Foundations of Computer Science
Lecture 5

Induction: Proving “For All ...”7

Induction: What and Why?
Induction: Good, Bad and Ugly
Induction, Well-Ordering and the Smallest Counter-Example




Last Time

@ Proving “IF ..., THEN ..."

© Proving “...IF AND ONLY IF ...".

© Proof patterns:

» direct proof;

* If x,y € Q, then x +y € Q.
* If 4* — 1 is divisible by 3, then 4**1 — 1 is divisible by 3.

» contraposition;
* If r is irrational, then 4/r is irrational.
* If 22 is even, then z is even.

» contradiction.

* +/2 is irrational.
* a® —4b # 2.
* 2yn+1/vn+1<2yn+1.




Today: Induction, Proving “.. . for all ...”

@ What is induction.

© Why do we need it?

© The principle of induction. Toppling the dominos. The induction template.

Examples.
(% ) P

@ [nduction, Well-Ordering and the Smallest Counter-Example.
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Dispensing Postage Using b¢ and 7¢ Stamps

19¢ 20¢ o 2e | 29¢  23¢
775 | 5555 | TAT | 5557 7

Perseverance is a virtue when tinkering.

19¢ | 20¢ | 2le | 2 | 23¢ | 24¢ | 25%¢ | 26¢ | 27e | 28
775 | 5555 | TAT | 5557 | - | 1755 | 55555 | TTT5 | 55557 | TIIT

Can every postage greater than 23¢ can be dispensed?

Intuitively yes.

Induction formalizes that intuition.




Why Do We Need Induction?

Predicate Claim
(i) P(n)= “5e¢ and 7¢ stamps can make postage n.” Vn > 24: P(n)
(ii) P(n) = “n*—n+41 a prime number.” Vn >1: P(n)

(ili) P(n) = “4" — 1 is divisible by 3 Vn>1: P(n)
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Why Do We Need Induction?

Predicate Claim
(i) P(n)= “5e¢ and 7¢ stamps can make postage n.” Vn > 24 : P(n)
(ii) P(n) = “n*—n+41 a prime number.” Vn >1: P(n)
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How can we prove something for all n > 17 Verification takes too long!
Prove for general n. Can be tricky:.
Induction. Systematic.
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Is 4" — 1 Divisible by 3 for n > 17

P(n) = “4" — 1 is divisible by 3.

We proved:
IF 4" — 1 is divisible by 3, THEN 4" — 1 is divisible by 3.

P(n) P(nv+1)

Proof. 'We prove the claim using a direct proof.
1: Assume that P(n) is T, that is 4" — 1 is divisible by 3.
2: This means that 4" — 1 = 3k for an integer k, or that 4" = 3k + 1.
3: Observe that 4"t = 4 .47 and since 4" = 3k + 1, it follows that

4l = 4. (3k + 1) = 12k + 4.

Therefore 4" — 1 = 12k + 3 = 3(4k + 1) is a multiple of 3 (4k + 1 is an integer).

4: Since 4"*! — 1 is a multiple of 3, we have shown that 4""! — 1 is divisible by 3.
5: Therefore, P(n + 1) is T. N
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Is 4" — 1 Divisible by 3 for n > 17

P(n) = “4" — 1 is divisible by 3.

We proved:
IF 4" — 1 is divisible by 3, THEN 4" — 1 is divisible by 3.

P(n) P(nv+1)

Proof. We prove the claim using a direct proof.
: Assume that P(n) is T, that is 4™ — 1 is divisible by 3.
This means that 4" — 1 = 3k for an integer k, or that 4" = 3k + 1.
3: Observe that 4"t = 4 .47 and since 4" = 3k + 1, it follows that
4rtt = 4. 3k +1) = 12k + 4.

Therefore 4" — 1 = 12k + 3 = 3(4k + 1) is a multiple of 3 (4k + 1 is an integer).
4: Since 4"*! — 1 is a multiple of 3, we have shown that 4""! — 1 is divisible by 3.
5: Therefore, P(n + 1) is T. =

N

We proved:
P(n) — P(n+1)

What use is this? (Reasoning in the absense of facts.)
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4" — 1 is Divisible by 3 for n > 1

P(n) = “4" — 1 is divisible by 3.

P(n) — P(n+1)

NEW INFORMATION:
From tinkering we know that P(1) is T: 4' —3 =3 < divisible by 3 (new fact)
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By Induction, 4" — 1 is Divisible by 3 forn > 1

P(n) = “4" — 1 is divisible by 3.

Q P(l)isT.V/
Q@ Pn)— Pn+1)isT./

By induction, P(n) is T for all n > 1.




By Induction, 4" — 1 is Divisible by 3 for n > 1

P(n) = “4" — 1 is divisible by 3.

Q@ P(1)is T.v/

By induction, P(n) is T for all n > 1.
© P(n) = P(n+1)is T./ y induction, P(n) is T for all n >

P(1)| = P(2) = P(3) = P(4) = P(5) = - --

osaon e |

P(n) form an infinite chain of dominos.
Topple the first and they all fall.

Practice. Exercise 5.2.




Induction Template

Induction to prove: Vn > 1: P(n).

Proof. We use induction to prove Vn > 1: P(n).
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must use P(n) here must use =P (n + 1) here
Show P(n+1) is T. Show P(n) is F.
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@ Prove the implication P(n) — P(n+ 1) for a general n > 1. (Often direct proof)
Why is this easier than just proving P(n) for general n?
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Induction Template

Induction to prove: Vn > 1: P(n).
Proof. We use induction to prove Vn > 1: P(n).

1. Show that P(1) is T. (“simple” verification.) [base case]
2: Show P(n) — P(n + 1) forn > 1 [induction step]
Prove the implication using direct proof or contraposition.
Direct Contraposition
Assume P(n) is T. Assume P(n+1) is F.
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@ Prove the implication P(n) — P(n+ 1) for a general n > 1. (Often direct proof)
Why is this easier than just proving P(n) for general n?

@ Assume P(n) is T, and reformulate it mathematically.
@ Somewhere in the proof you must use P(n) to prove P(n + 1).

o End with a statement that P(n + 1) is T.
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Proof. (By Induction) P(n) : éli = n(n+1).
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Proof. (By Induction) P(n) : élz' = n(n+1).
1: [Base case] P(1) claims that 1 =5 x 1 x (14 1), which is clearly T.

2: [Induction step] We show P(n) — P(n + 1) for all n > 1, using a direct proof.
Assume (induction hypothesis) P(n) is T: ! i = ;n(n+ 1).
Show P(n+1) is T: 1" i =(n 4+ 1)(n + 1 4+ 1).

]

n+1 no,

; 1 = -gl 1+ (n+1) [key step]
= %n(n +1)+(n+1) [induction hypothesis P(n)]
— %(n +1)(n+2) [algebra]
— Yn+1)n+1+1)

This is exactly what was to be shown. So, P(n+ 1) is T.

3: By induction, P(n) is T for all n > 1.
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nili — %(n + 1)(” + 2) (What we want)
1=1

n+1
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Yi=(n+1)GE+1-1)
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jgz = (n+1)(n+2) (What we want)
Si—(n+1) = n+D)n+2) - (n+1)

éz = '+ D)(n+2) - (n+1)

é¢:<n+n@+1—n

i o= ln(n+1)/ (phew, nothing bad &)

=1




VERY BAD! Induction Step

n-+1 n

Compare: > 1= Y i+ (n+1)
i=1 i=1

(phew, nothing bad &)

To start, you can NEVER assert (as though its true) what you are trying to prove.
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Sum of Integer Squares

Sn)=1"+22+3F+---+n—-17+n" = 7

Replace Gauss with TINKERING: method of differences.

S(n) I 5 14 30 55 91 140

Ist difference  S'(n) 4 9 16 25 36 49
2nd difference  S"(n) 5 7 9 11 13
3rd difference  S"(n) 2 2 2 2

3'rd difference constant is like 3'rd derivative constant. So guess:

S(n) = ag+ an + agn® + azn’. aw + @ + a + a
ay + 2a; + 4day + 8as
ap + 3&1 + 9&2 + 27&3
ag + 4CL1 + 16&2 + 64(1,3

1 | I ||
—_
S

1 1 1
ap=0, a1 =5, ax =3, a3 =3



Sum of Integer Squares

Sn)=1"+2"+3F+---+(n—17+n"

?

Replace Gauss with TINKERING: method of differences.

n 1 2 3 4 5 6 7
S(n) 1 5 14 30 55 91 140
Ist difference  S'(n) 4 9 16 25 36 49
2nd difference  S"(n) 5 7 9 11 13
3rd difference  S"(n) 2 2 2 2
3'rd difference constant is like 3'rd derivative constant. So guess:

S(n) = ag+ an + agn® + azn’. aw + @ + a + a
ay + 2a; + day + 8as
ap + 3a1 + 9ay + 27as
ay + 4CL1 + 16&2 + 64(1,3

n\12345678

10

it dn?+ 01 5 14 30 55 91 140 204 285 385

1

ap =0, a1 =g, az

1

= 9 as



Proof: sm) =y = In+in*+1in’=In(n+1)2n+1)

1=1

Proof. (By induction.) P(n) : fj ‘' =tn(n+1)2n+1).
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Proof. (By induction.) P(n) : = n(n+1)2n +1).
. x 1 x2x 3, which is clearly T.

1. [Base case| P(1), claims that 1=

2: [Induction step| Show P(n) — P(n+ 1) for all n > 1. Direct proof.
Assume (induction hypothesis) P(n) is T: = i* = :n(n+1)(2n +1).
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i’ 2 + (n + 1)2 [key step]




Proof: sm) = gl =24 1n® =n(n+1)(2n +1)

Proof. (By induction.) P(n) : = n(n+1)2n +1).
1. [Base case| P(1), claims that =X

X 1 x 2 x 3, which is clearly T.

2: [Induction step| Show P(n) — P(n+ 1) for all n > 1. Direct proof.
Assume (induction hypothesis) P(n) is T: = i* = :n(n+1)(2n +1).
Show P(n+1) is T: =" * = :(n+ 1)(n 4+ 2)(2n + 3).

n+1

Z — i >+ (n+ 1) [key step]
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1. [Base case| P(1), claims that 1 =+ x1x2x 3, which is clearly T.

Proof. (By induction.) P(n) : = n(n+1)2n +1).
%
2: [Induction step| Show P(n) — P(n+ 1) for all n > 1. Direct proof.
Assume (induction hypothesis) P(n) is T: = i* = :n(n+1)(2n +1).
Show P(n+1) is T: =" * = :(n+ 1)(n 4+ 2)(2n + 3).
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Proof: sm) = gl =24 1n® =n(n+1)(2n +1)

1. [Base case| P(1), claims that 1 =+ x1x2x 3, which is clearly T.

Proof. (By induction.) P(n) : = n(n+1)2n +1).
é
2: [Induction step| Show P(n) — P(n+ 1) for all n > 1. Direct proof.
Assume (induction hypothesis) P(n) is T: = i* = :n(n+1)(2n +1).
Show P(n+1) is T: =" * = :(n+ 1)(n 4+ 2)(2n + 3).

nil 1t = i:l >+ (n+ 1) [key step]
— %n(n +1)2n+ 1)+ (n+1)? [induction hypothesis P(n)]
— %(n + 1)(n+2)(2n + 3) [algebra]

This is exactly what was to be shown. So, P(n+ 1) is T.

3: By induction, P(n) is T for all n > 1.
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P(1)| = P(2) — P(3) = P(4) — P(5) = P(6) — P(7) — - --

[Every link is proved, but without the base case, you have nothing.|

Broken Chain.

P(1)

P2)— P3)— P4) — ---

False: P(n): “all balls in any set of n balls are the same color.”
Induction step. Suppose any set of n balls have the same color. Consider any set of

n+ 1 balls by, bo, ..., by, byi1. S0, by, bo, ..., b, have the same color and by, b, ..., b,11
have the same color. Thus by, bs, b3, . . ., b,+1 have the same color.

P(n) — P(n+1)?



Induction Gone Wrong

P(1)| = P(2) — P(3) — P(4) — P(5) — P(6) — P(7) — - --

No Base Case.
P(1) - P(2) » P(3) —» P(4) — - --
False: P(n):n <n+1foralln>1.
n<n+1l—=-n+1<n+2  therefore  P(n)— Pn+1).

[Every link is proved, but without the base case, you have nothing.]

Broken Chain.

P(1)] P(2)— P(3) — P(4) — ---

False: P(n) : “all balls in any set of n balls are the same color.”
Induction step. Suppose any set of n balls have the same color. Consider any set of
n+ 1 balls by, 0o, ...,b,,b,11. S0, b1,b9, ..., b, have the same color and by, b3, ..., 0,11

/ Y

have the same color. Thus by, by, b3, . . ., b,+1 have the same color.

/ /

P(n) — P(n+1)?

|A single broken link kills the entire proof.]
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Well-ordering Principle.
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Example Well-Ordering Proof: n < 2" for n > 1

Proof. |Induction| P(n) : n < 2.
Base case. P(1) is T because 1 < 2'.
Induction. Assume P(n)is T: n < 2". and show P(n+1)is T: n+ 1 < 2",

n+1<n+n=2n<2x2"=22""

Therefore P(n + 1) is T and, by induction, P(n) is T for n > 1.

Proof. [Well-ordering] Proof by contradiction.

Assume that there is an n > 1 for which n > 2".

Let n, be the minimum such counter-example, n, > 2™, < well ordering
Since 1 < 2', n, > 2. Since n, > 2, ;n, > 1 and so,

Nye—1

n.—1>n,—n,=mn, >;x2" =2
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Proof. [Well-ordering] Proof by contradiction.
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Example Well-Ordering Proof: n < 2" for n > 1

Proof. |Induction| P(n) : n < 2.
Base case. P(1) is T because 1 < 2'.
Induction. Assume P(n)is T: n < 2". and show P(n+1)is T: n+ 1 < 2",

n+1<n+n=2n<2x2"=22""

Therefore P(n + 1) is T and, by induction, P(n) is T for n > 1.

Proof. [Well-ordering] Proof by contradiction.

Assume that there is an n > 1 for which n > 2".

Let n, be the minimum such counter-example, n, > 2™, < well ordering
Since 1 < 2 n, > 2. Since n, > 2. %n > 1 and so,

n,—1>n, — %n — %n* > -

DO [
X
S
|
N2

\

So, n, — 1 is a smaller counter example. FISHY'!




Getting Good at Induction

TINKER

PRACTICE

Challenge. A circle has 2n distinct points, n are red and n are blue.
Prove that one can start at a blue point and move clockwise always
having passed as many blue points as red.

Practice. All exercises and pop-quizzes in chapter 5.
Strengthen. Problems in chapter 5.

8 Crcator: Mallk MogdonTsmall Induction: Proving “For All ... % 18 /18
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