Foundations of Computer Science
Lecture 6

Strong Induction

Strengthening the Induction Hypothesis
Strong Induction
Many Flavors of Induction
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Today: Twists on Induction

@ Solving Harder Problems with Induction
@ T % <2yn

© Strengthening the Induction Hypothesis
@ n? <2
@ [-tiling.

© Many Flavors of Induction

@ Leaping Induction
@ Postage; n? < 27

@ Strong Induction
@ Fundamental Theorem of Arithmetic
@ Games of Strategy
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A Hard Problem: £ 1< 2n

Proof. P(n):si, = <2y/n.
1: [Base case] P(1) claims that 1 < 2 x /1, which is clearly T.

2: [Induction step| Show P(n) — P(n+ 1) for all n > 1 (direct proof)
no 1
Assume (induction hypothesis) P(n) is T: > 7 < 2v/1.
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A Hard Problem: 1< 9p
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Proof. P(n):si, = <2y/n.
1: [Base case] P(1) claims that 1 < 2 x /1, which is clearly T.

2: [Induction step| Show P(n) — P(n+ 1) for all n > 1 (direct proof)
no 1
Assume (induction hypothesis) P(n) is T: > 7 < 2v/1.
=141

Show P(n +1) is T: nil— < 2vn+1
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< 2vn—+1

So, P(n+1)is T

3: By induction, P(n) is T Vn > 1.
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Proving Stronger Claims

Induction Step. Must use n* < 2" to show (n + 1)* < 2"+

?

What to do with the 2n + 17
Would be fine if 2n + 1 < 27,

With induction, it can be easier to prove a stronger claim.
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Strengthen the Claim: Q(n) Implies P(n)

Qn): (i) n* < 2" AND (1) 2n 4+ 1 < 2"

Q)] = Q5) = Q6) = Q7) = Q(S) — Q(9) = -

Proof. Q(n): (i) n* < 2" AND (47) 2n +1 < 2™,
1. [Base case] Q(4) claims (i) 4 < 2* AND (i) 2 x 4+ 1 < 2% Both clearly T.

2: [Induction step]| Show Q(n) — Q(n + 1) for n > 4 (direct proof).
Assume (induction hypothesis) Q(n) is T: (i) n* < 2" AND (i) 2n + 1 < 2™,
Show Q(n + 1) is T: (i) (n+ 1) < 2" AND (it) 2(n + 1) + 1 < 2"
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So, Q(n+1)is T.

3: By induction, @Q(n) is T Vn > 4.




L-Tile Land

Can you tile a 2" x 2" patio missing a center square. You have only mll — tiles?




L-Tile Land

Can you tile a 2" x 2" patio missing a center square. You have only mll — tiles?

TINKER!

T




L-Tile Land

Can you tile a 2" x 2" patio missing a center square. You have only mll — tiles?

TINKER!

- H




L-Tile Land

Can you tile a 2" x 2" patio missing a center square. You have only mll — tiles?

TINKER!

" H




L-Tile Land

Can you tile a 2" x 2" patio missing a center square. You have only mll — tiles?

TINKER!

" H




L-Tile Land

Can you tile a 2" x 2" patio missing a center square. You have only mll — tiles?

TINKER!

" H




L-Tile Land

Can you tile a 2" x 2" patio missing a center square. You have only mll — tiles?

TINKER!

" H




L-Tile Land

Can you tile a 2" x 2" patio missing a center square. You have only mll — tiles?

TINKER!

" H

P(n) : The 2" x 2" grid minus a center-square can be L-tiled.
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Problem. Corner squares are missing. P(n) can be used only if center-square is missing.




L-Tile Land: Induction Idea

Suppose P(n) is T. What about P(n + 1)?

The 2! x 2" patio can be decomposed into four 2" x 2" patios.

2" 2"

2n

2’[’L

>

Add first tile in the center.
Now each sub-patio has one
missing square.

2n

2’[’L

2" 2"

Problem. Corner squares are missing. P(n) can be used only if center-square is missing.

Solution. Strengthen claim to also include patios missing corner-squares.

Qn)

Strong Induction: 8 /19

(i) The 2" x 2" grid missing a center-square can be L-tiled; AND
(ii) The 2" x 2" grid missing a corner-square can be L-tiled.



L-Tile Land: Induction Proof of Stronger Claim

(i) The 2" x 2" grid missing a center-square can be L-tiled; AND

Assume Q(n) : (ii) The 2" x 2" grid missing a corner-square can be L-tiled.

Induction step: Must prove two things for Q(n + 1), namely (i) and (ii).
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(i) The 2" x 2" grid missing a center-square can be L-tiled; AND

Assume Q(n) : (ii) The 2" x 2" grid missing a corner-square can be L-tiled.

Induction step: Must prove two things for Q(n + 1), namely (i) and (ii).

(i) Center square missing. (ii) Corner square missing.
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use Q(n) with corner squares. use Q(n) with corner squares.




L-Tile Land: Induction Proof of Stronger Claim

(i) The 2" x 2" grid missing a center-square can be L-tiled; AND

Assume Q(n) : (ii) The 2" x 2" grid missing a corner-square can be L-tiled.

Induction step: Must prove two things for Q(n + 1), namely (i) and (ii).

(i) Center square missing. (ii) Corner square missing.
2" 2" 2" 2"
i
2" 2"
2" 2n
use Q(n) with corner squares. use Q(n) with corner squares.

Your task: Add base cases and complete the formal proof.

Exercise 6.4. What if the missing square is some random square? Strengthen further.
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A Tricky Induction Problem

P(n) n’ < 2", for n > 10. (Exercise 6.2)

Suppose P(n) is T. Consider P(n +2) : (n+2)* < 2727

(n+2)° = n"+6n*+12n+8
<n+n-n*+n? -n+n’ (n>10 — 6 <n; 12 <n? 8 <n?)

— 4n3 < 4 .97 = gnt2 (P(n) gives n® < 2")

P(n) — P(n+2).




A Tricky Induction Problem

P(n) n’ < 2", for n > 10. (Exercise 6.2)

Suppose P(n) is T. Consider P(n +2) : (n+2)* < 2727

P(n) — P(n+2).

Base case. P(10) : 10° < 2%/
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A Tricky Induction Problem

P(n) n’ < 2", for n > 10. (Exercise 6.2)

Suppose P(n) is T. Consider P(n +2) : (n+2)* < 2727

P(n) — P(n+2).

Base cases. P(10) : 10° < 2% and  P(11):11° <2/

/\«/\/\/\/\/\
P(10)| [P(11)|P(12) L
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Leaping Induction

Induction. One base case.
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Leaping Induction. More than one base case.
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Leaping Induction

Induction. One base case.

P(1)|— P(2) » P(3) » P(4) —» P(5) —

Leaping Induction. More than one base case.
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Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.
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3| 4 | - | 33| 34| 44 | 333 | 334 | 344 | 444

P(n) : Postage of n cents can be made using only 3¢ and 4¢ stamps.

P(n) — P(n + 3) (add a 3¢ stamp to n)
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Leaping Induction

Induction. One base case.

P(1)|— P(2) » P(3) » P(4) —» P(5) —

Leaping Induction. More than one base case.

/\4/\/\/\/\/\

P [P@) P(6) ) P(12) - - -
Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.
3¢ | 4¢ | 5¢ | 6c | 7e | 8¢ | 9 | 10¢ | 1le | 12¢ |
3| 4 | - | 33| 34| 44 | 333 | 334 | 344 | 444

P(n) : Postage of n cents can be made using only 3¢ and 4¢ stamps.

P(n) — P(n + 3) (add a 3¢ stamp to n)
Base cases: 6c¢, 7¢, Sc.

Practice. Exercise 6.6

8 Crcator: Mallk MogdonTsmail Strong Induction: 1119
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Much “Stronger” Induction Claim

Do smaller values of n help with 20167 Yes!

2016 = 32 x 63
P<32> A P<63> — P<2016> (like leaping induction)

Much Stronger Claim:

Q(n):2,3,...,n are all products of primes.

Qn)=PR2)ANPB)ANPA)A---NP(n).

Surprise! The much stronger claim is much easier to prove. Also, Q(n) — P(n).
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P(n) : n is a product of primes.
Qn)=PR2)ANPB)APA)A--- N P(n).

Proof. (By Induction that Q(n) is T for n > 2.)
1. [Base case] (1) claims that 2 is a product of primes, which is clearly T.

2: [Induction step| Show Q(n) — Q(n + 1) for n > 2 (direct proof).
Assume @Q(n) is T: each of 2,3,...,n are a product of primes.
Show Q(n + 1) is T: each of 2,3,...,n,n+ 1 is a product of primes.




Fundamental Theorem of Arithmetic: Proof of Part (i)

P(n) : n is a product of primes.
Qn)=PR2)ANPB)APA)A--- N P(n).

Proof. (By Induction that Q(n) is T for n > 2.)
1. [Base case] (1) claims that 2 is a product of primes, which is clearly T.

2: [Induction step| Show Q(n) — Q(n + 1) for n > 2 (direct proof).
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Every n > 1 Has a Binary Expansion

P(n) : Every n > 1 is a sum of distinct powers of two (its binary expansion).

22 =2l 492 4 91, (22inay = 1 0 1 1 0.)

Base Case: P(1)isT: 1 =2
Strong Induction: Assume P(1) A P(2) A--- A P(n) and prove P(n + 1).

If n is even, then n + 1 = 2 + binary expansion of n,
cg 23=20+2' 42242

22

If n is odd, then multiply each term in the expansion of J(n 4 1) by 2 to get n + 1.
.o 24 =2x (22 +2% =2 +2
12

Exercise. Give the formal proof by strong induction.
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The Many Applications of Induction

Tournament rankings, greedy or recursive algorithms, games of strategy, ....

Equal Pile Nim (old English/German: to steal or pilfer)

00000 Elazer 1 00000 Elaxer 2 (@) Elazer 1 O Elazer 2 O Elaxer 1 -
00000 o0 o0 (@) - wins -

P(n) : Player 2 can win the game that starts with n pennies in each row.

Equalization strategy:

00000 player 1 00000 player2 OO
00000 (o] oo

Player 2 can always return the game to smaller equal piles.
If Player 2 wins the smaller game, Player 2 wins the larger game. That’s strong induction!

Exercise. Give the full formal proof by strong induction.
Challenge. What about more than 2 piles. What about unequal piles. (Problem 6.20).

8 Crcator: Mallk MogdonTsmail Strong Induction: 17,19




Investigate Further in the Problems

Uniqueness of binary representation as a sum of distinct powers of 2:

Problem 6.27

General Nim:

Problem 6.39
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Checklist When Approaching an Induction Problem.

Are you trying to prove a “For all ...” claim?
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Checklist When Approaching an Induction Problem.

Are you trying to prove a “For all ...” claim?

Identify the claim P(n), especially the parameter n. Here is an example.
Prove: geometric mean < arithmetic mean. What is P(n)? What is n?

P(n) : geometric mean < arithmetic mean for every set of n positive numbers.

Identifying the right claim is important.

You may fail because you try to prove too much. Your P(n + 1) is too heavy a burden. You may
fail because you try to prove too little. Your P(n) is too weak a support. You must balance the
strength of your claim so that the support is just enough for the burden. — G. Polya (paraphrased).

Tinker. Does the claim hold for small n (n = 1,2,3,...)? These become base cases.

Tinker. Can you see why (say) P(5) follows from P(1), P(2), P(3), P(4)?
This is the crux of induction; to build up from smaller n to a larger n.

Determine the type of induction: try strong induction first.
Write out the skeleton of the proof to see exactly what you need to prove.
Determine and prove the base cases.

Prove P(n + 1) in the induction step. You must use the induction hypothesis.

Strong Induction: 19 /19
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