Again, we find that the choice of clustering algorithm matters, consistent with
the findings of the previous section that the hyperedges are important. FastCommu-
nity [Clauset et al. 2004] (FC) finds densely connected subgroups of the graph and
produces disjoint clusters of varying sizes and number depending on the dataset. We
used the adamic-adar weights to define the graph on the objects for the clustering
algorithm. Total number of clusters is 2638.

RankClus [Sun et al. 2009a] takes a dataset with predefined venues and partitions
these venues into n disjoint clusters where n is an input to the algorithm. The idea is
to cluster the venues into specific research areas. There is no specific method given to
find the total number of clusters, so we report on two runs with 20 and 50 clusters.
Other details for these algorithms are given in the appendix.

Figure 6 shows the regret of choosing different clustering algorithms. SSDE out-
performs all the others in this setup (no surprise, since that is the one we chose to
recommend as the default), but what the result indicates is that the choice of clus-
tering algorithm should obtain good (possibly overlapping) clusters. In particular, FC
performs reasonably well overall. For this reason, we will investigate FC in more detail
below. We also observe that a clustering methodology that uses venues is not a good
idea, because it gives up some of the benefit of inferring the hyperedges by being tied
down to the venues.

4.4. Impact of the distance measure when clustering
Recall that we introduced two distance measures in Section 2.1. Each is considering
how important the link between two papers is. The first function waa (Adamic-Adar),
the default, is based on an interpretation of the Adamic-Adar measure. It looks at all

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:15

Algorithm Dist. F. avgh avgt kth ktt avg regret
SSDE waa 0.02 0.02 0.00 0.00 0.01
SSDE wjac 0.19 0.00 0.07 0.04 0.07
FC waa 0.61 0.53 0.12 0.11 0.34
FC wjac 0.00 0.20 0.12 0.07 0.10

Fig. 7. Impact of different distance measures in the performance of the algorithm, the regret value for
different algorithms. SSDE is using 10.10 clusters in both cases

common authors between the papers and considers the collaboration significant if the
authors do not have many other papers. The function wjac on the other hand does not
take this into account. The more common authors two papers have, the more related
they are. In this section, we will consider the importance of the distance function in
algorithm performance. We will investigate two clustering algorithms SSDE and FC
using both types of functions.

Figure 7 shows the impact of the different distance measures. SSDE performs better
than FC overall for both functions. However, wjac clearly outperforms waa for FC, but
not for SSDE. One of the reasons for this is the fact that FC optimizes a local crite-
ria, density of connections, while SSDE optimizes a more global criteria, i.e. distances
between nodes. The distances produced by the function waa are more meaningful to a
clustering algorithm that uses a global criteria to interpret the meaning of this dis-
tance. For example, the fact that a person has many papers becomes meaningful when
compared to the rest of the graph, how many papers other people have. This criteria
is what makes waa different. However, the function wjac is based on individual papers
and is a more local criteria. Hence, it is more appropriate to use in an algorithm that
has a more localized view of the meaning of distance, such as FC, which is based on
the density of the cluster’s neighborhood. But, the value of the edge distance is not
interpreted in relation to the edge distances in the whole dataset.

One expects that a clustering algorithm with a global criteria for interpreting dis-
tances will perform best for the iHypR algorithm if: (1) the distances are meaningful
for prominence, in the case of DBLP, and (2) there are big differences for the distance
in the dataset.

4.5. Exploiting community substructure
In this section, we investigate the difference of clustering scheme in the performance
of the algorithm. We compare clustering the dataset to top 100 clusters vs. clustering
it to 10 top clusters first, and then clustering the objects in each cluster to 10 more
smaller clusters (10.10, still producing 100 clusters). So far in our algorithm, we have
been using the 10.10 scheme with waa as the default method. The regret value for
using each clustering scheme for different distance measures for SSDE are shown in
Figure 8. The results show that considering subclusters is beneficial in waa, but not in
wjac. Consistent with results from 4.4, the distances produced by waa are relative to
the whole graph. But, there is a great variation in these values across communities.
For example, it is natural for a strong theoretician to produce only a few impactful
papers, while a strong systems person is likely to produce a larger number of papers
to make impact. Hence, when using waa, it is clearly beneficial to use subclusters.

When using wjac, this type of distinction is not clear as we only consider the pairwise
similarities of papers based on their common authors. So, this distance measure is
agnostic to this type of distinction between communities. Two papers in systems and
theory will exhibit the same type of distance and papers across areas are less likely
to be connected in the graph. In this case, by using sublusters (10.10), we loose an

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:16 Adalı, Magdon-Ismail and Lu

Dist. F. Cluster Size avgh avgt kth ktt avg regret
wjac 10.10 0.17 0.11 0.07 0.04 0.10
wjac 100 0.07 0.00 0.11 0.04 0.05
waa 10.10 0.00 0.13 0.00 0.00 0.03
waa 100 0.36 0.70 0.00 0.04 0.27

Fig. 8. Impact of clustering the whole dataset vs. clustering each community separately using SSDE, regret
of different cases.

Case avgh avgt kth ktt
a priori best 0 0 0 0
iHypR 0.03 0.36 0.02 0
Use average in step 4 0.74 0.91 0.14 0.22
Change vb/deg(b) in step 10 to vb 0.09 0.49 0.02 0.04
median instead of avd in step 10 0.03 0.36 0.02 0
median instead of avg in step 6 0.02 0.30 0 0

Fig. 9. The regret of changing various algorithm settings, compare values to the maximum for each specific
performance measure.

opportunity to find big outliers across the whole data set. We see that wjac with 100
clusters captures this result. This case has the highest avgt value.

The conclusion from this study is then as follows. If a dataset has subcommunities
with different characteristics, then:

— It makes sense to use a clustering algorithm with a global method for interpreting
distances and waa with subclusters when optimizing for Kendall-tau values, and to
use wjac without subclusters to optimize for the top values returned.

— However, localized clustering algorithms will also perform well. However, for these
wjac is a better choice.

4.6. Variability across different parameters of the iHypR algorithm
The iHypR algorithm uses different algorithms at each step, sum of all values for step
4, average of top 50% values at step 6, average of all values in step 8 and sum of the
top 50% values in step 10. The final question we would like to answer is how sensitive
the algorithm is to the choice of these functions. First of all, we review the reasoning
behind these functions.

At step 4, we compute the value of objects as a function of the actors in it. In general,
the more people are associated with an object, the more valuable it is. This is based on
the assumption that larger number of actors contribute to higher quality in general.
We also try the average value in step 4 as an alternative.

At step 6, we are computing the value of hyperedges as a function of the objects in it.
In this case, collaboration size is not significant. Instead of sum, we use average. As an
example, consider a conference. A large conference is not necessarily a better confer-
ence. In our case, we do not penalize a venue for its size which would hurt performance
considerably. However, we vary the input to the top function as discussed below.

At step 8, we do not penalize or favor an object for belonging to multiple hyperedges.
Hence, we simply use average. For example, a multi-disciplinary research paper is not
more or less prominent compared to the rest.

Finally, at step 10, we tie the prominence of the actor to the value of his/her objects as
well as their number. The higher the number of such objects, the more prominent the
author. In fact, using average in this case would also hurt performance considerably
and therefore we do not consider it. However, we consider whether to use vb/deg(b)

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:17

α β avgh avgt kth ktt
0.85 0.1 0 0 0.09 0.07
0.85 0.5 0.02 0.32 0.00 0.04
1 0.5 0.03 0.32 0 0
1 1 0.03 0.33 0.02 0.04

Fig. 10. The regret of changing settings for the top function in steps 6 and 10. iHypR corresponds to α =
1, β = 0.5.

which assigns value to the object proportional to the number of actors associated with
it, or vb which disregards this issue. We also consider different top functions for this
step.

For steps 6 and 10, we consider using the top function with β = 0.1, 0.5 or 1, i.e.
consider 10%, 50% or all of the objects. We also consider a variation of the top function
which also considers the value of bottom objects using α ∗ t+ (1− α) ∗ b where t and b
are the sum/avg of the value of top and bottom k% of objects and α = 0.85, 1. This gives
us the 4 cases shown in in Figure 10. We use the same setting for all top instances in
the algorithm, though given each paper has only 2-3 authors, it generally only makes
a difference for hyperedges.

We compare the performance of the algorithm for these cases to an idealized case, in
which the performance is maximized for a specific measure. We pick the max for each
metric over the 40 cases we tried and show the regret against this value. Note that
in many cases, the setup that achieves the top avgh may be different than avgt. The
results are given in Figure 9. We see that the algorithm is not very sensitive to changes
in various parameters with the exception of step 4. For this dataset, it is crucial to take
into account that higher number of collaborations means better objects. A similar trend
is followed in the Enron dataset which we will examine in the next section: the higher
number of people who are privy to some information, the more valuable it is. However,
this is only true for information that is not broadcast to everyone. This is something
we pay attention to in data cleaning. For IMDB, we only look at the top k actors, so
this is not immediately applicable.

We also see that the most sensitive performance measure is avgt. Hence, if this
measure is of concern, then one can significantly improve performance over iHypR by
tuning the algorithm to a specific case. To find researchers with significantly high
citations, we need to consider top and bottom 10% at step 10 and also use 100% at step
6. In other words, consider hyperedges uniformly good and judge authors for their very
top papers. However, we also note that the avgt measure is a very sensitive measure,
only looking at the top 20 in the ranking. One should be careful in paying too much
attention to this measure. One way to make it more stable is to increase 20 to say 100,
or 1000, or 1%. For illustration in this paper we took 20, because it is a reasonable
question to ask “Who are the top 20 actors?”, but naturally the answer will be very
sensitive to precisely how you define “top” since we are only considering 20 out of
about a million.

5. OTHER DATASETS
Based on our analysis of the DBLP dataset, we now consider two other datasets and
analyze how well iHypR performs for these datasets.

5.1. iHypR with Enron Dataset
To illustrate the performance of our algorithm, we use the Enron email dataset. Details
of the dataset and our processing of it is given in Section 3. We show the average
rank of employees returned by the algorithm for each position: from 1 as best (CEO,

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:18 Adalı, Magdon-Ismail and Lu

1 2 3 4 5 6 7
20

40

60

80

100

120

140

Positions in the hierarchy

Av
er

ag
e

ra
nk

 o
f p

eo
pl

e
in

 e
ac

h
po

si
tio

n

iHypR Performance for Enron Dataset using 9 Hyperedges vs. other algorithms

Betweenness
Degree
Closeness
InDegree
iHypR(AOHjac)

PG({A_log}})
PG(Aaa)

iHypR(AH)
iHypR(AOH)

Fig. 11. Average rank of employees in the Enron dataset (Note: Betweenness, Degree, Closeness and Inde-
gree are using graph AA/J).

President) to 7 (Employee) for various centrality measures and our algorithm using 9
clusters in Figure 11. We have also shown the Kendall-tau of rankings given by the
hierarchy and those provided by our algorithm in Figure 12. Due to the high number
of ties, when computing the Kendall-tau measure we only look at those cases where
the hierarchy poses an ordering and the studied algorithm reverses the ordering. The
hierarchy of the positions is taken from [Diesner et al. 2005]. We employ a directed
interpretation of our algorithm: mails are as valuable as their sender, and people are
as valuable as the mails that they receive. We test iHypR using various graphs: AH
and AOH using waa and AOH/J using wjac.

Table I. Number of employees in our dataset for each position of the Enron hierarchy.

Position Number of Employees Position Description
1 8 President, CEO
2 28 Vice President, Managing Director, Director
3 16 In House Lawyer
4 22 Manager
5 16 Trader
6 4 Analyst
7 24 Employee

One limitation of this experiment is that the relative importance of the positions
in the hierarchy are not known. But we expect the ranks to go up as we go down in
the hierarchy: an analyst (position 6) should be lower ranked compared to a manager
(position 4). But it is not necessary that the change is a linear line or that all flips
in hierarchy should have the same penalty. As a result, both the average rank or the
Kendall-tau measures are imperfect in reflecting the true performance.

First, looking at the graph in Figure 11, we expect the average rank to increase for
higher positions in the hierarchy. However, almost all algorithms do badly for position

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:19

Algorithm Kendall-tau Regret
iHypRAH 0.04 0
PGAaa 0 1.05
Betweenness -0.02 1.56
iHypRAOHjac

-0.04 1.92
iHypRAOH -0.10 3.49
InDegree -0.13 4.21
PGAlog

-0.13 4.31
Degree -0.17 5.41
Closeness -0.19 5.82

Fig. 12. The kendall-tau and the regret of kendall-tau for the ranks in the Enron data sets for the tested
algorithms.

7, i.e. the employee level. One reason for this could be that some employees are as-
sistants of the higher level employees and most e-mail to the people in these higher
positions are routed through them. As a result, the importance of these employees
reflect the importance of their immediate boss.

If we consider positions 1-6, we see that iHypR seems to have the steepest change
in terms of ranks which seems to indicate that the rank given by iHypR correlates
best with the position in the hierarchy. However, this figure does not provide a good
illustration of the performance of the algorithm for pairwise ranking of people. By
considering the Kendall-tau measure in Figure 12, we note that iHypRAH is by far the
winner in this case, having the only positive correlation. This could be attributed to
the nature of this dataset as discussed in the introduction.

Hyperedges provide additional information about relationships between people, im-
proving performance over all algorithms that consider only the relationships between
actors. However, in this network, emails are noisy indicators of relationships between
people. Especially, those who are carbon-copied in emails are only tangentially related
to the senders. As a result, using emails in the algorithm (i.e. iHypRAOH) improves the
overall ranking of nodes, but does not help in pairwise ranking. The more robust ver-
sion of our algorithm iHypRAH is the winner in this case. Similarly, for iHypR, when
considering the Kendall-tau measure, wjac outperforms waa (-0.04 vs. -0.1). The re-
sults remain the same when we consider 9 top clusters or 3 top and 3 secondary level
clusters for both measures. This could also be due to the noisy nature of emails, the
neighborhood information used in waa is much more noisy than in DBLP. Writing pa-
pers together is a much more selective process than including someone in the cc of an
email.

5.2. iHypR with the IMDB Dataset
Next, we analyze the IMDB dataset using iHypR. As mentioned in Section 7, we have
divided up IMDB into decades and look at the average performance of actors in each
decade. We find that there are about 16 clusters per decade. One thing we noticed for
IMDB that it does not seem to benefit from subclusters and in fact there is a slight
performance penalty. One reason for this is that our clustering algorithm is not able to
identify the different groups in this dataset such as adult or Asian movies very clearly
when multi-level clustering is used. As a result, we use the top 16 clusters in our tests.
In these tests, we use closeness centrality.

We first give results based on actor values (av) computed based on movie budgets as
described in the appendix for each each decade. We consider two measures: avgav and
ktav, the average actor value for top 20 actors and the Kendall-tau of the ranking of all
actors returned by the algorithm. The regret of avgav is given in Table II. We see that

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:20 Adalı, Magdon-Ismail and Lu

iHypR performs poorly in this dataset, but iHypRAH is the top performing algorithm,
followed by degree. However, pagerank variations as well as other centrality measures
do not perform as well. Similarly, for ktav given in Table III, iHypRAH is the top per-
former by a wide margin. It seems in this dataset, the movies are too noisy indicators
of an actor’s prominence. However, the hyperedges of movies containing similar actors
tend to have actors of similar prominence, and hence improves the result considerably.
An explanation for this is that in iHypR, we use actors to determine the prominence
of movies. However, there are many other additional factors that may determine the
value of a movie: the writer, producer, cinematographer, production and distribution
company.

Table II. Regret of avgav for different algorithms in the IMDB dataset

REGRET 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s Avg
iHypRAOH 0.20 0.61 0.39 0.25 0.08 0.73 0.61 0.03 0.41
iHypRAH 0.16 0.31 0.00 0.00 0.00 0.00 0.00 0.02 0.07
InDegree 0.46 0.52 0.28 0.09 0.19 0.17 0.22 0.11 0.28
Degree 0.00 0.22 0.02 0.10 0.13 0.21 0.10 0.03 0.11
Centrality 0.22 0.00 0.30 0.39 0.21 0.35 0.09 0.00 0.22
PGAlog

0.51 0.58 0.27 0.33 0.28 0.26 0.31 0.13 0.36
PGAO 0.33 0.52 0.39 0.23 0.33 0.28 0.33 0.28 0.35

Table III. Regret of ktav for different algorithms in the IMDB dataset

Algorithm 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s Avg
iHypRAOH 0.71 1.28 0.73 0.51 0.18 1.35 0.47 0.00 0.75
iHypRAH 0.23 0.35 0.00 0.00 0.00 0.00 0.00 0.03 0.08
InDegree 0.23 0.64 0.19 0.37 0.48 0.50 0.46 0.74 0.41
Degree 0.00 0.18 0.00 0.33 0.44 0.47 0.37 0.59 0.26
Centrality 0.60 0.00 0.61 0.48 0.36 0.40 0.44 0.00 0.41
PGAlog

0.41 0.67 0.43 0.64 0.68 0.73 0.68 0.93 0.60
PGAO 0.36 0.83 0.38 0.57 0.66 0.71 0.72 1.00 0.61

Note that these findings are based on the movie industry view of the prominence of
the actors, not the outside view. Our method is able to find the power circles in each
decade that actors belong to by clustering the movie to movie graph. We ask the ques-
tion what happens if we used movie gross instead of movie budget to determine promi-
nence? In movie gross, the prominence of individuals is determined by the actual suc-
cess of the movie. However, the movie gross information is known to be very noisy. The
interesting thing we find is that in the case of ktav, iHypRAH is still the top performing
function overall (avg. regret: 0.21) and iHypR (avg. regret: 0.51) is highly superior to
pagerank (avg. regret: 0.94). As for avgav, centrality becomes more and more relevant
in 2000s and is the top performer (avg. regret: 0.08) followed by iHypRAH (avg. regret:
0.20). Hence, the communities the actor’s belong to seem to play a role in the overall
prominence of the actors for external viewers as well. This is not a surprising result
as movies with such actors tend to get higher budgets which implies a higher level
of publicity. Overall, iHypRAH tends to perform well in cases where the prominence is
predominantly determined by the social structure.

Clearly, many different measures of prominence can be considered for movies. This
is due to the subjectivity of what constitutes a good movie. So far, we have seen movie
budget and gross. How about the overall ratings of the movies by viewers? While bud-
get and gross are highly dependent on the level of investment the studios made to the
movie, the ratings are a measure of quality. Unfortunately, there are many different
ratings possible for a movie. We will use the IMDB ratings to illustrate the perfor-
mance of the different algorithms. The prominence of an actor is given by the average

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:21

rating of their movies in a decade, denoted by rt. We compute, avg-rt for the average
rating of the top 20 actors returned by the algorithm and kt-rt for the Kendall-tau
measure of the rating values of actors. The results are shown in Figures IV and V.
We see a similar trend: iHypRAH is the top performing algorithm by far, outperforming
iHypR and many other algorithms considerably.

In summary, there are many outside criteria for prominence of actors: based on the
amount of money the industry invests in them, the amount of money their movies bring
or the overall (subjective) quality of their movies. For all of these criteria, iHypRAH is
the top performing algorithm by taking into account the social component: people who
appear in top tier movies tend to mostly appear in movies of similar caliber. Con-
sidering movies additionally does not improve performance because there are many
additional outside factors that can impact the prominance of movies for every one of
the different criteria we considered. But, the input to the algorithm only contains the
top three actors and the director of the movie and as a result results in a very noisy
indicator of the prominence of the movies.

Table IV. Regret of avg-rt based on average movie ratings for different algorithms in the IMDB dataset

REGRET 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s Avg
iHypRAOH 0.05 0 0.04 0.08 0.11 0 0 0.07 0.04
iHypRAH 0.03 0.06 0.07 0 0 0.02 0.02 0 0.02
Indegree 0.06 0.03 0.03 0.10 0.09 0.14 0.18 0.03 0.08
Degree 0 0.05 0.10 0.01 0.04 0.07 0.15 0.03 0.06
Centrality 0.07 0.03 0.14 0.15 0.10 0.31 0.14 0.12 0.13
PGAlog

0.04 0.05 0.13 0.08 0.09 0.20 0.30 0.11 0.13
PGAO 0.07 0.02 0 0.10 0.08 0.16 0.21 0.06 0.09

Table V. Regret of kt-rt based on average movie ratings for different algorithms in the IMDB dataset

Algorithm 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s Avg
iHypRAOH 0.62 1.15 0.15 0.58 0.11 1.80 0 2.33 0.84
iHypRAH 0.23 0 0 0 0 0 0.19 1.21 0.20
Indegree 0.14 0.15 0.10 0.62 0.60 0.62 0.86 1.00 0.51
Degree 0 0.08 0.26 0.66 0.71 0.98 1.01 1.88 0.70
Centrality 1.11 0.23 1.69 0.67 0.79 1.04 0.90 4.28 1.34
PGAlog

0.29 0.50 0.67 0.99 0.98 0.90 0.95 0.89 0.77
PGAO 0.25 0.35 0.38 0.81 0.82 0.74 0.86 0 0.53

6. RELATED WORK
In ranking people for prominence, measures based on centrality and node degree can
frequently capture the importance of people in a social network [Faust and Wasser-
man 1994]. For example, degree centrality, a visibility metric of an actor, measures the
number of neighbors of an actor. Indegree is a special case of degree centrality which
measures the number of in-coming links of an actor. This method had been used in
early web search engines. The idea behind indegree is that a prominent actor should
be pointed to by many other actors in the network. However, higher indegree value
does not directly imply prominence of an actor (consider an actor with very high in-
degree all of whose neighbors are isolated from the rest of the network). The actor
has higher visibility in term of indegree score, but he is not prominent at all as he is
located in an isolated component of the whole network. Also, indegree treats all in-
coming links equally. However, actors who are prominently pointed to by many other
important actors should be more important than those who are pointed to by other
ordinary actors. Closeness centrality measures the distance from one node to all the

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:22 Adalı, Magdon-Ismail and Lu

other nodes in network. In a way, the lower the closeness centrality of a node, the
quicker information can travel from any node to this node. These methods have been
applied to analysis of scientific literature [Xiaoming Liu and de Sompel 2005] by con-
sidering the co-authorship relationship between people, disregarding the actual papers
written and the venues they appeared in.

Overall, the performance of these methods in modeling prominence of nodes depends
on the underlying goal of the network and the special advantages the links provide
to the nodes. While these methods are robust across many different graphs of social
networks, they are typically designed and tested on individual communities and will
typically not perform well when a large network has multiple communities - hence the
need for algorithms that take into account some form the community structure such
as [Sun et al. 2009b].

These social network analysis methods have been further adopted for the Web and
designed to work for very large graphs [Brin and Page 1998] and the notion of expertise
on a specific topic [Kleinberg 1999]. In the Web graph, pages are treated to represent
entities, similar to people, and the links between them to represent an endorsement
or citation. The eigenvector centrality based methods (Pagerank algorithm [Brin and
Page 1998] and its variations [Lempel and Moran 2001; Borodin et al. 2005]) are shown
to work well on the Web graph. Lempel and Moran [Lempel and Moran 2001] devised
an approach to combine the PageRank and HITS algorithms by performing a random
walk on the hub-authority graph and alternating between these the hubs and author-
ities. They also identified tightly knit community (TKC) effect which dramatically im-
pacts performance of the HITS algorithm. The TKC is a small set of sites in which
each site connects to almost all of the others in the set. With this in mind, Borodin et
al. [Borodin et al. 2005] developed HubAvg, AT(k), and Max family algorithms based on
the HITS to overcome TKC effect. Note that our algorithm improves on the TKC effect
in multiple ways. First, the top function limits the influence of a specific set of nodes
by considering only a percentage of the values. This way, a larger set with some lesser
quality objects can still compete with a smaller and tightly connected set. We also use
average instead of sum for larger sets. Also, as the hyperedges are found by clustering
algorithms, in some cases reducing the number from thousands to a hundred and al-
lowing overlaps, dense subgraphs are much more likely to embedded in larger and less
dense graphs. This may also help reduce the impact of TKC in the overall ranking.

Xi et al. [Xi et al. 2004] propose a generalized model – “link fusion”, which is a unified
link analysis framework. This framework considers both the inter- and intra- type link
structure among multi-type inter-related data objects. It is shown that the PageRank
and HITS algorithms are special cases of the unified link analysis framework. This
work does not take into hyperedges of objects and how algorithms can be customized
to networks of social collaborations, which is what we concentrate on.

Similar to the earlier centrality measures, pagerank and Hits variations consider
graphs containing a single type of node, whereas we only consider three types of nodes.
However, Hits [Kleinberg 1999] introduces a bit more structure as it computes two
types of prominence: for expertise (authority) and for informativeness (hubs). Given
that expertise for a large graph is not meaningful as there may be many topics present,
the algorithm first finds a subgraph of the Web that is focused on a specific topic, and
then applies the algorithm to this graph. Hence, it integrates a second type of informa-
tion, a “latent topic” on top of the graph. Note that, our algorithm can be considered
a version of Hits if we replace the top function with “sum”. However, our algorithm
computes three types of prominence, each node having a single type of prominence
measure. In constract, Hits has two types of prominence for each node. Furthermore,
we show that object hyperedges are crucial to the performance of prominence algo-

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:23

rithms in social networks and how to compute these hyperedges from a given network
of collaborations.

Various algorithms have been developed to impose and utilize from an additional
structure on top of the Web graph. Haveliwala [Haveliwala 2002] proposed a topic-
sensitive PageRank by using a set of representative topics to compute a set of topic
specific PageRank vectors instead of a single PageRank vector as in the PageRank
algorithm. Using the biased jump probabilities introduced in the original pagerank
paper, each PageRank vector is biased with the corresponding topic to improve rank
scores of Web pages in the topic. Gyöngyi et al. [Gyongyi et al. 2004] implemented a
PageRank-like algorithm, TrustRank, to overcome Web spam by first assigning “trust”
to a subset of the nodes with the help of human experts or other methods. The algo-
rithm then takes the information about trusted nodes and propagates trust values to
other Web pages based on the link structure. Despite these additions, the algorithms
do not make a distinction between all three types of nodes and the relationships that
we consider: entities, objects they own and the classes the objects belong to (like topics).
We show that by making use of all three, we are able to get a much better prominence
ranking across a large range of social network graphs.

Recently, a number of algorithms have been proposed to make use of multiple types
of links for different graphs. PopRank [Nie et al. 2005] is an extension of pagerank
that treats Web objects with different roles resulting in a heterogeneous network. This
algorithm first asks field experts to give a partial rank of objects. The algorithm is
then trained by the partial rank to find the appropriate propagation factors between
different types of objects. Objects are then ranked using these propagation factors.
Balmin et al. [Balmin et al. 2004] proposed ObjectRank which takes heterogeneous
information networks as input. This algorithm applies a PageRank-like random walk
on the network containing multiple-type objects, while a random-jump action is ap-
plied to inter-type components with a specific transition schema between them. This
schema is an input to the algorithm and specifies how much authority is transferred
along different edges. However, the transition parameters are finely tuned to a subset
of objects in the DBLP dataset, requires training data and existing hyerpedges. Our al-
gorithm on the other hand only requires author and object networks, does not require
any additional training data.

In [Jeh and Widom 2002], Jeh and Widom devised SimRank to compute similarity
of pairs of objects based on the assumption that similar objects are related to similar
objects using a extension of the HITS algorithm. This notion of similarity is captured
in our clustering algorithm for objects. Similar to the spirit of this method, our clus-
ters are overlapping, allowing an object to belong to multiple clusters of similar ob-
jects. In the same vein [Bao et al. 2007], Bao et al. introduced social annotations into
the ranking algorithm by arguing that social annotations improve Web search quality.
Two algorithms were proposed: Social similarity rank (SSR) calculates the similarity
between social annotations based on common pages that use them, then uses this sim-
ilarity to find similarity between a web query and a web page; Social PageRank (SPR)
captures the popularity of web pages by propagating popularity from pages to users
who annotate them, from users to their annotations, from annotations to web pages,
from web pages to annotations, annotations to users and finally from users to pages
again. A similar idea was also implemented in [Hotho et al. 2006]. In essence, this
method considers three types of nodes and passes scores between all possible pairs of
node types in a single iteration. Our algorithm in contrast works in a more structured
setting: actors derive prominence from their objects and objects derive prominence
from the hyperedges they belong to. This is based on the assumption that collaborat-
ing on an object implies a social tie between the actors. However, there is no such tie

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:24 Adalı, Magdon-Ismail and Lu

between two users who tag the same page or use the same annotation. As a result, our
algorithm is not directly applicable to this dataset.

In [Sun et al. 2009a], Sun et al. argues that ranking actors globally in large net-
works is not meaningful. Actors have prominence in specific communities, which can
be found using a clustering algorithm. NetClus [Sun et al. 2009b] extends this idea to
three-types networks with star schema. These algorithms take as input the number of
clusters, which is assumed to correspond to the number of communities in the dataset.
The clustering algorithm is tied to a HITS based algorithm for scoring nodes, where
hyperedges with similar actor scores are grouped together in the same cluster. This
approach assumes that hyperedges already exist in the data. In contrast, we show
with experiments that even if true hyperedges are known, they may sometimes be
noisy. Hence, we must first find the correct hyperedges for the objects. Our algorithm
in fact first finds the correct hyperedges instead of grouping existing hyperedges. Our
hyperedges can overlap, while in [Sun et al. 2009a], they have to be disjoint. Further-
more, we use these hyperpedges to infer the global ranking of the actors instead of
each community separately. In our experimental results, we report on tests using the
hyperedges found by this method.

Another common difference between our method and various others in the literature
is that we report on tests using multiple data sets and multiple performance measures
against and external ground truth. This provides insight on the strengths and weak-
nesses of our method and the types of data that are suitable for our algorithm.

There are other methods that operate on similar hypotheses to ours. For example,
collaborative filtering tries to find similar objects based on the similarity of people
interested in them. However, there is no social link provided by people’s interests.
Similarly, many systems that allow users to rate information use a way for people to
rank each other. These rankings determine the reputation of a poster. In fact, if the
votes and voters are known, then a social tie exists between the users [Adamic et al.
2011]. In such cases, our algorithm can be applied to improve ranking.

There is research that supports the hypotheses used in our work. For example, in so-
cial networks, high degree nodes tend to associate with other high degree nodes where
degree constitutes a notion of prominence [Newman 2003]. This general tendency of
associating with similar others, i.e. assortativity have been illustrated in sociological
literature [Rivera et al. 2010]. Research shows [Jones et al. 2008; Wuchty et al. 2007]
that especially in scientific research, there is a growing emphasis towards team based
work. Team based papers get cited more and teams including top-tier universities pro-
duce higher impact papers. As a result, the hypotheses of our algorithm are likely to
hold for a data set of research papers. In communication networks, email exchanges
do not typically have inherent value but are indicative of underlying organizational
structure [Diesner et al. 2005]. Our experiments show that there is still considerable
gain in performance when using object and hyperedge information.

This work extends our previous work [Adalı et al. 2011] which introduced an earlier
version of the iHypR algorithm with various tunable parameters and showed that
it has superior performance to indegree and pagerank for DBLP. The current paper
extends the algorithm by removing all tunable parameters and introduces many new
results for the DBLP dataset and adds many other algorithms, different weighting
methods for object graphs and two new datasets for testing.

7. CONCLUSIONS AND FUTURE WORK
We developed a novel algorithm for ranking in a social network of collaborations where
the “semantics of the ties” can add significant value. The main message is that when
the social tie between actors is infered by their collaboration in some object, the prop-

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:25

erties and relations between those objects can significantly improve the ranking (as
opposed to only using the social ties among the actors).

In both Enron and DBLP, our algorithm provides significant improvement over a
number of other algorithms. In both cases, the emails and papers are based partially
on self selection. They can be organized into groups that convey important informa-
tion about collaboration groups. In IMDB where the casting decisions are based on
the perceived marketability of the actors, the movies themselves have little value in
the ranking. The social links are what counts. In this case, a different version of our
algorithm is the winner.

One important aspect of our algorithm is that it does not need to know how the ob-
jects are organized into groups, because the hyperedges groups can be inferred. In fact
performance was enhanced by the more robust organization of the artifacts deduced
using the overlapping clustering algorithm in [Magdon-Ismail and Purnell 2011].

Our results indicate that methods based on the actor-object-hyperedge graphs have
significant potential, and there are several avenues for further investigation. Are there
specific properties of the network that can be measured to indicate whether it exhibits
subcommunity structure? Can we tune how the information from each node type is
incorporated into the ranking for a specific dataset? Should all the hyperedges be used
in the algorithm? One might conjecture that only the “important” groups should be
used, which is similar to the notion of trust-rank, where the structure of the graph
with respect to important nodes can be more robust [Gyongyi et al. 2004]. Another
interesting extension is to consider the impact of the sequence of iteration in the qual-
ity of the output. Currently, actors derive value from their objects and objects and
hyperedges derive value from each other. However, it is possible to consider other se-
quences of iterations, where authors derive value directly from hyperedges. Another
possibility to consider whether authors belong to specific hyperedges that correspond
to their “peers”, and whether belonging to such hyperedges brings additional value
to the ranking. It would be interesting to study whether such extensions improve the
ranking and/or the robustness of the algorithm.

Appendix
In this section, we explain the experimental setup that is used throughout the paper
in detail.

Evaluation Methods
In our methods, we generally apply two types evaluation methods: agvx and ktx. One
measures how the algorithm performs in the top ranked objects and is described for
each dataset separately. The second one compares the algorithm ranking x to a ground
truth g ranking given by an external measure of prominence using the Kendall-tau
measure.

Kendall-tau measure is given by the number of pairs with the same ordering minus
the number of pairs with flipped ordering, all divided by the total number of pairs com-
pared. A Kendall-tau of 1 corresponds to identical orderings whereas -1 corresponds to
full reversal. This computation is complicated by the fact that the ranking induced by
some external measures of prominence (like h-index) contain a large number of ties.
In contrast, most of the tested algorithms (with the exception of indegree) operate on
real number ranges and produce very few ties, if any. As a result, whenever the algo-
rithm reports a1 is ranked higher than a2, when in fact the the actors are tied in the
ground truth, we would like to treat this as neither an agreement or a disagreement.
An exception to this rule is the indegree and centrality algorithms which can produce
a lot of ties where breaking a tie is to be considered a slight disagreement (penalty of
0.5).

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:26 Adalı, Magdon-Ismail and Lu

In particular, suppose we are given ranked lists a for an algorithm ranking and g
for a ground truth ranking. Both a, g may contain ties. In case of ties, objects are given
the same rank. The next object is given the next rank that would be available if there
were no ties. For example, objects with scores 0.1, 0.2, 0.2, 0.3 are given ranks 1, 2, 2, 4.
Given these two ranked lists, the kendall-tau measure kt(a, g, p1, p2) takes as input
two penalty measures p1, p2 and is computed as follows:

Algorithm 2 kt (a, g, p1, p2)
1: Input: Algorithm a & ground truth g rankings of objects, penalties p1, p2
2: Agree = Disagree = NumCompared = 0
3: for all distinct pairs (o1, o2) of objects that are both ranked by a and g do
4: NumCompared+ +
5: if (o1, o2) tied in a, but not in g then
6: Disagree += p1, Agree += (1− p1)
7: else if (o1, o2) tied in g, but not in a then
8: Disagree += p2, Agree += (1− p2)
9: else if (o1, o2) ranked the same in a and g then Agree += 1

10: else Disagree += 1
11: end if
12: end for
13: return (Agree−Disagree)/NumCompared

Given this algorithm, whenever we are comparing iHypR to a ground truth value
with ties, we use p1 = 0.5 and p2 = 1. Which means there is no penalty for iHypr to
break a tie. However, as such pairs are counted in numCompared, there is an implicit
penalty as such pairs do not contribute to agreement counts as well. For indegree and
closeness, we use p1 = p2 = 0.75 and p2 = 0.25 which means that a tie from g broken by
indegree is considered a penalty of 0.5 overall. This is a well known method of treating
ties as half flips [Fagin et al. 2003].

Clustering Algorithms Used
SSDE. SSDE-Cluster [Magdon-Ismail and Purnell 2011] is the default clustering al-

gorithm used by iHypR. This algorithm first embeds the input graph into metric space
and then uses the Gaussian Mixture Model to find a prespecified number n of overlap-
ping clusters.

SSDE-cluster also has a module for automatically determining the number of clus-
ters based on how the clueter error drops relative to a null hypothesis random graph
model. Based on this method, we find that (for example) 10 clusters are significant
in DBLP, and within each cluster, 10 subclusters are significant, suggesting a natu-
ral 10-10 hierarchical clustering of the DBLP objects. This clustering roughly corre-
sponds to 10 research areas and 10 sub-areas. For comparison we also used a single
(no-hierearhical) clustering into 100 clusters. We thus use two possible methods to find
clusters in SSDE:

— Cluster the whole dataset. We find total number n of clusters in SSDE using the
methodology above and cluster the data into n overlapping clusters. This gives us a
top view of the data.

— Cluster in two levels. We first find the total number n of clusters in SSDE. Then,
we first cluster the dataset into

√
n top level clusters. These clusters correspond to

higher level communities in the data. For example, in the case of DBLP, this would
correspond to research areas. Then, we rerun the SSDE for each cluster and find

√
n

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:27

clusters within each cluster. This gives us a total of n clusters, but taking into account
that the optimization of the clustering criteria for the smaller clusters is local to each
top cluster. This allows us to take into account differences in different communities.
For example, in DBLP, certain communities are tightly connected and others are very
loosely connected. For example, systems papers tend to cover a very large number of
authors with fewer connections than papers in neural networking.

FC: Fast Community. FastCommunity [Clauset et al. 2004] finds densely connected sub-
groups of the graph and produces disjoint clusters of varying sizes and number depend-
ing on the dataset. It does not take as input the number of clusters expected in the
output. Note that we use the same input graph as in Section 2.1 for FastCommunity.

Fastcommunity does not have any input parameters, our run produced 2638 and
1170 for DBLP object graphs using waa and wjac respectively.

RC: RankClus. RankClus [Sun et al. 2009a] takes a dataset with predefined venues
and partitions these venues into n disjoint clusters where n is an input to the algo-
rithm. The intuition behind this algorithm is that it finds groupings of the venues that
correspond to research areas. These groups are then used to rank the objects sepa-
rately within each cluster. Note that we do not consider the ranking produced by this
algorithm, but use the clusters produced by it. RankClus takes as input the DBLP
graph, i.e. authors, papers and venues.

Note that there is no methodology for choosing the number of clusters for RC. Given
the code provided to us was not able to deal with the full DBLP data, we have chosen to
use instead the dataset that was originally used in the RankClus paper which excludes
the authors with less than 5 papers and finds 20 clusters (RC20). We also found people
with 10 or more papers and ran RankClus for 50 clusters (RC50).

Note that we also tried the CFinder algorithm [Clauset et al. 2004], but were unable
to run it due to the memory requirements of this algorithm. Below, we summarize the
properties of the algorithms used in this paper.

Does not need Does not need Overlapping
Algorithm num clusters? hyperedges? clusters?
SSDE X X X
FC X X ×
RC × × ×

Datasets Tested
DBLP dataset. DBLP was originally developed for the Database and Logic Program-

ming community, but is now extended to a large subset of Computer Science. The
venues in DBLP contain conferences, journals, and book chapters. In our tests, we used
the RDF tagged version DBLP from April 2008 called SwetoDBLP 6. Our dataset con-
tains 1,004,959 publications, 615,416 authors, 4,718 books chapters from 1,335 books,
386,481 journal articles and 613,760 conference papers. From this dataset, we extract
the largest connected component and use it in all our tests. Note that unless otherwise
noted, all our tests refer to this dataset. Furthermore, a venue is considered to be a
specific year of a conference or a journal. Each book is considered a venue as well.

A subset of the conference papers and books (495,159 total) have an additional tag
with the DBLP internal URL of the proceedings the paper was included in (we will
call this set of papers III: isIncludedIn). The remaining conferences do not seem to
have a specific proceedings URL. This appears to be more of a data curation problem,
for example AMAI appears in both sets, with or without proceedings. However, the

6http://archive.knoesis.org/library/ontologies/swetodblp/

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:28 Adalı, Magdon-Ismail and Lu

dataset III excludes all journals which is a significant difference between ALL and III.
We use this dataset in one of our experiments given in Section 4.1 and refer to it as
AOT:conf.

For external prominence, we use consider two different measures:
Hindex values. We use citations, especially, h-index as an external method of promi-
nence for authors [Hirsch 2005]. Note that DBLP contains some citation data, but
this data tends to be sparse. We do not use this data in our prominence computations
or in h-index computation. Instead, we collect h-index values directly from Microsoft
Academic Search (MAS) 7. We remove all authors with h-index value less than three
to reduce noise in our data. The final MAS h-index dataset contains 84, 804 distinct
authors.
TC10 values. H-index and its variations are used frequently as a measure of promi-
nence. As h-index is insensitive to the actual number of citations, it does not help dis-
tinguish between researchers who are extremely prolific and have done seminal work.
For example, an author who has two seminal papers may have the same h-index as
another with two papers of at least two citations. While the g-index tries to capture
this value, it is not sufficiently fine tuned for our purposes. A person with 10 papers
need to have at least 100 citations for their top paper. However, it is possible that the
top cited paper has 1,000 citations. Both cases will appear the same under the g-index.
On the other hand, for a person with 50 papers, the top paper needs to have 2,500
citations which would be an extremely high value to capture. To be able to find peo-
ple who have produced very highly cited papers, we introduce a new measure: tc-10,
which computes the average number of citations an author got for her top 10 most
cited papers.

As MAS does not contain detailed citation information, we collect citation data us-
ing Google Scholar. We query Google Scholar for randomly picked author names from
DBLP and limit the search fields to Engineering, Computer Science, and Mathemat-
ics. We then parse the returned html files to compute h-index and tc-10values. Since
the only information we submitted to Google Scholar is author names, the returned
information may contain a lot of noise especially when the name is too abbreviated or
common (e.g. “J. John”).

To reduce noise in our computed tc-10 values, we compute the absolute difference
between the h-index values computed using Google scholar and those from the MAS
dataset. We then selected the subset of authors with difference of at most 10 and use
the tc-10 values of these authors. The final tc-10 dataset has 56, 058 authors.

Enron Dataset. We have used the Enron email data set 8 that contains mails between
employees of Enron. In our tests, we have not considered the content of the emails, only
sender and receiver information. We have removed emails that correspond to broadcast
or almost broadcast messages with more than 20 recipients. In our dataset, we have
a total of 21,644 messages between 156 Enron employees. The messages (objects) link
people (actors): the sender to the receiver. In contrast with the DBLP dataset where
the collaboration is not directed, the direction of the messages is important. It is ques-
tionable whether emails have intrinsic value that can be measured. We assume that
most emails do not have value themselves but they show the relationship between the
employees. Unlike DBLP, there are no true hyperedges, so we can only use the clus-
ters for this purpose. As mentioned earlier, we use the positions of the 115 employees
in the organizational hierarchy used in previous literature as an external measure of

7http://academic.research.microsoft.com/
8www.cs.cmu.edu/∼enron/

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:29

prominence [Diesner et al. 2005]. For Enron, we use 9 clusters, 3 at the top level and 3
at the lower level.

IMDB. Finally, we use the IMDB 9 database containing information about movies
(objects) and actors. Multiple people starring in a movie corresponds to a collaboration
between the actors. However, casting decisions are not voluntary. In DBLP, an author
can decide to write with another author. In Enron, a person can decide to send an email
to another. However, actors do not necessarily decide with whom they will act together.
This feature sets IMDB apart from the previous two datasets.

Each actor has prominence and each movie has prominence. However, there are
many different metrics for measuring the prominence of movies and actors. Using the
quality of the movie is one possible idea, but quality tends to be subjective as evidenced
by the number of different reviews found for a movie. Furthermore, we do not have
historical data for review aggregation sites like rottentomatoes.com. But, we use the
ratings in IMDB for this. We also considered using the popularity of the movies as an
indicator of the prominence of the actors in them. One way to achieve this is to use
the movie gross information. However, literature in cultural markets [Salganik 2007]
shows that it is very hard to predict how successful a movie is going to be while it is
being made. As a result, one cannot argue that the movie gross is a strong indicator
of the actors’ prominence. Movies of many prominent actors fail after all. To overcome
this problem, we use the movie budget as an indicator of the prominence of the actors
in the movie. The budget indicates how much the movie industry believes the actors
are worth and hence is a more reliable measure of the prominence of the actor in the
movie industry. IMDB contains movie budget data for an increasing number of the
movies in the later decades especially VI.

Table VI. Movies with budget, gross and rating information information in IMDB

Decade #Movies #Movies w/ budget #Movies w/ gross #Movies w/ rating
1930s 10285 411 72 5789
1940s 7359 321 81 5426
1950s 5926 355 114 4833
1960s 3787 348 122 3325
1970s 3599 431 284 3268
1980s 3834 708 1590 3681
1990s 6019 1487 2366 5731
2000s 18633 8089 3080 13059

In our tests, we use the full IMDB dataset. As this dataset contains adult movies,
Hollywood movies and foreign movies from three different movie industries, this
makes prominence computation particularly hard for many algorithms. In the ear-
lier decades, the movie and budget information solely consists of Hollywood movies.
However, in later years, all three sets of movies are increasingly intermixed. In this
dataset, we focus on the stars and the director of the movies. This is based on the
assumption that the top actors and the director generally appear in the movie adver-
tisements and hence are the most relevant factors in judging the marketability of the
movie. We therefore extract the stars of the movies (and the directors) by picking the
top three actors in the order of billing. We also add the director(s) of the movie to the
analysis.

For external evaluation using movie budget info, we consider movie budget for each
decade separately. This helps solve the problem that the movie budget information is

9www.imdb.com

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:30 Adalı, Magdon-Ismail and Lu

Algorithm avgh avgt kth ktt
iHypRAOH 42.9 456.66 0.44 0.28
iHypRAT 41.55 361.59 0.39 0.26
PGAOT 35.9 332.69 0.44 0.26
PGAOH 35.9 338.9 0.44 0.26
PGAnorm

38.3 414.31 0.39 0.22
iHypRAOT 40.55 307.94 0.40 0.26
PGAO 32.5 352.5 0.43 0.26
PGAaa

33.85 306.53 0.42 0.23
iHypRAH 26.95 378.01 0.4 0.23
DegAnorm

35 408.33 0.27 0.24
PGAlog

39.75 222.13 0.43 0.22
InDegAnorm

36.05 286.17 0.28 0.24
HitsAO 11.8 55.31 0.32 0.19
HitsAH 14.2 68.37 0.34 0.15
HitsAnorm 6.2 33.67 0.24 0.15

Fig. 13. The real values for avgh, avgt, kth and ktt for Figure 3 based on the DBLP dataset.

a one time measure, it does not accumulate over time. So, considering it for the life-
time of a movie is not appropriate as we did for citations in DBLP. For each decade,
we construct the movie to movie graph as in Section 2.1 using waa and compute hyper-
graphs. Our results indicate that IMDB does not exhibit subcommunity structure and
using subcommunities slightly hurts performance. So, we use 16 top level clusters in
our tests as a result.

Given the movie budget information, we assume the value of an actor is equal to the
average budget of the movies they starred in. However, the movie budget values be-
tween different years is not comparable and is very sensitive to outliers, i.e. very high
budget movies. To overcome this problem, we normalize the movie budget information
for each year between 0 and 1 as follows. We first partition the movies into years, then
rank them by its budget within the decade it belongs to. Finally, we assign a value to
the movie (normalized movie value) by the equation:

mv(i) =
k − r(i)
k − 1

Where r(i) is the ranking of movie i, and k is the total number of movies in that
year. Note that movies with highest gross in a year will get 1 and the last movie and
movies with no gross information will get 0. In the case that only one movie in a year,
we assign 1 to the movie. The value of an actor is then given by the average normalized
value of the movies they starred in.

Performance of various ranking algorithms on the DBLP dataset
In Figure 13, we provide the true performance figures (not just the regret values) of
various ranking algorithms on the DBLP dataset. The regret values based on these
numbers were given earlier in Figure 3.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Jiawei Han for sharing the RankClus code with us.

REFERENCES
ADALI, S., LU, X., MAGDON-ISMAIL, M., AND PURNELL, J. 2011. Prominence ranking in graphs with com-

munity structure. In International AAAI Conference on Weblogs and Social Media (ICWSM’11).

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

iHypR: Prominence Ranking in Networks of Collaborations with Hyperedges 1:31

ADAMIC, L. AND ADAR, E. 2003. Friends and neighbors on the web. Social Networks 25, 211–230.
ADAMIC, L. A., LAUTERBACH, D., TENG, C.-Y., AND ACKERMAN, M. S. 2011. Rating friends without mak-

ing enemies. In Proceedings of the AAAI Conference on Social Media and Weblogs (ICWSM 2011).
BALMIN, A., HRISTIDIS, V., AND PAPAKONSTANTINOU, Y. 2004. Objectrank: Authority-based keyword

search in databases. In Proceedings of the Thirtieth international conference on Very large data bases.
Vol. 30. 564–575.

BAO, S., XUE, G., WU, X., YU, Y., FEI, B., AND SU, Z. 2007. Optimizing web search using social annotations.
In Proceedings of the 16th international conference on World Wide Web. WWW ’07. ACM, 501–510.

BORODIN, A., ROBERTS, G., ROSENTHAL, J., AND TSAPARAS, P. 2005. Link analysis ranking: Algorithms,
theory, and experiments. ACM Transactions on Internet Technology 5, 1, 231–297.

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual web search engine. In Proceedings
of the ACM WWW Conference. 107–117.

CLAUSET, A., NEWMAN, M., AND MOORE, C. 2004. Finding community structure in very large networks.
Phys. Rev. E 70, 6, 066111.

DIESNER, J., FRANTZ, T., AND CARLEY, K. 2005. Communication networks from the enron email corpus,
it’s always about the people. enron is no different. Computational and Mathematical Organization The-
ory 11, 201–228.

FAGIN, R., KUMAR, R., AND SIVAKUMAR, D. 2003. Comparing top k lists. SIAM J. Discrete Mathemat-
ics 17, 1, 134–160.

FAUST, K. AND WASSERMAN, S. 1994. Social Network Analysis: Methods and Applications. Cambridge Uni-
versity Press.

GIBSON, D., KLEINBERG, J., AND RAGHAVAN, P. 2000. Clustering categorical data: an approach based on
dynamical systems. The VLDB Journal 8, 3-4, 222–236.

GYONGYI, Z., GARCIA-MOLINA, H., AND PEDERSEN, J. 2004. Combating web spam with trustrank. In
Proceedings of the 30th International Conference on Very Large Data Bases.

HAVELIWALA, T. 2002. Topic-sensitive pagerank. In Proceedings of the ACM WWW Conference. 517–526.
HIRSCH, J. 2005. An index to quantify an individual’s scientific research output. Proc. of the National

Academy of Sciences 46, 16569–16572.
HOTHO, A., JÄSCHKE, R., SCHMITZ, C., AND STUM, G. 2006. Information retrieval in folksonomies: Search

and ranking. In The Semantic Web: Research and Applications, volume 4011 of LNAI. Springer, 411–426.
JEH, G. AND WIDOM, J. 2002. Simrank: a measure of structural-context similarity. In Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining. KDD ’02. ACM,
538–543.

JONES, B., WUCHTY, S., AND UZZI, B. 2008. Multi-university research teams: shifting impact, geography,
and stratification in science. Science 322, 1259–1262.

KLEINBERG, R. 1999. Authoritative sources in a hyperlinked environment. Journal of the ACM 46, 5, 604–
632.

LEMPEL, R. AND MORAN, S. 2001. Salsa: The stochastic approach for link-structure analysis. ACM Trans-
actions on Information Systems 19, 2, 131–160.

MAGDON-ISMAIL, M. AND PURNELL, J. 2011. Ssde-cluster: Fast overlapping clustering of networks using
sampled spectral distance embedding and gmms. In IEEE International Conference on Social Comput-
ing.

NEWMAN, M. E. J. 2003. Mixing patterns in networks. Physical Review E 67.
NIE, Z., ZHANG, Y., WEN, J.-R., AND MA, W.-Y. 2005. Object-level ranking: bringing order to web objects.

In Proceedings of the 14th international conference on World Wide Web. WWW ’05. ACM, 567–574.
RIVERA, M., SODERSTROM, S., AND UZZI, B. 2010. Dynamics of dyads in social networks: Assortative,

relational, and proximity mechanisms. Annual Review of Sociology, 91–115.
SALGANIK, M. J. 2007. Success and failure in cultural markets. Ph.D. thesis, New York: Department of

Sociology, Columbia University.
SUN, Y., HAN, J., ZHAO, P., YIN, Z., CHENG, H., AND WU, T. 2009a. Rankclus: integrating clustering

with ranking for heterogeneous information network analysis. In Proceedings of the 12th International
Conference on Extending Database Technology: Advances in Database Technology. 565–576.

SUN, Y., YU, Y., AND HAN, J. 2009b. Ranking-based clustering of heterogeneous information networks with
star network schema. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. KDD ’09. ACM, 797–806.

WEST, D. B. 2000. Introduction to Graph Theory (2nd Edition). Prentice Hall.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

1:32 Adalı, Magdon-Ismail and Lu

WUCHTY, S., JONES, B., AND UZZI, B. 2007. Commentary: Why do team-authored papers get cited more?
Science 317, 1496.

XI, W., ZHANG, B., CHEN, Z., LU, Y., YAN, S., MA, W.-Y., AND FOX, E. A. 2004. Link fusion: a unified link
analysis framework for multi-type interrelated data objects. In Proceedings of the 13th international
conference on World Wide Web. WWW ’04. ACM, New York, NY, USA, 319–327.

XIAOMING LIU, JOHAN BOLLEN, M. L. N. AND DE SOMPEL, H. V. 2005. Co-authorship networks in the
digital library research community. Information Processing & Management 41, 1462–1480.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1, Publication date: March 2012.

