
Foundations of Computer Science
Lecture 6

Strong Induction
Strengthening the Induction Hypothesis

Strong Induction

Many Flavors of Induction



Last Time

1 Proving “for all”:
◮ P (n) : 4n − 1 is divisible by 3. ∀n : P (n)?

◮ P (n) :
n∑

i=1
i = 1

2
n(n + 1). ∀n : P (n)?

◮ P (n) :
n∑

i=1
i2 = 1

6n(n + 1)(2n + 1). ∀n : P (n)?

2 Induction.

3 Induction and Well-Ordering.
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Today: Twists on Induction

1 Solving Harder Problems with Induction
∑n

i=1
1√
i

≤ 2
√

n

2 Strengthening the Induction Hypothesis
n2 < 2n

L-tiling.

3 Many Flavors of Induction
Leaping Induction

Postage; n3 < 2n

Strong Induction
Fundamental Theorem of Arithmetic
Games of Strategy
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A Hard Problem: n∑

i=1

1√
i
≤ 2n

Proof. P (n) :
∑n

i=1
1√
i
≤ 2

√
n.

1: [Base case] P (1) claims that 1 ≤ 2 ×
√

1, which is clearly t.
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A Hard Problem: n∑

i=1

1√
i
≤ 2n

Proof. P (n) :
∑n

i=1
1√
i
≤ 2

√
n.

1: [Base case] P (1) claims that 1 ≤ 2 ×
√

1, which is clearly t.

2: [Induction step] Show P (n) → P (n + 1) for all n ≥ 1 (direct proof)

Assume (induction hypothesis) P (n) is t:
n∑

i=1

1√
i

≤ 2
√

n.

Show P (n + 1) is t:
n+1∑

i=1

1√
i

≤ 2
√

n + 1.
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A Hard Problem: n∑

i=1

1√
i
≤ 2n

Proof. P (n) :
∑n

i=1
1√
i
≤ 2

√
n.

1: [Base case] P (1) claims that 1 ≤ 2 ×
√

1, which is clearly t.

2: [Induction step] Show P (n) → P (n + 1) for all n ≥ 1 (direct proof)

Assume (induction hypothesis) P (n) is t:
n∑

i=1

1√
i

≤ 2
√

n.

Show P (n + 1) is t:
n+1∑

i=1

1√
i

≤ 2
√

n + 1.

n+1∑

i=1

1√
i

=
n∑

i=1

1√
i

+
1√

n + 1
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A Hard Problem: n∑

i=1

1√
i
≤ 2n

Proof. P (n) :
∑n

i=1
1√
i
≤ 2

√
n.

1: [Base case] P (1) claims that 1 ≤ 2 ×
√

1, which is clearly t.

2: [Induction step] Show P (n) → P (n + 1) for all n ≥ 1 (direct proof)

Assume (induction hypothesis) P (n) is t:
n∑

i=1

1√
i

≤ 2
√

n.

Show P (n + 1) is t:
n+1∑

i=1

1√
i

≤ 2
√

n + 1.

n+1∑

i=1

1√
i

=
n∑

i=1

1√
i

+
1√

n + 1

IH≤ 2
√

n +
1√

n + 1
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A Hard Problem: n∑

i=1

1√
i
≤ 2n

Proof. P (n) :
∑n

i=1
1√
i
≤ 2

√
n.

1: [Base case] P (1) claims that 1 ≤ 2 ×
√

1, which is clearly t.

2: [Induction step] Show P (n) → P (n + 1) for all n ≥ 1 (direct proof)

Assume (induction hypothesis) P (n) is t:
n∑

i=1

1√
i

≤ 2
√

n.

Show P (n + 1) is t:
n+1∑

i=1

1√
i

≤ 2
√

n + 1.

n+1∑

i=1

1√
i

=
n∑

i=1

1√
i

+
1√

n + 1

IH≤ 2
√

n +
1√

n + 1

Lemma. 2
√

n+1/
√

n + 1 ≤ 2
√

n + 1
Proof. By contradiction.

2
√

n + 1/
√

n + 1 > 2
√

n + 1

→ 2
√

n(n + 1) + 1 > 2(n + 1)

→ 4n(n + 1) > (2n + 1)2

→ 0 > 1 FISHY!
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A Hard Problem: n∑

i=1

1√
i
≤ 2n

Proof. P (n) :
∑n

i=1
1√
i
≤ 2

√
n.

1: [Base case] P (1) claims that 1 ≤ 2 ×
√

1, which is clearly t.

2: [Induction step] Show P (n) → P (n + 1) for all n ≥ 1 (direct proof)

Assume (induction hypothesis) P (n) is t:
n∑

i=1

1√
i

≤ 2
√

n.

Show P (n + 1) is t:
n+1∑

i=1

1√
i

≤ 2
√

n + 1.

n+1∑

i=1

1√
i

=
n∑

i=1

1√
i

+
1√

n + 1

IH≤ 2
√

n +
1√

n + 1

Lemma. 2
√

n+1/
√

n + 1 ≤ 2
√

n + 1
Proof. By contradiction.

2
√

n + 1/
√

n + 1 > 2
√

n + 1

→ 2
√

n(n + 1) + 1 > 2(n + 1)

→ 4n(n + 1) > (2n + 1)2

→ 0 > 1 FISHY!
(lemma)

≤ 2
√

n + 1

So, P (n + 1) is t.

3: By induction, P (n) is t ∀n ≥ 1.
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Proving Stronger Claims

n2 ≤ 2n for n ≥ 4.
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Proving Stronger Claims

n2 ≤ 2n for n ≥ 4.

Induction Step. Must use n2 ≤ 2n to show (n + 1)2 ≤ 2n+1.

(n + 1)2 = n2 + 2n + 1
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Proving Stronger Claims

n2 ≤ 2n for n ≥ 4.

Induction Step. Must use n2 ≤ 2n to show (n + 1)2 ≤ 2n+1.

(n + 1)2 = n2 + 2n + 1 ≤ 2n + 2n + 1

Creator: Malik Magdon-Ismail Strong Induction: 5 / 19 Strengthen the Claim →



Proving Stronger Claims

n2 ≤ 2n for n ≥ 4.

Induction Step. Must use n2 ≤ 2n to show (n + 1)2 ≤ 2n+1.

(n + 1)2 = n2 + 2n + 1 ≤ 2n + 2n + 1
?≤ 2n + 2n = 2n+1

What to do with the 2n + 1?

Would be fine if 2n + 1 ≤ 2n.
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Proving Stronger Claims

n2 ≤ 2n for n ≥ 4.

Induction Step. Must use n2 ≤ 2n to show (n + 1)2 ≤ 2n+1.

(n + 1)2 = n2 + 2n + 1 ≤ 2n + 2n + 1
?≤ 2n + 2n = 2n+1

What to do with the 2n + 1?

Would be fine if 2n + 1 ≤ 2n.

With induction, it can be easier to prove a stronger claim.
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Strengthen the Claim: Q(n) Implies P (n)

Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Q(4) → Q(5) → Q(6) → Q(7) → Q(8) → Q(9) → · · ·
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Strengthen the Claim: Q(n) Implies P (n)

Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Q(4) → Q(5) → Q(6) → Q(7) → Q(8) → Q(9) → · · ·

Proof. Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

1: [Base case] Q(4) claims (i) 42 ≤ 24
and (ii) 2 × 4 + 1 ≤ 24. Both clearly t.
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Strengthen the Claim: Q(n) Implies P (n)

Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Q(4) → Q(5) → Q(6) → Q(7) → Q(8) → Q(9) → · · ·

Proof. Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

1: [Base case] Q(4) claims (i) 42 ≤ 24
and (ii) 2 × 4 + 1 ≤ 24. Both clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 4 (direct proof).
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Strengthen the Claim: Q(n) Implies P (n)

Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Q(4) → Q(5) → Q(6) → Q(7) → Q(8) → Q(9) → · · ·

Proof. Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

1: [Base case] Q(4) claims (i) 42 ≤ 24
and (ii) 2 × 4 + 1 ≤ 24. Both clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 4 (direct proof).

Assume (induction hypothesis) Q(n) is t: (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Show Q(n + 1) is t: (i) (n + 1)2 ≤ 2n+1
and (ii) 2(n + 1) + 1 ≤ 2n+1.
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Strengthen the Claim: Q(n) Implies P (n)

Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Q(4) → Q(5) → Q(6) → Q(7) → Q(8) → Q(9) → · · ·

Proof. Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

1: [Base case] Q(4) claims (i) 42 ≤ 24
and (ii) 2 × 4 + 1 ≤ 24. Both clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 4 (direct proof).

Assume (induction hypothesis) Q(n) is t: (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Show Q(n + 1) is t: (i) (n + 1)2 ≤ 2n+1
and (ii) 2(n + 1) + 1 ≤ 2n+1.

(i) (n + 1)2 = n2 + 2n + 1 ≤ 2n + 2n = 2n+1 ✓

(because from the induction hypothesis n2 ≤ 2n and 2n + 1 ≤ 2n)
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Strengthen the Claim: Q(n) Implies P (n)

Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Q(4) → Q(5) → Q(6) → Q(7) → Q(8) → Q(9) → · · ·

Proof. Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

1: [Base case] Q(4) claims (i) 42 ≤ 24
and (ii) 2 × 4 + 1 ≤ 24. Both clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 4 (direct proof).

Assume (induction hypothesis) Q(n) is t: (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Show Q(n + 1) is t: (i) (n + 1)2 ≤ 2n+1
and (ii) 2(n + 1) + 1 ≤ 2n+1.

(i) (n + 1)2 = n2 + 2n + 1 ≤ 2n + 2n = 2n+1 ✓

(because from the induction hypothesis n2 ≤ 2n and 2n + 1 ≤ 2n)

(ii) 2(n + 1) + 1 = 2 + 2n + 1 ≤ 2n + 2n = 2n+1 ✓

(because 2 ≤ 2n and from the induction hypothesis 2n + 1 ≤ 2n)
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Strengthen the Claim: Q(n) Implies P (n)

Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Q(4) → Q(5) → Q(6) → Q(7) → Q(8) → Q(9) → · · ·

Proof. Q(n) : (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

1: [Base case] Q(4) claims (i) 42 ≤ 24
and (ii) 2 × 4 + 1 ≤ 24. Both clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 4 (direct proof).

Assume (induction hypothesis) Q(n) is t: (i) n2 ≤ 2n
and (ii) 2n + 1 ≤ 2n.

Show Q(n + 1) is t: (i) (n + 1)2 ≤ 2n+1
and (ii) 2(n + 1) + 1 ≤ 2n+1.

(i) (n + 1)2 = n2 + 2n + 1 ≤ 2n + 2n = 2n+1 ✓

(because from the induction hypothesis n2 ≤ 2n and 2n + 1 ≤ 2n)

(ii) 2(n + 1) + 1 = 2 + 2n + 1 ≤ 2n + 2n = 2n+1 ✓

(because 2 ≤ 2n and from the induction hypothesis 2n + 1 ≤ 2n)

So, Q(n + 1) is t.

3: By induction, Q(n) is t ∀n ≥ 4.
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L-Tile Land

Can you tile a 2n × 2n patio missing a center square. You have only – tiles?
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L-Tile Land

Can you tile a 2n × 2n patio missing a center square. You have only – tiles?

TINKER!
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TINKER!



L-Tile Land
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TINKER!



L-Tile Land

Can you tile a 2n × 2n patio missing a center square. You have only – tiles?

TINKER!



L-Tile Land

Can you tile a 2n × 2n patio missing a center square. You have only – tiles?

TINKER!



L-Tile Land

Can you tile a 2n × 2n patio missing a center square. You have only – tiles?

TINKER!



L-Tile Land

Can you tile a 2n × 2n patio missing a center square. You have only – tiles?

TINKER!

P (n) : The 2n × 2n grid minus a center-square can be L-tiled.
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L-Tile Land: Induction Idea

Suppose P (n) is t. What about P (n + 1)?
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L-Tile Land: Induction Idea

Suppose P (n) is t. What about P (n + 1)?

The 2n+1 × 2n+1 patio can be decomposed into four 2n × 2n patios.

2n2n

2n

2n
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L-Tile Land: Induction Idea

Suppose P (n) is t. What about P (n + 1)?

The 2n+1 × 2n+1 patio can be decomposed into four 2n × 2n patios.

2n2n

2n

2n

Add first tile in the center.
Now each sub-patio has one
missing square.

2n2n

2n

2n
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L-Tile Land: Induction Idea

Suppose P (n) is t. What about P (n + 1)?

The 2n+1 × 2n+1 patio can be decomposed into four 2n × 2n patios.

2n2n

2n

2n

Add first tile in the center.
Now each sub-patio has one
missing square.

2n2n

2n

2n

Problem. Corner squares are missing. P (n) can be used only if center-square is missing.

Creator: Malik Magdon-Ismail Strong Induction: 8 / 19 Stronger Claim →



L-Tile Land: Induction Idea

Suppose P (n) is t. What about P (n + 1)?

The 2n+1 × 2n+1 patio can be decomposed into four 2n × 2n patios.

2n2n

2n

2n

Add first tile in the center.
Now each sub-patio has one
missing square.

2n2n

2n

2n

Problem. Corner squares are missing. P (n) can be used only if center-square is missing.

Solution. Strengthen claim to also include patios missing corner-squares.

Q(n) :
(i)The 2n × 2n grid missing a center-square can be L-tiled; and

(ii)The 2n × 2n grid missing a corner-square can be L-tiled.
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L-Tile Land: Induction Proof of Stronger Claim

Assume Q(n) :
(i)The 2n × 2n grid missing a center-square can be L-tiled; and

(ii)The 2n × 2n grid missing a corner-square can be L-tiled.

Induction step: Must prove two things for Q(n + 1), namely (i) and (ii).
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L-Tile Land: Induction Proof of Stronger Claim

Assume Q(n) :
(i)The 2n × 2n grid missing a center-square can be L-tiled; and

(ii)The 2n × 2n grid missing a corner-square can be L-tiled.

Induction step: Must prove two things for Q(n + 1), namely (i) and (ii).

(i) Center square missing.

2n2n

2n

2n

use Q(n) with corner squares.
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L-Tile Land: Induction Proof of Stronger Claim

Assume Q(n) :
(i)The 2n × 2n grid missing a center-square can be L-tiled; and

(ii)The 2n × 2n grid missing a corner-square can be L-tiled.

Induction step: Must prove two things for Q(n + 1), namely (i) and (ii).

(i) Center square missing.

2n2n

2n

2n

use Q(n) with corner squares.

(ii) Corner square missing.

2n2n

2n

2n

use Q(n) with corner squares.
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L-Tile Land: Induction Proof of Stronger Claim

Assume Q(n) :
(i)The 2n × 2n grid missing a center-square can be L-tiled; and

(ii)The 2n × 2n grid missing a corner-square can be L-tiled.

Induction step: Must prove two things for Q(n + 1), namely (i) and (ii).

(i) Center square missing.

2n2n

2n

2n

use Q(n) with corner squares.

(ii) Corner square missing.

2n2n

2n

2n

use Q(n) with corner squares.

Your task: Add base cases and complete the formal proof.

Exercise 6.4. What if the missing square is some random square? Strengthen further.

Creator: Malik Magdon-Ismail Strong Induction: 9 / 19 Tricky Induction Problem →



A Tricky Induction Problem

P (n) : n3 < 2n, for n ≥ 10. (Exercise 6.2)
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A Tricky Induction Problem

P (n) : n3 < 2n, for n ≥ 10. (Exercise 6.2)

Suppose P (n) is t. Consider P (n + 2) : (n + 2)3 < 2n+2?

(n + 2)3 = n3 + 6n2 + 12n + 8
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A Tricky Induction Problem

P (n) : n3 < 2n, for n ≥ 10. (Exercise 6.2)

Suppose P (n) is t. Consider P (n + 2) : (n + 2)3 < 2n+2?

(n + 2)3 = n3 + 6n2 + 12n + 8

< n3 + n · n2 + n
2 · n + n

3
(n ≥ 10 → 6 < n; 12 < n2; 8 < n3)
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A Tricky Induction Problem

P (n) : n3 < 2n, for n ≥ 10. (Exercise 6.2)

Suppose P (n) is t. Consider P (n + 2) : (n + 2)3 < 2n+2?

(n + 2)3 = n3 + 6n2 + 12n + 8

< n3 + n · n2 + n
2 · n + n

3
(n ≥ 10 → 6 < n; 12 < n2; 8 < n3)

= 4n3
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A Tricky Induction Problem

P (n) : n3 < 2n, for n ≥ 10. (Exercise 6.2)

Suppose P (n) is t. Consider P (n + 2) : (n + 2)3 < 2n+2?

(n + 2)3 = n3 + 6n2 + 12n + 8

< n3 + n · n2 + n
2 · n + n

3
(n ≥ 10 → 6 < n; 12 < n2; 8 < n3)

= 4n3 < 4 · 2n = 2n+2
(P (n) gives n3 < 2n)
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A Tricky Induction Problem

P (n) : n3 < 2n, for n ≥ 10. (Exercise 6.2)

Suppose P (n) is t. Consider P (n + 2) : (n + 2)3 < 2n+2?

(n + 2)3 = n3 + 6n2 + 12n + 8

< n3 + n · n2 + n
2 · n + n

3
(n ≥ 10 → 6 < n; 12 < n2; 8 < n3)

= 4n3 < 4 · 2n = 2n+2
(P (n) gives n3 < 2n)

P (n) → P (n + 2).
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A Tricky Induction Problem

P (n) : n3 < 2n, for n ≥ 10. (Exercise 6.2)

Suppose P (n) is t. Consider P (n + 2) : (n + 2)3 < 2n+2?

(n + 2)3 = n3 + 6n2 + 12n + 8

< n3 + n · n2 + n
2 · n + n

3
(n ≥ 10 → 6 < n; 12 < n2; 8 < n3)

= 4n3 < 4 · 2n = 2n+2
(P (n) gives n3 < 2n)

P (n) → P (n + 2).

Base case. P (10) : 103 < 210✓

P (10) P (11) P (12) P (13) P (14) P (15) P (16) P (17) P (18) P (19) P (20) P (21) · · ·
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A Tricky Induction Problem

P (n) : n3 < 2n, for n ≥ 10. (Exercise 6.2)

Suppose P (n) is t. Consider P (n + 2) : (n + 2)3 < 2n+2?

(n + 2)3 = n3 + 6n2 + 12n + 8

< n3 + n · n2 + n
2 · n + n

3
(n ≥ 10 → 6 < n; 12 < n2; 8 < n3)

= 4n3 < 4 · 2n = 2n+2
(P (n) gives n3 < 2n)

P (n) → P (n + 2).

Base cases. P (10) : 103 < 210✓ and P (11) : 113 < 211✓

P (10) P (11) P (12) P (13) P (14) P (15) P (16) P (17) P (18) P (19) P (20) P (21) · · ·
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Leaping Induction

Induction. One base case.
P (1) → P (2) → P (3) → P (4) → P (5) → · · ·
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Leaping Induction

Induction. One base case.
P (1) → P (2) → P (3) → P (4) → P (5) → · · ·

Leaping Induction. More than one base case.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) · · ·
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Leaping Induction

Induction. One base case.
P (1) → P (2) → P (3) → P (4) → P (5) → · · ·

Leaping Induction. More than one base case.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) · · ·

Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢ 11¢ 12¢ · · ·
3 4 – 3,3 3,4 4,4 3,3,3 3,3,4 3,4,4 4,4,4 · · ·
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Leaping Induction

Induction. One base case.
P (1) → P (2) → P (3) → P (4) → P (5) → · · ·

Leaping Induction. More than one base case.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) · · ·

Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢ 11¢ 12¢ · · ·
3 4 – 3,3 3,4 4,4 3,3,3 3,3,4 3,4,4 4,4,4 · · ·

P (n) : Postage of n cents can be made using only 3¢ and 4¢ stamps.
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Leaping Induction

Induction. One base case.
P (1) → P (2) → P (3) → P (4) → P (5) → · · ·

Leaping Induction. More than one base case.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) · · ·

Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢ 11¢ 12¢ · · ·
3 4 – 3,3 3,4 4,4 3,3,3 3,3,4 3,4,4 4,4,4 · · ·

P (n) : Postage of n cents can be made using only 3¢ and 4¢ stamps.

P (n) → P (n + 3) (add a 3¢ stamp to n)

Creator: Malik Magdon-Ismail Strong Induction: 11 / 19 Fundamental Theorem of Arithmetic →



Leaping Induction

Induction. One base case.
P (1) → P (2) → P (3) → P (4) → P (5) → · · ·

Leaping Induction. More than one base case.

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) · · ·

Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢ 11¢ 12¢ · · ·
3 4 – 3,3 3,4 4,4 3,3,3 3,3,4 3,4,4 4,4,4 · · ·

P (n) : Postage of n cents can be made using only 3¢ and 4¢ stamps.

P (n) → P (n + 3) (add a 3¢ stamp to n)

Base cases: 6¢, 7¢, 8¢.

Practice. Exercise 6.6
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Fundamental Theorem of Arithmetic

2015 = 5 × 13 × 31.
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Fundamental Theorem of Arithmetic

2015 = 5 × 13 × 31.

Theorem. (The Primes P = {2, 3, 5, 7, 11, . . .} are the atoms for numbers.)

Suppose n ≥ 2. Then,
(i) n can be written as a product of factors all of which are prime.
(ii) The representation of n as a product of primes is unique (up to reordering).

P (n) : n is a product of primes.
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Fundamental Theorem of Arithmetic

2015 = 5 × 13 × 31.

Theorem. (The Primes P = {2, 3, 5, 7, 11, . . .} are the atoms for numbers.)

Suppose n ≥ 2. Then,
(i) n can be written as a product of factors all of which are prime.
(ii) The representation of n as a product of primes is unique (up to reordering).

P (n) : n is a product of primes.

What’s the first thing we do?
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Fundamental Theorem of Arithmetic

2015 = 5 × 13 × 31.

Theorem. (The Primes P = {2, 3, 5, 7, 11, . . .} are the atoms for numbers.)

Suppose n ≥ 2. Then,
(i) n can be written as a product of factors all of which are prime.
(ii) The representation of n as a product of primes is unique (up to reordering).

P (n) : n is a product of primes.

What’s the first thing we do? TINKER!

2016 = 2 × 2 × 2 × 2 × 2 × 3 × 3 × 7.
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Fundamental Theorem of Arithmetic

2015 = 5 × 13 × 31.

Theorem. (The Primes P = {2, 3, 5, 7, 11, . . .} are the atoms for numbers.)

Suppose n ≥ 2. Then,
(i) n can be written as a product of factors all of which are prime.
(ii) The representation of n as a product of primes is unique (up to reordering).

P (n) : n is a product of primes.

What’s the first thing we do? TINKER!

2016 = 2 × 2 × 2 × 2 × 2 × 3 × 3 × 7.

Wow! No similarity between the factors of 2015 and those of 2016.
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Fundamental Theorem of Arithmetic

2015 = 5 × 13 × 31.

Theorem. (The Primes P = {2, 3, 5, 7, 11, . . .} are the atoms for numbers.)

Suppose n ≥ 2. Then,
(i) n can be written as a product of factors all of which are prime.
(ii) The representation of n as a product of primes is unique (up to reordering).

P (n) : n is a product of primes.

What’s the first thing we do? TINKER!

2016 = 2 × 2 × 2 × 2 × 2 × 3 × 3 × 7.

Wow! No similarity between the factors of 2015 and those of 2016.

How will P (n) help us to prove P (n + 1)?
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Fundamental Theorem of Arithmetic

2015 = 5 × 13 × 31.

Theorem. (The Primes P = {2, 3, 5, 7, 11, . . .} are the atoms for numbers.)

Suppose n ≥ 2. Then,
(i) n can be written as a product of factors all of which are prime.
(ii) The representation of n as a product of primes is unique (up to reordering).

P (n) : n is a product of primes.

What’s the first thing we do? TINKER!

2016 = 2 × 2 × 2 × 2 × 2 × 3 × 3 × 7.

Wow! No similarity between the factors of 2015 and those of 2016.

How will P (n) help us to prove P (n + 1)?
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Much “Stronger” Induction Claim

Do smaller values of n help with 2016? Yes!

2016 = 32 × 63

P (32) ∧ P (63) → P (2016) (like leaping induction)
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Much “Stronger” Induction Claim

Do smaller values of n help with 2016? Yes!

2016 = 32 × 63

P (32) ∧ P (63) → P (2016) (like leaping induction)

Much Stronger Claim:

Q(n) : 2, 3, . . . , n are all products of primes.
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Much “Stronger” Induction Claim

Do smaller values of n help with 2016? Yes!

2016 = 32 × 63

P (32) ∧ P (63) → P (2016) (like leaping induction)

Much Stronger Claim:

Q(n) : 2, 3, . . . , n are all products of primes.

P (n) : n is a product of primes. (Compare)

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).
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Much “Stronger” Induction Claim

Do smaller values of n help with 2016? Yes!

2016 = 32 × 63

P (32) ∧ P (63) → P (2016) (like leaping induction)

Much Stronger Claim:

Q(n) : 2, 3, . . . , n are all products of primes.

P (n) : n is a product of primes. (Compare)

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Surprise! The much stronger claim is much easier to prove. Also, Q(n) → P (n).
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).

Assume Q(n) is t: each of 2, 3, . . . , n are a product of primes.

Show Q(n + 1) is t: each of 2, 3, . . . , n, n + 1 is a product of primes.
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).

Assume Q(n) is t: each of 2, 3, . . . , n are a product of primes.

Show Q(n + 1) is t: each of 2, 3, . . . , n, n + 1 is a product of primes.

Since we assumed Q(n), we already have that 2, 3, . . . , n are products of primes.
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).

Assume Q(n) is t: each of 2, 3, . . . , n are a product of primes.

Show Q(n + 1) is t: each of 2, 3, . . . , n, n + 1 is a product of primes.

Since we assumed Q(n), we already have that 2, 3, . . . , n are products of primes.
To prove Q(n + 1), we only need to prove n + 1 is a product of primes.
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).

Assume Q(n) is t: each of 2, 3, . . . , n are a product of primes.

Show Q(n + 1) is t: each of 2, 3, . . . , n, n + 1 is a product of primes.

Since we assumed Q(n), we already have that 2, 3, . . . , n are products of primes.
To prove Q(n + 1), we only need to prove n + 1 is a product of primes.

n + 1 is prime. Done (nothing to prove).
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).

Assume Q(n) is t: each of 2, 3, . . . , n are a product of primes.

Show Q(n + 1) is t: each of 2, 3, . . . , n, n + 1 is a product of primes.

Since we assumed Q(n), we already have that 2, 3, . . . , n are products of primes.
To prove Q(n + 1), we only need to prove n + 1 is a product of primes.

n + 1 is prime. Done (nothing to prove).

n + 1 is not prime, n + 1 = kℓ, where 2 ≤ k, ℓ ≤ n.

Creator: Malik Magdon-Ismail Strong Induction: 14 / 19 Strong Induction →



Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).

Assume Q(n) is t: each of 2, 3, . . . , n are a product of primes.

Show Q(n + 1) is t: each of 2, 3, . . . , n, n + 1 is a product of primes.

Since we assumed Q(n), we already have that 2, 3, . . . , n are products of primes.
To prove Q(n + 1), we only need to prove n + 1 is a product of primes.

n + 1 is prime. Done (nothing to prove).

n + 1 is not prime, n + 1 = kℓ, where 2 ≤ k, ℓ ≤ n.
P (k) → k is a product of primes.
P (ℓ) → ℓ is a product of primes.
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).

Assume Q(n) is t: each of 2, 3, . . . , n are a product of primes.

Show Q(n + 1) is t: each of 2, 3, . . . , n, n + 1 is a product of primes.

Since we assumed Q(n), we already have that 2, 3, . . . , n are products of primes.
To prove Q(n + 1), we only need to prove n + 1 is a product of primes.

n + 1 is prime. Done (nothing to prove).

n + 1 is not prime, n + 1 = kℓ, where 2 ≤ k, ℓ ≤ n.
P (k) → k is a product of primes.
P (ℓ) → ℓ is a product of primes.

n + 1 = kℓ is a product of primes and Q(n + 1) is t.
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Fundamental Theorem of Arithmetic: Proof of Part (i)

P (n) : n is a product of primes.

Q(n) = P (2) ∧ P (3) ∧ P (4) ∧ · · · ∧ P (n).

Proof. (By Induction that Q(n) is t for n ≥ 2.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly t.

2: [Induction step] Show Q(n) → Q(n + 1) for n ≥ 2 (direct proof).

Assume Q(n) is t: each of 2, 3, . . . , n are a product of primes.

Show Q(n + 1) is t: each of 2, 3, . . . , n, n + 1 is a product of primes.

Since we assumed Q(n), we already have that 2, 3, . . . , n are products of primes.
To prove Q(n + 1), we only need to prove n + 1 is a product of primes.

n + 1 is prime. Done (nothing to prove).

n + 1 is not prime, n + 1 = kℓ, where 2 ≤ k, ℓ ≤ n.
P (k) → k is a product of primes.
P (ℓ) → ℓ is a product of primes.

n + 1 = kℓ is a product of primes and Q(n + 1) is t.

3: By induction, Q(n) is t ∀n ≥ 2.
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Strong Induction

Strong Induction. To prove P (n) ∀n ≥ 1 by strong induction, you use induction to
prove the stronger claim:

Q(n) : each of P (1), P (2), . . . , P (n) are t.
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Strong Induction

Strong Induction. To prove P (n) ∀n ≥ 1 by strong induction, you use induction to
prove the stronger claim:

Q(n) : each of P (1), P (2), . . . , P (n) are t.

Ordinary Induction

Base Case Prove P (1)
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Strong Induction

Strong Induction. To prove P (n) ∀n ≥ 1 by strong induction, you use induction to
prove the stronger claim:

Q(n) : each of P (1), P (2), . . . , P (n) are t.

Ordinary Induction

Base Case Prove P (1)

Induction Step Assume: P (n)

Prove: P (n + 1)
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Strong Induction

Strong Induction. To prove P (n) ∀n ≥ 1 by strong induction, you use induction to
prove the stronger claim:

Q(n) : each of P (1), P (2), . . . , P (n) are t.

Ordinary Induction Strong Induction

Base Case Prove P (1) Prove Q(1) = P (1)

Induction Step Assume: P (n)

Prove: P (n + 1)
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Strong Induction

Strong Induction. To prove P (n) ∀n ≥ 1 by strong induction, you use induction to
prove the stronger claim:

Q(n) : each of P (1), P (2), . . . , P (n) are t.

Ordinary Induction Strong Induction

Base Case Prove P (1) Prove Q(1) = P (1)

Induction Step Assume: P (n) Assume: Q(n) = P (1)∧P (2)∧· · ·∧P (n)

Prove: P (n + 1)
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Strong Induction

Strong Induction. To prove P (n) ∀n ≥ 1 by strong induction, you use induction to
prove the stronger claim:

Q(n) : each of P (1), P (2), . . . , P (n) are t.

Ordinary Induction Strong Induction

Base Case Prove P (1) Prove Q(1) = P (1)

Induction Step Assume: P (n) Assume: Q(n) = P (1)∧P (2)∧· · ·∧P (n)

Prove: P (n + 1) Prove: P (n + 1)
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Strong Induction

Strong Induction. To prove P (n) ∀n ≥ 1 by strong induction, you use induction to
prove the stronger claim:

Q(n) : each of P (1), P (2), . . . , P (n) are t.

Ordinary Induction Strong Induction

Base Case Prove P (1) Prove Q(1) = P (1)

Induction Step Assume: P (n) Assume: Q(n) = P (1)∧P (2)∧· · ·∧P (n)

Prove: P (n + 1) Prove: P (n + 1)

Strong induction is always easier.
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Every n ≥ 1 Has a Binary Expansion

P (n) : Every n ≥ 1 is a sum of distinct powers of two (its binary expansion).

22 = 21 + 22 + 24. (22binary =
24

1
23

0
22

1
21

1
20

0.)
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Every n ≥ 1 Has a Binary Expansion

P (n) : Every n ≥ 1 is a sum of distinct powers of two (its binary expansion).

22 = 21 + 22 + 24. (22binary =
24

1
23

0
22

1
21

1
20

0.)

Base Case: P (1) is t: 1 = 20
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Every n ≥ 1 Has a Binary Expansion

P (n) : Every n ≥ 1 is a sum of distinct powers of two (its binary expansion).

22 = 21 + 22 + 24. (22binary =
24

1
23

0
22

1
21

1
20

0.)

Base Case: P (1) is t: 1 = 20

Strong Induction: Assume P (1) ∧ P (2) ∧ · · · ∧ P (n) and prove P (n + 1).
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Every n ≥ 1 Has a Binary Expansion

P (n) : Every n ≥ 1 is a sum of distinct powers of two (its binary expansion).

22 = 21 + 22 + 24. (22binary =
24

1
23

0
22

1
21

1
20

0.)

Base Case: P (1) is t: 1 = 20

Strong Induction: Assume P (1) ∧ P (2) ∧ · · · ∧ P (n) and prove P (n + 1).

If n is even, then n + 1 = 20 + binary expansion of n,

e.g. 23 = 20 + 21 + 22 + 24
︸ ︷︷ ︸

22
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Every n ≥ 1 Has a Binary Expansion

P (n) : Every n ≥ 1 is a sum of distinct powers of two (its binary expansion).

22 = 21 + 22 + 24. (22binary =
24

1
23

0
22

1
21

1
20

0.)

Base Case: P (1) is t: 1 = 20

Strong Induction: Assume P (1) ∧ P (2) ∧ · · · ∧ P (n) and prove P (n + 1).

If n is even, then n + 1 = 20 + binary expansion of n,

e.g. 23 = 20 + 21 + 22 + 24
︸ ︷︷ ︸

22

If n is odd, then multiply each term in the expansion of 1
2
(n + 1) by 2 to get n + 1.

e.g. 24 = 2 × (22 + 23
︸ ︷︷ ︸

12

) = 23 + 24

Exercise. Give the formal proof by strong induction.
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The Many Applications of Induction

Tournament rankings, greedy or recursive algorithms, games of strategy, . . . .
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The Many Applications of Induction

Tournament rankings, greedy or recursive algorithms, games of strategy, . . . .

Equal Pile Nim (old English/German: to steal or pilfer)

player 1 player 2 player 1 player 2 player 1
wins
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The Many Applications of Induction

Tournament rankings, greedy or recursive algorithms, games of strategy, . . . .

Equal Pile Nim (old English/German: to steal or pilfer)

player 1 player 2 player 1 player 2 player 1
wins

P (n) : Player 2 can win the game that starts with n pennies in each row.
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The Many Applications of Induction

Tournament rankings, greedy or recursive algorithms, games of strategy, . . . .

Equal Pile Nim (old English/German: to steal or pilfer)

player 1 player 2 player 1 player 2 player 1
wins

P (n) : Player 2 can win the game that starts with n pennies in each row.

Equalization strategy:

player 1 player 2

Player 2 can always return the game to smaller equal piles.
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The Many Applications of Induction

Tournament rankings, greedy or recursive algorithms, games of strategy, . . . .

Equal Pile Nim (old English/German: to steal or pilfer)

player 1 player 2 player 1 player 2 player 1
wins

P (n) : Player 2 can win the game that starts with n pennies in each row.

Equalization strategy:

player 1 player 2

Player 2 can always return the game to smaller equal piles.
If Player 2 wins the smaller game, Player 2 wins the larger game. That’s strong induction!

Exercise. Give the full formal proof by strong induction.

Challenge. What about more than 2 piles. What about unequal piles. (Problem 6.20).
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Investigate Further in the Problems

Uniqueness of binary representation as a sum of distinct powers of 2:

Problem 6.27

General Nim:

Problem 6.39
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Checklist When Approaching an Induction Problem.

✓ Are you trying to prove a “For all . . . ” claim?

✓ Identify the claim P (n), especially the parameter n. Here is an example.

Prove: geometric mean ≤ arithmetic mean. What is P (n)? What is n?

P (n) : geometric mean ≤ arithmetic mean for every set of n positive numbers.
Identifying the right claim is important.
You may fail because you try to prove too much. Your P (n + 1) is too heavy a burden. You may
fail because you try to prove too little. Your P (n) is too weak a support. You must balance the
strength of your claim so that the support is just enough for the burden. — G. Polya (paraphrased).

✓ Tinker. Does the claim hold for small n (n = 1, 2, 3, . . .)? These become base cases.

✓ Tinker. Can you see why (say) P (5) follows from P (1), P (2), P (3), P (4)?

This is the crux of induction; to build up from smaller n to a larger n.

✓ Determine the type of induction: try strong induction first.

✓ Write out the skeleton of the proof to see exactly what you need to prove.

✓ Determine and prove the base cases.

✓ Prove P (n + 1) in the induction step. You must use the induction hypothesis.
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