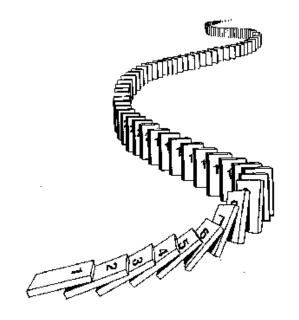
Foundations of Computer Science Lecture 5

Induction: Proving "For All"

Induction: What and Why?Induction: Good, Bad and UglyInduction, Well-Ordering and the Smallest Counter-Example



• Proving "IF \ldots , THEN \ldots ".

Proving "... IF AND ONLY IF".

Proof patterns:

- ► direct proof;
 - ★ If $x, y \in \mathbb{Q}$, then $x + y \in \mathbb{Q}$.
 - ★ If $4^x 1$ is divisible by 3, then $4^{x+1} 1$ is divisible by 3.
- ► contraposition;
 - ★ If r is irrational, then \sqrt{r} is irrational.
 - ★ If x^2 is even, then x is even.
- ► contradiction.
 - $\star \sqrt{2}$ is irrational.
 - $\star \ a^2 4b \neq 2.$
 - ★ $2\sqrt{n} + 1/\sqrt{n+1} \le 2\sqrt{n+1}$.

1) What is induction.

- 2 Why do we need it?
- 3 The principle of induction. Toppling the dominos. The induction template.

4 Examples.

Dispensing Postage Using 5¢ and 7¢ Stamps

19¢	20¢	21¢	22¢	23¢
7,7,5	5,5,5,5	$7,\!7,\!7$	5, 5, 5, 7	?

19¢	20¢	21¢	22¢	23¢
$7,\!7,\!5$	$5,\!5,\!5,\!5$	7,7,7	5, 5, 5, 7	?

Perseverance is a virtue when tinkering.

19c	20¢	21¢	22¢	23¢	24¢	25¢	26¢	27¢	28¢
7,7,5	5,5,5,5	7,7,7	5, 5, 5, 7	_	7,7,5,5	5, 5, 5, 5, 5	7,7,7,5	5, 5, 5, 5, 7	7,7,7,7

19¢	20¢	21¢	22¢	23¢
7,7,5	$5,\!5,\!5,\!5$	7,7,7	5, 5, 5, 7	?

Perseverance is a virtue when tinkering.

19c	20¢	21¢	22¢	23¢	24¢	25¢	26¢	27¢	28¢
7,7,5	5,5,5,5	7,7,7	5,5,5,7	_	7,7,5,5	5,5,5,5,5	7,7,7,5	5, 5, 5, 5, 7	7,7,7,7

Can every postage greater than 23¢ can be dispensed?

19¢	20¢	21¢	22¢	23¢
7,7,5	5, 5, 5, 5	7,7,7	5, 5, 5, 7	?

Perseverance is a virtue when tinkering.

19¢	20¢	21¢	22¢	23¢	24¢	25¢	26¢	27¢	28¢
7,7,5	5,5,5,5	7,7,7	5,5,5,7	_	7,7,5,5	5, 5, 5, 5, 5	7,7,7,5	5, 5, 5, 5, 7	7,7,7,7

Can every postage greater than 23¢ can be dispensed?

Intuitively yes.

Induction formalizes that intuition.

	Predicate	Claim
(i)	P(n) = "5¢ and 7¢ stamps can make postage n ."	$\forall n \ge 24 : P(n)$
(ii)	$P(n) = "n^2 - n + 41$ a prime number."	$\forall n \geq 1 : P(n)$
(iii)	$P(n) = "4^n - 1$ is divisible by 3."	$\forall n \geq 1 : P(n)$

	Predicate	Claim
(i)	P(n) = "5¢ and 7¢ stamps can make postage n ."	$\forall n \ge 24 : P(n)$
(ii)	$P(n) = "n^2 - n + 41$ a prime number."	$\forall n \geq 1 : P(n)$
(iii)	$P(n) = "4^n - 1$ is divisible by 3."	$\forall n \geq 1: P(n)$

TINKER!

	Predicate)		Claim										
((i) $P(n) = $ "	$P(n) =$ "5¢ and 7¢ stamps can make postage n ." $\forall n \ge 24 : P(n)$												
(j	ii) $P(n) = $	$n^2 - n$	+41 a		$\forall n \geq 1 : P(n)$									
(i)	ii) $P(n) = $	$P(n) = "4^n - 1$ is divisible by 3." $\forall n \ge 1 : P(n)$												
TINKER!														
	n	1	2	3	4	5	6	7	8	• • •				
	$n^2 - n + 41$	41	43	47	53	61	71	83	97					
	$(4^n - 1)/3$	1	5	21	85	341	1365	5461	21845	j · · ·				

Predicate			Claim								
(i) $P(n) = $	be and		$\forall n \ge 2$	24:F	$\mathcal{P}(n)$						
(ii) $P(n) = "n$	$n^2 - n$	$\forall n \ge 1$	L:P((n)							
(iii) $P(n) = "4$	$4^n - 1$ i	s divis	ible by	3."				$\forall n \ge 1$	L:P((n)	
TINKER!											
n	1	2	3	4	5	6	7	8	•••	40	41
$n^2 - n + 41$	41	43	47	53	61	71	83	97	•••	1601	1681 ×
$(4^n - 1)/3$	1	5	21	85	341	1365	5461	21845	• • •		

	Predicate		Claim									
(i) $P(n) = $	fc and	,	$\forall n \ge$	24:F	$\mathcal{P}(n)$						
(i	i) $P(n) = "n$	$n^2 - n + 1$		$\forall n \ge$	1:P((n)						
(ii	(iii) $P(n) = "4^n - 1$ is divisible by 3." $\forall n \ge 1 : P(n)$											
TINKER!												
	n	1	2	3	4	5	6	7	8	•••	40	41
	$n^2 - n + 41$	41	43	$47\checkmark$	53	61	71	83	97~		1601	1681 ×
	$(4^n - 1)/3$	1	5	21	85	341	1365	5461	21845	5		

How can we prove something for all $n \ge 1$? Verification takes too long!

	Predicate								Claim				
((i) $P(n) = 5c$ and 7c stamps can make postage n ."								$\forall n \ge 24 : P(n)$				
(i	i) $P(n) = "n$	$P(n) = "n^2 - n + 41$ a prime number."							$\forall n \ge 1 : P(n)$				
(ii	(iii) $P(n) = "4^n - 1$ is divisible by 3."								$\forall n \ge 1 : P(n)$				
TI	NKER!												
	n	1	2	3	4	5	6	7	8	•••	40	41	
	$n^2 - n + 41$	41	43	$47\checkmark$	53	61	71	83	97•		1601	1681 ×	
	$(4^n - 1)/3$	1	5	21	85	341	1365	5461	2184	$5 \cdots$			

How can we prove something for all $n \ge 1$? Verification takes too long! Prove for general n. Can be tricky.

	Predicate	;							Claim			
(1) $P(n) = ``.$	P(n) = "5¢ and 7¢ stamps can make postage n ."							$\forall n \ge 24 : P(n)$			
(ii) $P(n) = "$	$P(n) = "n^2 - n + 41$ a prime number."							$\forall n \geq 1 : P(n)$			
(iii) $P(n) = "$	P(n) = "4 ⁿ – 1 is divisible by 3."							$\forall n \geq 1 : P(n)$			
TI	NKER!											
_	n	1	2	3	4	5	6	7	8	40	41	
I	$n^2 - n + 41$	41	43	$47\checkmark$	53	61	71	83	97 √ · · ·	1601	1681×	
	$(4^n - 1)/3$	1	5	21	85	341	1365	5461	$21845\cdots$			

How can we prove something for $all \ n \ge 1$? Verification takes too long! Prove for general n. Can be tricky. Induction. Systematic.

Is $4^n - 1$ Divisible by 3 for $n \ge 1$?

 $P(n) = "4^n - 1$ is divisible by 3."

We proved:

IF $\underbrace{4^n - 1 \text{ is divisible by } 3}_{P(n)}$, THEN $\underbrace{4^{n+1} - 1 \text{ is divisible by } 3}_{P(n+1)}$.

Proof. We prove the claim using a direct proof.

- 1: Assume that P(n) is T, that is $4^n 1$ is divisible by 3.
- 2: This means that $4^n 1 = 3k$ for an integer k, or that $4^n = 3k + 1$.
- 3: Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that $4^{n+1} = 4 \cdot (3k + 1) = 12k + 4$.

Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 (4k + 1 is an integer).

- 4: Since $4^{n+1} 1$ is a multiple of 3, we have shown that $4^{n+1} 1$ is divisible by 3.
- 5: Therefore, P(n+1) is T.

We proved:

IF $4^n - 1$ is divisible by 3, THEN $4^{n+1} - 1$ is divisible by 3. P(n)
Proof. We prove the claim using a direct proof. 1: Assume that P(n) is T, that is $4^n - 1$ is divisible by 3. 2: This means that $4^n - 1 = 3k$ for an integer k, or that $4^n = 3k + 1$.

3: Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that $4^{n+1} = 4 \cdot (3k + 1) = 12k + 4$.

Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 (4k + 1 is an integer).

- 4: Since $4^{n+1} 1$ is a multiple of 3, we have shown that $4^{n+1} 1$ is divisible by 3.
- 5: Therefore, P(n+1) is T.

We proved:

$$P(n) \to P(n+1)$$

We proved:

IF $\underbrace{4^n - 1}_{P(n)}$ is divisible by 3, THEN $\underbrace{4^{n+1} - 1}_{P(n+1)}$ is divisible by 3. *P(n) Proof.* We prove the claim using a direct proof. 1: Assume that P(n) is T, that is $4^n - 1$ is divisible by 3. 2: This means that $4^n - 1 = 3k$ for an integer k, or that $4^n = 3k + 1$. 3: Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that

 $4^{n+1} = 4 \cdot (3k+1) = 12k + 4.$

Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 (4k + 1) is an integer.

- 4: Since $4^{n+1} 1$ is a multiple of 3, we have shown that $4^{n+1} 1$ is divisible by 3.
- 5: Therefore, P(n+1) is T.

We proved:

$$P(n) \to P(n+1)$$

What use is this?

(Reasoning in the absense of facts.)

$$P(n) \rightarrow P(n+1)$$

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

 $\leftarrow \text{ divisible by 3 (new fact)}$

P(1)

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2)$$

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2)$$

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2) \rightarrow P(3)$$

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2) \rightarrow P(3)$$

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4)$$

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4)$$

$$P(n) \to P(n+1)$$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n-1)$$

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n-1) \rightarrow P(n)$$

 $P(n) \rightarrow P(n+1)$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n-1) \rightarrow P(n) \rightarrow \cdots$$

By Induction, $4^n - 1$ is Divisible by 3 for $n \ge 1$

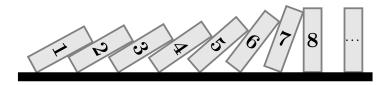
 $P(n) = "4^n - 1$ is divisible by 3."

•
$$P(1)$$
 is T.
• $P(n) \rightarrow P(n+1)$ is T.

By induction, P(n) is T for all $n \ge 1$.

$$P(1) \text{ is T.}$$
 $P(n) \to P(n+1) \text{ is T.}$
 $P(n) \to P(n+1) \text{ is T.}$

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$$



P(n) form an infinite chain of dominos. Topple the first and they *all* fall.

Practice. Exercise 5.2.

Induction to prove: $\forall n \ge 1 : P(n)$.

Proof. We use induction to prove $\forall n \ge 1 : P(n)$.

Induction to prove: $\forall n \ge 1 : P(n)$.

Proof. We use induction to prove $\forall n \ge 1 : P(n)$.

1: Show that P(1) is T. ("simple" verification.)

[base case]

Induction Template

Induction to prove: $\forall n \ge 1 : P(n)$.

Proof. We use induction to prove $\forall n \ge 1 : P(n)$.

- 1: Show that P(1) is T. ("simple" verification.)
- 2: Show $P(n) \rightarrow P(n+1)$ for $n \ge 1$

[base case]

[induction step]

Induction Template

Induction to prove: $\forall n \ge 1 : P(n)$.

Proof. We use induction to prove $\forall n \ge 1 : P(n)$.

1: Show that P(1) is T. ("simple" verification.)

2: Show
$$P(n) \to P(n+1)$$
 for $n \ge 1$

Prove the implication using direct proof or contraposition. $\begin{array}{c} \underline{\text{Direct}}\\ \text{Assume } P(n) \text{ is T.}\\ (\text{valid derivations})\\ \text{must show for any } n \geq 1\\ \text{must use } P(n) \text{ here}\\ \text{Show } P(n+1) \text{ is T.} \end{array}$ $\begin{array}{c} \underline{\text{Contraposition}}\\ \text{Assume } P(n+1) \text{ is F.}\\ (\text{valid derivations})\\ \text{must show for any } n \geq 1\\ \text{must use } \neg P(n+1) \text{ here}\\ \text{Show } P(n) \text{ is F.} \end{array}$ [base case]

[induction step]

Induction Template

Induction to prove: $\forall n \ge 1 : P(n)$.

Proof. We use induction to prove $\forall n \ge 1 : P(n)$.

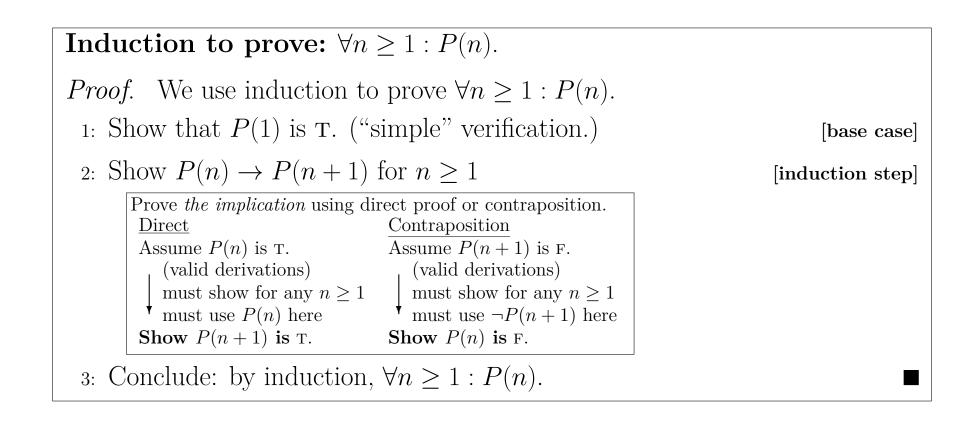
1: Show that P(1) is T. ("simple" verification.)

2: Show
$$P(n) \to P(n+1)$$
 for $n \ge 1$

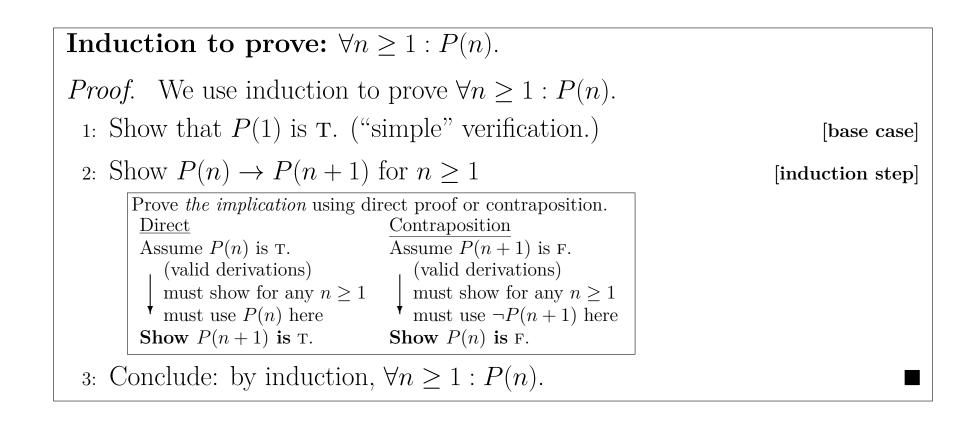
Prove the implication using direct proof or contraposition. Direct Assume P(n) is T. (valid derivations) must show for any $n \ge 1$ must use P(n) here Show P(n+1) is T. P(n+1) is T. P(n+1) is F. (valid derivations) must show for any $n \ge 1$ P(n+1) is F. (valid derivations) must show for any $n \ge 1$ P(n+1) here Show P(n+1) is T. P(n+1) is F. [base case]

[induction step]

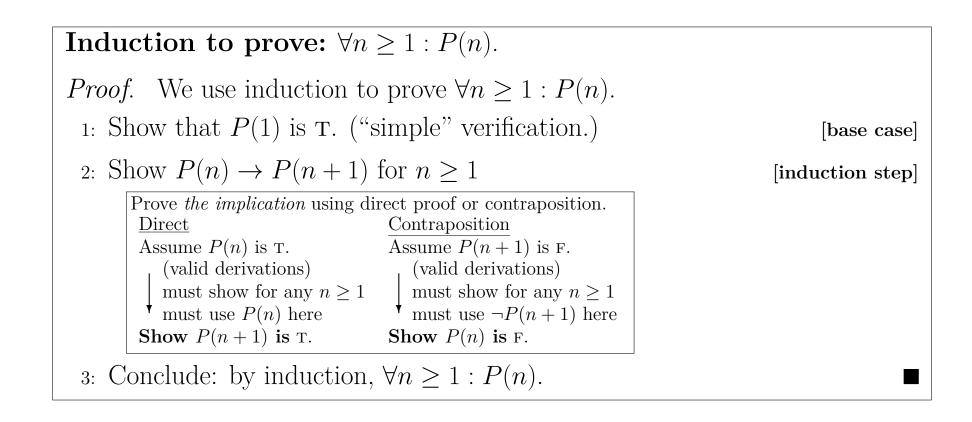
3: Conclude: by induction, $\forall n \ge 1 : P(n)$.



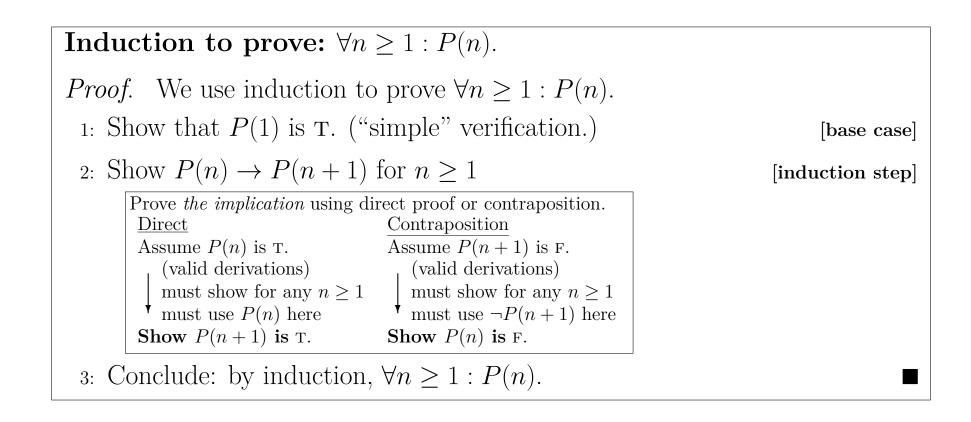
• Prove the *implication* $P(n) \rightarrow P(n+1)$ for a general $n \ge 1$. (Often direct proof) Why is this easier than just proving P(n) for general n?



- Prove the *implication* $P(n) \rightarrow P(n+1)$ for a general $n \ge 1$. (Often direct proof) Why is this easier than just proving P(n) for general n?
- Assume P(n) is T, and reformulate it mathematically.



- Prove the *implication* $P(n) \rightarrow P(n+1)$ for a general $n \ge 1$. (Often direct proof) Why is this easier than just proving P(n) for general n?
- Assume P(n) is T, and reformulate it mathematically.
- Somewhere in the proof you *must* use P(n) to prove P(n+1).



- Prove the *implication* $P(n) \rightarrow P(n+1)$ for a general $n \ge 1$. (Often direct proof) Why is this easier than just proving P(n) for general n?
- Assume P(n) is T, and reformulate it mathematically.
- Somewhere in the proof you *must* use P(n) to prove P(n+1).
- End with a statement that P(n+1) is T.

$$1 + 2 + 3 + \dots + (n - 1) + n = ?$$

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) \rightarrow$$

$$1 + 2 + 3 + \dots + (n - 1) + n = ?$$

The GREAT Gauss (age 8-10):

$$S(n) = 1 + 2 + \dots + n$$

$$S(n) = n + n - 1 + \dots + 1$$

$$S(n) = (n + 1) + (n + 1) + \dots + (n + 1)$$

$$= n \times (n + 1)$$

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) \rightarrow$$

$$1 + 2 + 3 + \dots + (n - 1) + n = ?$$

The GREAT Gauss (age 8-10):

$$S(n) = 1 + 2 + \dots + n$$

$$S(n) = n + n - 1 + \dots + 1$$

$$2S(n) = (n+1) + (n+1) + \dots + (n+1)$$

$$= n \times (n+1)$$

$$S(n) = 1 + 2 + 3 + \dots + (n - 1) + n = \frac{1}{2}n(n + 1)$$

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) - \frac{1}{2}n(n+1)$$

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.

2: [Induction step] We show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$, using a direct proof.

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) \qquad [key step]$$

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$
 [key step]
= $\frac{1}{2}n(n+1) + (n+1)$ [induction hypothesis $P(n)$]

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$
 [key step]
$$= \frac{1}{2}n(n+1) + (n+1)$$
 [induction hypothesis $P(n)$]
$$= \frac{1}{2}(n+1)(n+2)$$
 [algebra]
$$= \frac{1}{2}(n+1)(n+1+1).$$

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.

2: [Induction step] We show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$, using a direct proof. Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$. Show P(n+1) is T: $\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+1+1)$.

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$
 [key step]
$$= \frac{1}{2}n(n+1) + (n+1)$$
 [induction hypothesis $P(n)$]
$$= \frac{1}{2}(n+1)(n+2)$$
 [algebra]
$$= \frac{1}{2}(n+1)(n+1+1).$$

This is exactly what was to be shown. So, P(n+1) is T.

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.

2: **[Induction step]** We show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$, using a direct proof. Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$. Show P(n+1) is T: $\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+1+1)$.

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$
 [key step]
$$= \frac{1}{2}n(n+1) + (n+1)$$
 [induction hypothesis $P(n)$]
$$= \frac{1}{2}(n+1)(n+2)$$
 [algebra]
$$= \frac{1}{2}(n+1)(n+1+1).$$

This is exactly what was to be shown. So, P(n+1) is T.

3: By induction, P(n) is T for all $n \ge 1$.

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2)$$

(What we want)

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2)$$
 (What we want)

$$\sum_{i=1}^{n+1} i - (n+1) = \frac{1}{2}(n+1)(n+2) - (n+1)$$

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) \qquad \text{(What we want)}$$
$$\sum_{i=1}^{n+1} i - (n+1) = \frac{1}{2}(n+1)(n+2) - (n+1)$$
$$\sum_{i=1}^{n} i = \frac{1}{2}(n+1)(n+2) - (n+1)$$

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) \qquad \text{(What we want)}$$

$$\sum_{i=1}^{n+1} i - (n+1) = \frac{1}{2}(n+1)(n+2) - (n+1)$$

$$\sum_{i=1}^{n} i = \frac{1}{2}(n+1)(n+2) - (n+1)$$

$$\sum_{i=1}^{n} i = (n+1)(\frac{n}{2}+1-1)$$

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) \qquad \text{(What we want)}$$

$$\sum_{i=1}^{n+1} i - (n+1) = \frac{1}{2}(n+1)(n+2) - (n+1)$$

$$\sum_{i=1}^{n} i = \frac{1}{2}(n+1)(n+2) - (n+1)$$

$$\sum_{i=1}^{n} i = (n+1)(\frac{n}{2}+1-1)$$

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)\checkmark \qquad \text{(phew, nothing bad } \textcircled{O})$$

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2) \qquad \text{(What we want)}$$

$$\sum_{i=1}^{n+1} i - (n+1) = \frac{1}{2}(n+1)(n+2) - (n+1)$$

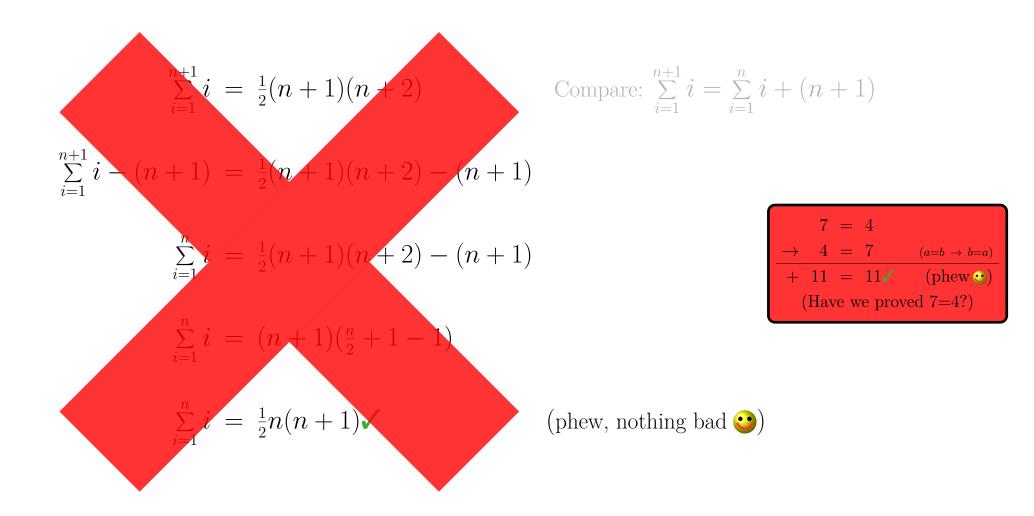
$$\sum_{i=1}^{n} i = \frac{1}{2}(n+1)(n+2) - (n+1)$$

$$\sum_{i=1}^{n} i = (n+1)(\frac{n}{2}+1-1)$$

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)\checkmark \qquad \text{(phew, nothing bad } \textcircled{\circ})$$

 $\frac{b=a)}{\mathbf{v} \odot)}$

VERY BAD! Induction Step



To start, you can **NEVER** assert (as though its true) what you are trying to prove.

$$S(n) = 1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = ?$$

Where's the GREAT Gauss when you need him?

$$S(n) = 1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = ?$$

n	1	2	3	4	5	6	7
S(n)	1	5	14	30	55	91	140

$$S(n) = 1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = ?$$

	n	1	2	3	4	5	6	7
	S(n)	1	5	14	30	55	91	140
1st difference	S'(n)		4	9	16	25	36	49

$$S(n) = 1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = ?$$

	n	1	2	3	4	5	6	7
	S(n)	1	5	14	30	55	91	140
1st difference	S'(n)		4	9	16	25	36	49
2nd difference	S''(n)			5	7	9	11	13

$$S(n) = 1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = ?$$

	n	1	2	3	4	5	6	7
	S(n)	1	5	14	30	55	91	140
1st difference	S'(n)		4	9	16	25	36	49
2nd difference	S''(n)			5	7	9	11	13
3rd difference	$S^{\prime\prime\prime}(n)$				2	2	2	2

3'rd difference constant is like 3'rd derivative constant.

$$S(n) = 1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = ?$$

	n	1	2	3	4	5	6	7
	S(n)	1	5	14	30	55	91	140
1st difference	S'(n)		4	9	16	25	36	49
2nd difference	S''(n)			5	7	9	11	13
3rd difference	$S^{\prime\prime\prime}(n)$				2	2	2	2

3'rd difference constant is like 3'rd derivative constant. So guess:

$$S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3.$$

$$S(n) = 1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = ?$$

	n	1	2	3	4	5	6	7
	S(n)	1	5	14	30	55	91	140
1st difference	S'(n)		4	9	16	25	36	49
2nd difference	S''(n)			5	7	9	11	13
3rd difference	$S^{\prime\prime\prime}(n)$				2	2	2	2

3'rd difference constant is like 3'rd derivative constant. So guess:

$$S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3.$$

$$a_0 + a_1 + a_2 + a_3 = 1$$

$$a_0 + 2a_1 + 4a_2 + 8a_3 = 5$$

$$S(n) = 1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = ?$$

	n	1	2	3	4	5	6	7
	S(n)	1	5	14	30	55	91	140
1st difference	S'(n)		4	9	16	25	36	49
2nd difference	S''(n)			5	7	9	11	13
3rd difference	$S^{\prime\prime\prime}(n)$				2	2	2	2

3'rd difference constant is like 3'rd derivative constant. So guess:

$$S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3.$$

$$a_0 + a_1 + a_2 + a_3 = a_0 + 2a_1 + 4a_2 + 8a_3 = a_0 + 3a_1 + 9a_2 + 27a_3 = a_0 + 3a_1 + 9a_2 + 27a_3 = a_0 + 4a_1 + 16a_2 + 64a_3 = a_0 + 4a_1 + 16a_2 + 6a_3 = a_0 + 6a_1 + 16a_2 + 6a_1 + 16a_2 + 6a_2 + 6a_3 = a_0 + 6a_1 + 16a_2 + 6a_1 + 16a_1 + 16a_2 + 6a_1 + 16a_1 + 16a_1$$

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

1: [Base case] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

1: [Base case] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

2: [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof.

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

1: [Base case] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

Proof. (By induction.) $P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1).$ 1: [Base case] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2$$
 [key step]

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

Proof. (By induction.) $P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1).$ 1: [Base case] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

2: **[Induction step]** Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof. Assume (induction hypothesis) P(n) is $T: \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$. Show P(n+1) is $T: \sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$.

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 \qquad [key step]$$
$$= \frac{1}{6} n(n+1)(2n+1) + (n+1)^2 \qquad [induction hypothesis P(n)]$$

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

Proof. (By induction.) $P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1).$ 1: [Base case] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

2: **[Induction step]** Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof. Assume (induction hypothesis) P(n) is $T: \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$. Show P(n+1) is $T: \sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$.

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 \qquad [key step]$$

$$= \frac{1}{6} n(n+1)(2n+1) + (n+1)^2 \qquad [induction hypothesis P(n)]$$

$$= \frac{1}{6} (n+1)(n+2)(2n+3) \qquad [algebra]$$

This is exactly what was to be shown. So, P(n+1) is T.

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

Proof. (By induction.) $P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1).$ 1: [Base case] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

2: **[Induction step]** Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof. Assume (induction hypothesis) P(n) is $T: \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$. Show P(n+1) is $T: \sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$.

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 \qquad [key step]$$

$$= \frac{1}{6} n(n+1)(2n+1) + (n+1)^2 \qquad [induction hypothesis P(n)]$$

$$= \frac{1}{6} (n+1)(n+2)(2n+3) \qquad [algebra]$$

This is exactly what was to be shown. So, P(n+1) is T.

3: By induction, P(n) is T for all $n \ge 1$.

Induction Gone Wrong

 $\boxed{P(1)} \to P(2) \to P(3) \to P(4) \to P(5) \to P(6) \to P(7) \to \cdots$

$$P(1) \to P(2) \to P(3) \to P(4) \to P(5) \to P(6) \to P(7) \to \cdots$$

$$\begin{split} P(1) &\to P(2) \to P(3) \to P(4) \to \cdots \\ \text{False: } P(n) : n \leq n+1 \text{ for all } n \geq 1. \\ n \leq n+1 \to n+1 \leq n+2 \quad \text{therefore} \quad P(n) \to P(n+1). \end{split}$$

$$P(1) \to P(2) \to P(3) \to P(4) \to P(5) \to P(6) \to P(7) \to \cdots$$

$$\begin{split} P(1) &\to P(2) \to P(3) \to P(4) \to \cdots \\ \text{False: } P(n) : n \leq n+1 \text{ for all } n \geq 1. \\ n \leq n+1 \to n+1 \leq n+2 \quad \text{therefore} \quad P(n) \to P(n+1). \end{split}$$

[Every link is proved, but without the base case, you have *nothing*.]

$$P(1) \to P(2) \to P(3) \to P(4) \to P(5) \to P(6) \to P(7) \to \cdots$$

$$\begin{split} P(1) &\to P(2) \to P(3) \to P(4) \to \cdots \\ \text{False: } P(n) : n \leq n+1 \text{ for all } n \geq 1. \\ n \leq n+1 \to n+1 \leq n+2 \quad \text{therefore} \quad P(n) \to P(n+1). \end{split}$$

[Every link is proved, but without the base case, you have *nothing*.]

Broken Chain.

$$P(1) \qquad P(2) \to P(3) \to P(4) \to \cdots$$

False: P(n): "all balls in any set of n balls are the same color." **Induction step.** Suppose any set of n balls have the same color. Consider any set of n+1 balls $b_1, b_2, \ldots, b_n, b_{n+1}$. So, b_1, b_2, \ldots, b_n have the same color and $b_2, b_3, \ldots, b_{n+1}$ have the same color. Thus $b_1, b_2, b_3, \ldots, b_{n+1}$ have the same color. $P(n) \rightarrow P(n+1)$?

$$P(1) \to P(2) \to P(3) \to P(4) \to P(5) \to P(6) \to P(7) \to \cdots$$

$$\begin{split} P(1) &\to P(2) \to P(3) \to P(4) \to \cdots \\ \text{False: } P(n) : n \leq n+1 \text{ for all } n \geq 1. \\ n \leq n+1 \to n+1 \leq n+2 \quad \text{therefore} \quad P(n) \to P(n+1). \end{split}$$

[Every link is proved, but without the base case, you have *nothing*.]

Broken Chain.

$$P(1) \quad P(2) \to P(3) \to P(4) \to \cdots$$

False: P(n): "all balls in any set of n balls are the same color." **Induction step.** Suppose any set of n balls have the same color. Consider any set of n+1 balls $b_1, b_2, \ldots, b_n, b_{n+1}$. So, b_1, b_2, \ldots, b_n have the same color and $b_2, b_3, \ldots, b_{n+1}$ have the same color. Thus $b_1, b_2, b_3, \ldots, b_{n+1}$ have the same color.

$$P(n) \rightarrow P(n+1)?$$

[A single broken link kills the entire proof.]

Any non-empty set of natural numbers has a minimum element.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let P(1) and $P(n) \rightarrow P(n+1)$ be T.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let P(1) and $P(n) \rightarrow P(n+1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let P(1) and $P(n) \rightarrow P(n+1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).

$$P(1) \to P(2) \to P(3) \to P(4) \to \cdots \to P(n_* - 1) \to P(n_*) \to \cdots$$

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let P(1) and $P(n) \rightarrow P(n+1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).

$$P(1) \to P(2) \to P(3) \to P(4) \to \cdots \to P(n_* - 1) \to P(n_*) \to \cdots$$

Now how can $P(n_* - 1) \to P(n_*)$ be T?

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let P(1) and $P(n) \rightarrow P(n+1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).

$$P(1) \to P(2) \to P(3) \to P(4) \to \cdots \to P(n_* - 1) \to P(n_*) \to \cdots$$

Now how can $P(n_* - 1) \to P(n_*)$ be T?

Any induction proof can also be done using well-ordering.

Proof. [Induction] $P(n) : n < 2^n$.

Proof. [Induction] $P(n) : n < 2^n$. Base case. P(1) is T because $1 < 2^1$.

Proof. [Induction] $P(n) : n < 2^n$.

Base case. P(1) is T because $1 < 2^1$.

Induction. Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

 $n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}.$

Proof. [Induction] $P(n) : n < 2^n$. Base case. P(1) is T because $1 < 2^1$. Induction. Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

 $n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}.$

Therefore P(n+1) is T and, by induction, P(n) is T for $n \ge 1$.

Proof. [Induction] $P(n) : n < 2^n$. **Base case.** P(1) is T because $1 < 2^1$. **Induction.** Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

 $n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}.$

Therefore P(n+1) is T and, by induction, P(n) is T for $n \ge 1$.

Proof. [Well-ordering] Proof by **contradiction**.

Proof. [Induction] $P(n) : n < 2^n$. Base case. P(1) is T because $1 < 2^1$. Induction. Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

 $n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}.$

Therefore P(n+1) is T and, by induction, P(n) is T for $n \ge 1$.

Proof. [Well-ordering] Proof by contradiction. Assume that there is an $n \ge 1$ for which $n \ge 2^n$.

Proof. [Induction] $P(n) : n < 2^n$. **Base case.** P(1) is T because $1 < 2^1$. **Induction.** Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n + 1 < 2^{n+1}$.

 $n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}.$

Therefore P(n+1) is T and, by induction, P(n) is T for $n \ge 1$.

Proof. [Well-ordering] Proof by contradiction. Assume that there is an $n \ge 1$ for which $n \ge 2^n$. Let n_* be the **minimum** such **counter-example**, $n_* \ge 2^{n_*}$. \leftarrow well ordering

Proof. [Induction] $P(n) : n < 2^n$. **Base case.** P(1) is T because $1 < 2^1$. **Induction.** Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

 $n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}.$

Therefore P(n+1) is T and, by induction, P(n) is T for $n \ge 1$.

Proof. [Well-ordering] Proof by contradiction. Assume that there is an $n \ge 1$ for which $n \ge 2^n$. Let n_* be the **minimum** such **counter-example**, $n_* \ge 2^{n_*}$. \leftarrow well ordering Since $1 < 2^1$, $n_* \ge 2$. Since $n_* \ge 2$, $\frac{1}{2}n_* \ge 1$ and so,

$$n_* - 1 \ge n_* - \frac{1}{2}n_* = \frac{1}{2}n_* \ge \frac{1}{2} \times 2^{n_*} = 2^{n_* - 1}.$$

Proof. [Induction] $P(n) : n < 2^n$. **Base case.** P(1) is T because $1 < 2^1$. **Induction.** Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

 $n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}.$

Therefore P(n+1) is T and, by induction, P(n) is T for $n \ge 1$.

Proof. [Well-ordering] Proof by contradiction. Assume that there is an $n \ge 1$ for which $n \ge 2^n$. Let n_* be the **minimum** such **counter-example**, $n_* \ge 2^{n_*}$. \leftarrow well ordering Since $1 < 2^1$, $n_* \ge 2$. Since $n_* \ge 2$, $\frac{1}{2}n_* \ge 1$ and so,

$$n_* - 1 \ge n_* - \frac{1}{2}n_* = \frac{1}{2}n_* \ge \frac{1}{2} \times 2^{n_*} = 2^{n_* - 1}.$$

So, $n_* - 1$ is a *smaller* counter example. **FISHY!**

Proof. [Induction] $P(n) : n < 2^n$. Base case. P(1) is T because $1 < 2^1$. Induction. Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

 $n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}.$

Therefore P(n+1) is T and, by induction, P(n) is T for $n \ge 1$.

Proof. [Well-ordering] Proof by contradiction. Assume that there is an $n \ge 1$ for which $n \ge 2^n$. Let n_* be the **minimum** such **counter-example**, $n_* \ge 2^{n_*}$. \leftarrow well ordering Since $1 < 2^1$, $n_* \ge 2$. Since $n_* \ge 2$, $\frac{1}{2}n_* \ge 1$ and so,

$$n_* - 1 \ge n_* - \frac{1}{2}n_* = \frac{1}{2}n_* \ge \frac{1}{2} \times 2^{n_*} = 2^{n_* - 1}.$$

So, $n_* - 1$ is a *smaller* counter example. **FISHY!**

The **method of minimum counter-example** is very powerful.

Challenge. A circle has 2n distinct points, n are red and n are blue. Prove that one can start at a blue point and move clockwise always having passed as many blue points as red.

Practice. All exercises and pop-quizzes in chapter 5.Strengthen. Problems in chapter 5.