Foundations of Computer Science Lecture 11

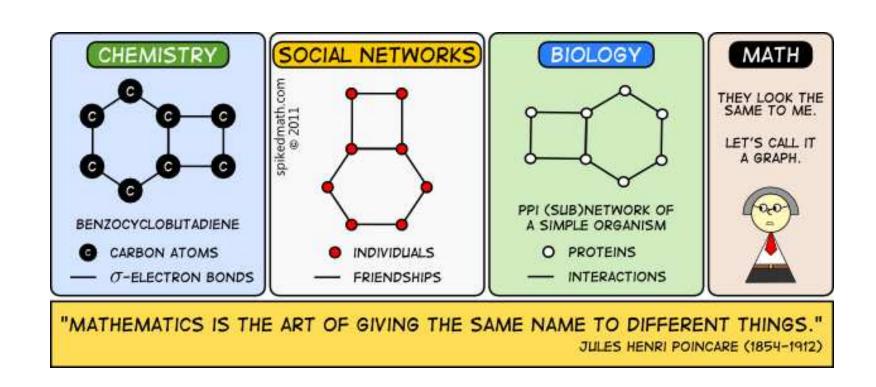
Graphs

Definition and Properties. Equivalence of Graphs.

Degree Sequences and The Handshaking Theorem.

Planar Graphs.

Different Types of Graphs: Multigraph, Weighted, Directed.



Last Time

- Division, quotient and remainder. Properties of divisibility.
- ② Greatest common divisor and Euclid's algorithm.
 - ▶ Bezout's Identity: The GCD is the smallest linear combination.
 - ▶ Euclid's Lemma: $p|q_1 \cdots q_\ell \rightarrow p$ is one of the q_i .
- Sundamental Theorem of Arithmetic Part II: Uniqueness of prime factorization.
- Modular arithmetic
 - **Pop Quiz:** What is the last digit of 29^{29} .
- RSA

Today: Graphs

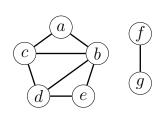
- Graph basics and notation
 - Equivalent graphs: isomorphism
- 2 Degree sequence
 - Handshaking Theorem
- 3 Trees
- 4 Planar graphs
- Other types of graphs: multigraph, weighted, directed
- 6 Problem solving with Graphs

Graph Basics and Notation

Graphs model relationships: friendships (e.g. social networks) connectivity (e.g. cities linked by highways)

conflicts (e.g. radio-stations with listener overlap) $\,$

Graph G



Vertices (aka nodes): abcde(f)

Edges:
$$(a)$$
 (a) (b) (b) (c) (d) (f) (b) (c) (c) (d) (e) (d) (e) (e) (g)

Degree: Number of relationships

Path: (a)—(c)—(b)—(e)—(d)—(b)

 $V = \{a, b, c, d, e, f, g\}.$

$$E = \begin{cases} (a, b), (a, c), (b, c), (b, d), \\ (b, e), (c, d), (d, e), (f, g) \end{cases}.$$

e.g., degree(b) = 4.

p = acbedb.

Graph Isomorphism. Relabeling the nodes in G to v_1, \ldots, v_7 .

$$a \rightarrow v_1,$$

 v_1 , Relabeling of Graph G

$$b \rightarrow v_2,$$

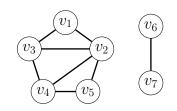
$$c \rightarrow v_3,$$

$$d \rightarrow v_4$$

$$e \rightarrow v_5$$

$$f \rightarrow v_{6}$$

$$g \rightarrow v_7$$



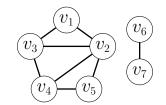
$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}.$$

$$E = \left\{ (v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_4), \\ (v_2, v_5), (v_3, v_4), (v_4, v_5), (v_6, v_7) \right\}.$$

If two graphs can be relabeled with v_1, \ldots, v_n , giving the *same* edge set, they are equivalent – *isomorphic*.

Practice. Pop Quiz 11.1; Exercise 11.2.

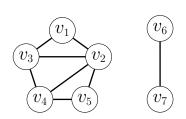
Graph, G



- A path from v_1 to v_2 is a sequence of vertices (start is v_1 and end is v_2): $v_1v_3v_2v_5v_4v_2$
- There is an edge in the graph between consecutive vertices in the path. v_1 and v_2 are connected.
- The length of a path is the number of edges traversed (5).
- Cycle: path that starts and ends at a vertex without repeating any edge: $v_1v_2v_3v_1$
- v_1 and v_6 are not connected by a path.
- The graph G is *not* connected (*every* pair of vertices must be connected by a path).
- \bullet How can we make G connected?

Graph Representation

Graph



Adjacency List

 v_1 : v_2 , v_3 v_2 : v_1 , v_3 , v_4 , v_5 v_3 : v_1 , v_2 , v_4 v_4 : v_2 , v_3 , v_5 v_5 : v_2 , v_4 v_6 : v_7 v_7 : v_6

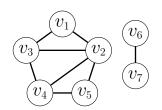
Adjacency Matrix

More wasted memory; faster algorithms.

Small redundancy: every edge is "represented" twice.

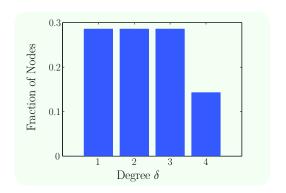
Degree Sequence

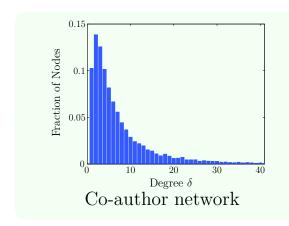
Graph

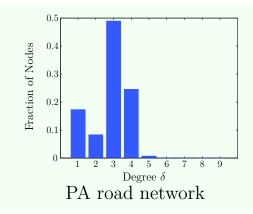


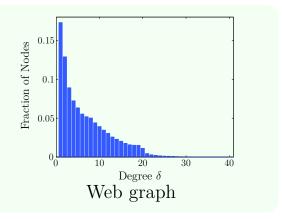
degree δ_i = number of v_i 's neighbors $=\sum_{j=1}^{n} A_{ij}$.

$$\boldsymbol{\delta} = \begin{bmatrix} v_2 & v_3 & v_4 & v_1 & v_5 & v_6 & v_7 \\ 4 & 3 & 3 & 2 & 2 & 1 & 1 \end{bmatrix}$$









Complete, K_5

[4, 4, 4, 4, 4]

Bipartite, $K_{3,2}$

[3, 3, 2, 2, 2]

Line, L_5

[2, 2, 2, 1, 1]

Cycle, C_5

[2, 2, 2, 2, 2]

Star, S_6

Wheel, W_6

[5, 1, 1, 1, 1, 1] [5, 3, 3, 3, 3, 3]

Handshaking Theorem

Pop Quiz. Construct a graph with degree sequence $\delta = [3, 3, 3, 2, 1, 1]$.

Theorem. Handshaking Theorem

For any graph the sum of vertex-degrees equals twice the number of edges, $\sum_{i=1}^{n} \delta_i = 2|E|$.

Proof. Every edge contributes 2 to the sum of degrees. (Why?) If there are |E| edges, their contribution to the sum of degrees is 2|E|.

Exercise. Give a formal proof by induction on the number of edges in the graph.

Pop Quiz (Answer). Can't be done: sum of degrees is 3 + 3 + 3 + 2 + 1 + 1 = 13 (odd).

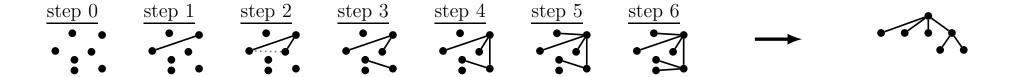
Exercise. At a party a person is odd if they shake hands with an odd number of people. Show that the number of odd people is even.

Trees (More General than RBTs)

Definition: General Tree.

A tree is a *connected* graph with no cycles.

Building a tree, one edge at a time.



Exercise 11.6. Every tree with n vertices has n-1 edges. (We proved this for RBTs.)

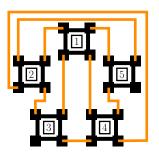
Planar Graphs

A graph is planar if you can draw it without edge crossings.

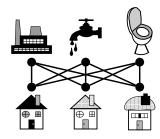
Complete graph K_4 :

non planar drawing

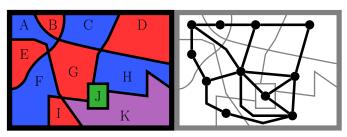
planar drawings $\to K_4$ is planar



Chip design: CPUs must be connected without wire-crossings.



Town planing: connect utilities to homes without pipe-crossings.



Map coloring: adjacent countries sharing a border must have different colors. The map corresponds to a planar graph.

Exercise 11.7. Euler's Invariant Characteristic: F + V - E = 2.

(Faces, F: outer region or region enclosed by a cycle.)

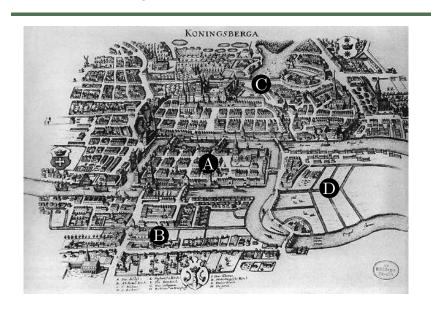
	V	E	F	F + V - E
planar K_4	4	6	4	4+4-6=2
planar map	11	17	8	8 + 11 - 17 = 2
pyramid	4	6	4	4 + 4 - 6 = 2
cube	8	12	6	6 + 8 - 12 = 2
octohedron	6	12	8	8 + 6 - 12 = 2

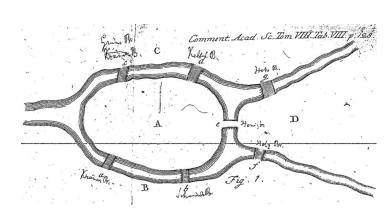
Pyramid

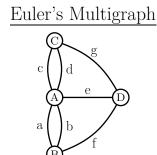
Cube

Octohedron

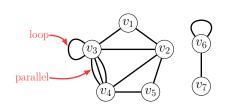
Other Types of Graphs: Multigraph, Weighted, Directed







Multigraph (NOT simple)

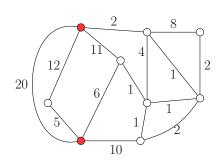


$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}.$$

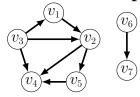
$$E = \begin{cases} (v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_4), \\ (v_2, v_5), (v_3, v_4), (v_3, v_4), (v_3, v_4), \\ (v_4, v_5), (v_6, v_7), (v_3, v_3), (v_6, v_6) \end{cases}$$

Handshaking Theorem still valid.

Weighted



Directed Graphs



$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}.$$

$$E = \begin{cases} (v_1 \rightarrow v_2), (v_3 \rightarrow v_1), (v_3 \rightarrow v_2), (v_2 \rightarrow v_4), \\ (v_2 \rightarrow v_5), (v_3 \rightarrow v_4), (v_5 \rightarrow v_4), (v_6 \rightarrow v_7) \end{cases}.$$

How quickly can one route between the red ISPs?

Ancestry graphs, tournaments, one-way streets, partialy ordered sets (Example 11.6), ...

Problem Solving with Graphs

Graphs are everywhere because relationships are everywhere.

On the right is elevation data in a park.

One unit of rain falls on each grid-square.

Water flows to a neighbor of lowest elevation (e.g. $17 \rightarrow 1$)

Where should we install drains and what should their capacities be?

3	2	17	11	12
4	1	18	10	7
21	22	23	16	8
20	13	5	19	9
25	24	6	14	15

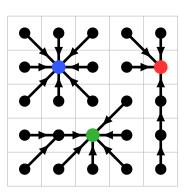
Model the problem as a directed graph.

Directed edges indicate how water flows: three disjoint trees.

The red, green and blue vertices are "sinks" (no out-going arrow).

Place drains at the sinks.

Drain capacities: blue=9 units, red=7 units and green=9 units.



The solution pops out once we formulate the problem as a graph.