Foundations of Computer Science
Lecture 11

Graphs

Definition and Properties. Equivalence of Graphs.
Degree Sequences and The Handshaking Theorem.
Planar Graphs.

Different Types of Graphs: Multigraph, Weighted, Directed.
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"MATHEMATICS IS THE ART OF GIVING THE SAME NAME TO DIFFERENT THINGS."
JULES HENR| POINCARE (1854-1912)




Last Time

@ Division, quotient and remainder. Properties of divisibility.

Q Greatest common divisor and Euclid’s algorithm.

» Bezout’s Identity: The GCD is the smallest linear combination.
» BEuclid’s Lemma: plq; - - - g/ — p is one of the g;.

© Fundamental Theorem of Arithmetic Part II: Unigeness of prime factorization.

Q@ Modular arithmetic

» Pop Quiz: What is the last digit of 29%°.

@ RSA




Today: Graphs

@ Craph basics and notation

@ Equivalent graphs: isomorphism

© Degree sequence
@ Handshaking Theorem

© Trees

@ Planar graphs

@ Other types of graphs: multigraph, weighted, directed

@ Problem solving with Graphs




Graph Basics and Notation

GI’&phS model relationships: friendships (e.g. social networks)
connectivity (e.g. cities linked by highways)
conflicts (e.g. radio-stations with listener overlap)
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Graph Basics and Notation
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Graph Basics and Notation

Graphs model relationships: friendships (e.g. social networks)
connectivity (e.g. cities linked by highways)
conflicts (e.g. radio-stations with listener overlap)

Vertices (aka nodes): @®) @@ ©@®
Graph G

e g | dEEEIEd E={on e

Degree: Number of relationships

Path: (O—(O—0——0—®)

Graph Isomorphism. Relabeling the nodes in G to vy, ..., vs.
vi,  Relabeling of Graph G

V9,

V3, V — {Ul,?}g,vg,’l}4,v5,v6,’l}7}.

(R @ @ (Ul,Uz),(Ul,U ),(U%U )7(7]277) )7
52’ @’@ I b= {(v2, vs), (vs, Ui), (v4, Ui), (s, Ui) }
(% @I@ @
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V: {CL?b?C?d?e?f?g}'

a,c), (b, c),(b,d),
d,e), (f,9))

e.g., degree(b) =
p = acbedb.




Graph Basics and Notation

Graphs model relationships: friendships (e.g. social networks)
connectivity (e.g. cities linked by highways)
conflicts (e.g. radio-stations with listener overlap)

Vertices (aka nodes): @®) @@ ©@® V ={a,b,c,d,e, f,g}.
Graph G
Edges @ E = (a, b)a (a7 C)? (b7 C)? (b7 d)?
B RSS9 = 01 (00,0, 00 1.0))
ISCN: be)sled), (dre), (7,9
'l Degree: Number of relationships e.g., degree(b) = 4.
o @
Path: (@—(o—0)—e—~a)—0) p = acbedb.
Graph Isomorphism. Relabeling the nodes in G to vy, ..., vs.
vi,  Relabeling of Graph G
:Z V = {o1, v, 03, U4, 05, g, V1) If two graphs can be rela-

Q@ 0o o0 o
A

. @ @ ( . ¥ Y ) beled with vy, ..., v,, giving
4 U1, 02),\V1,0V3), V2, V3), (U2, V4),

vs, ®‘@ E— {(v o). (on. o) (on ) (or o) [ the same edgfa set, they are

v, ' 2,U5), (U3, V4), (U4, U5 ), (U6, U7 equivalent — isomorphic.

vy @@ (7

Practice. Pop Quiz 11.1; Exercise 11.2.




Paths and Connectivity
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@ A path from v, to v, is a sequence of vertices (start is v, and end is vy): vV, V3VV5V,Vy
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@ A path from v, to v, is a sequence of vertices (start is v, and end is vy): vV, V3VV5V,Vy

@ There is an edge in the graph between consecutive vertices in the path.

v, and v, are connected.
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@ There is an edge in the graph between consecutive vertices in the path.
v, and v, are connected.

@ The length of a path is the number of edges traversed (5).
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Graph, G

SO @)
§or s
(vaf—(v5)
@ A path from v, to v, is a sequence of vertices (start is v, and end is vy): vV, V3VV5V,Vy

@ There is an edge in the graph between consecutive vertices in the path.
v, and v, are connected.

@ The length of a path is the number of edges traversed (5).
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Paths and Connectivity

Graph, G

SO @)
§or s
(vaf—(v5)
@ A path from v, to v, is a sequence of vertices (start is v, and end is vy): vV, V3VV5V,Vy

@ There is an edge in the graph between consecutive vertices in the path.
v, and v, are connected.

@ The length of a path is the number of edges traversed (5).

@ (ycle: path that starts and ends at a vertex without repeating any edge: V1 V9U30;
@ v; and vy are not connected by a path.

@ The graph G is not connected (every pair of vertices must be connected by a path).

@ How can we make GG connected?



Graph Representation

Graph Adjacency List

v1- V2, U3
@ @ V2. V1, U3, V4, Us
@A@ V3! U1, V2, U4

'I V4. U2, U3, Uy
@ @ Us. U2, Vg

Vg. U7
V7. Vg



Graph Representation

Graph Adjacency List Adjacency Matrix

V1 Uy V3 Vg4 V5 Vg U7
v1- V2, U3

. v /(0 1 1 0 0 0 0
(o) D V2 U1, Vs, V4, Vs w1 0 1 1 1 0 0
®'@ Vs: U1, U2, U w1 1 0 1 0 0 0
@/® &) Vgt U2, U3, U wl0 1 1 0 1 0 0
Us- U2, V4 vs| 0 1 0 1 0 0 0

U6- U7 w| 0 0 0 0 0 0 1

v7: Vg v 0 0 0 0 0 1 0

More wasted memory; faster algorithms.




Graph Representation

Graph Adjacency List Adjacency Matrix

V1 Uy V3 Vg4 V5 Vg U7
v1- V2, U3

. v /(0 1 1 0 0 0 0
(o) D V2 U1, Vs, V4, Vs w1 0 1 1 1 0 0
®'@ Vs: U1, U2, U w1 1 0 1 0 0 0
@/® &) Vgt U2, U3, U wl0 1 1 0 1 0 0
Us- U2, V4 vs| 0 1 0 1 0 0 0

U6- U7 w| 0 0 0 0 0 0 1

v7: Vg v 0 0 0 0 0 1 0

More wasted memory; faster algorithms.

Small redundancy: every edge is “represented” twice.




Degree Sequence

Graph degree §; = number of v;’s neighbors
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Degree Sequence
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Degree Sequence

Graph degree 9, = number of v;’s neighbors 03
Taphl ; .
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Degree § Degree § Degree §
Co-author network PA road network Web graph
Complete, K5 Bipartite, K3 Line, L5 Cycle, Cs Star, Sg Wheel, Wy
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For any graph the sum of vertex-degrees equals twice the number of edges, 3 0, = 2|E].
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Proof. Every edge contributes 2 to the sum of degrees. (Why?)
If there are |E| edges, their contribution to the sum of degrees is 2|E]|.

Exercise. Give a formal proof by induction on the number of edges in the graph.




Handshaking Theorem

Pop Quiz. Construct a graph with degree sequence § = [3,3,3,2,1,1].

Theorem. Handshaking Theorem

For any graph the sum of vertex-degrees equals twice the number of edges, 3 0, = 2|E].
1=1

Proof. Every edge contributes 2 to the sum of degrees. (Why?)
If there are |E| edges, their contribution to the sum of degrees is 2|E]|.

Exercise. Give a formal proof by induction on the number of edges in the graph.

Pop Quiz (Answer). Can’t be done: sum of degrees is 3+3+3+2+1+1 =13 (odd).

Exercise. At a party a person is odd if they shake hands with an odd number of people.
Show that the number of odd people is even.



Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles. }




Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles.

Building a tree, one edge at a time.




Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles.

Building a tree, one edge at a time.




Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles.

Building a tree, one edge at a time.




Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles.

Building a tree, one edge at a time.




Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles.

Building a tree, one edge at a time.




Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles.

Building a tree, one edge at a time.




Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles.

Building a tree, one edge at a time.




Trees (More General than RBTs)

Definition: General Tree.
A tree is a connected graph with no cycles. }

Building a tree, one edge at a time.

Exercise 11.6. Every tree with n vertices has n — 1 edges. (We proved this for RBTS.)
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A graph is planar if you can draw it without edge crossings.

Complete graph /< %

non planar drawing
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Complete graph K 4

Chip design: CPUs
must be connected
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Map coloring: adjacent countries sharing
a border must have different colors. The
map corresponds to a planar graph.




Planar Graphs

A graph is planar if you can draw it without edge crossings.

Complete graph K 4

Chip design: CPUs
must be connected
without wire-crossings.

X

non planar drawing

A B
Stee?

Town planing: connect
utilities to homes without
pipe-crossings.

) A

planar drawings — K is planar

Map coloring: adjacent countries sharing
a border must have different colors. The
map corresponds to a planar graph.

Exercise 11.7. Euler’s Invariant Characteristic: F'+V — F = 2.
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Planar Graphs

A graph is planar if you can draw it without edge crossings.

Complete graph /S E

non planar drawing

A B
Stee?

Chip design: CPUs Town planing: connect
must be connected utilities to homes without
without wire-crossings. pipe-crossings.

Exercise 11.7. Euler’s Invariant Characteristic: F'+V — F = 2.
(Faces, F': outer region or region enclosed by a cycle.)

| Vv E F F+V-E
planar Ky 4 6 4 44+44-6=2 V
planar map 11 17 8 8+11-17=2/

) A

planar drawings — K is planar

Map coloring: adjacent countries sharing
a border must have different colors. The
map corresponds to a planar graph.




Planar Graphs

A graph is planar if you can draw it without edge crossings.

Complete graph K 4 E @ A

non planar drawing planar drawings — K is planar

A B
Stee?

Chip design: CPUs Town planing: connect Map coloring: adjacent countries sharing
must be connected utilities to homes without a border must have different colors. The
without wire-crossings. pipe-crossings. map corresponds to a planar graph.

Exercise 11.7. Euler’s Invariant Characteristic: F'+V — F = 2.
(Faces, F': outer region or region enclosed by a cycle.)

V E F F4+V —-FE
planar Ky 4 6 A+4-6=2 Pyramid

4
planar map 11 17 8 8+11-17=2/
pyramid 4 6 4  444-6=2 ‘?




Planar Graphs

A graph is planar if you can draw it without edge crossings.

X

non planar drawing

Complete graph K 4

A B
Stee?

Town planing: connect
utilities to homes without
pipe-crossings.

Chip design: CPUs
must be connected
without wire-crossings.

Exercise 11.7. Euler’s Invariant Characteristic: F'+V — F = 2.
(Faces, F': outer region or region enclosed by a cycle.)

V E F F+V -—FE
planar Ky 4 6 4 44+44-6=2 V
planar map 11 17 8 8+11-17=2/
pyramid 4 6 4 44+44-6=2 V
cube 8 12 6 6+8—-12=2 /

) A

planar drawings — K is planar

Map coloring: adjacent countries sharing
a border must have different colors. The
map corresponds to a planar graph.

Cube

Pyramid

%




Planar Graphs

A graph is planar if you can draw it without edge crossings.

X

non planar drawing

Complete graph K 4

Ao
===

Town planing: connect
utilities to homes without
pipe-crossings.

Chip design: CPUs
must be connected
without wire-crossings.

Exercise 11.7. Euler’s Invariant Characteristic: F'+V — F = 2.
(Faces, F': outer region or region enclosed by a cycle.)

V E F F+V -—FE
planar Ky 4 6 4 444—-6=2 V
planar map 11 17 8 8+11-17=2/
pyramid 4 6 4 444—-6=2 V
cube 8 12 6 6+8—-12=2 /
octohedron 6 12 8 8+6—-12=2 /

) A

planar drawings — K is planar

Map coloring: adjacent countries sharing
a border must have different colors. The
map corresponds to a planar graph.

Pyramid Cube Octohedron
7 O <

Graphs: 10 /12




Other Types of Graphs: Multigraph, Weighted, Directed
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Other Types of Graphs: Multigraph, Weighted, Directed

KONINGSBERGA

¥ 4«,..
o

Euler’s Multigraph

l()op-\‘

parallel

V — {U17 U2, U3, U4, Vs, Vg, 'U7}.

(Ula U2)7 (Uly U3)7 (U27 U3)7 (U27 U4)7
E = (ve,v5), (v3,v4), (vs,v4), (3, 4),
(v4,v5), (ve, v7), (v3,v3), (V6, V)

Handshaking Theorem still valid.



Other Types of Graphs: Multigraph, Weighted, Directed

KoNINGSBERGA

¥ 4«,..
2s]

Euler’s Multigraph

Multigraph (NOT simple) Weighted
C )
l()op-\1
¢ D
parallel @

V — {U17 U2, U3, U4, Vs, Vg, 'U7}.
(Ula U2)7 (Uly U3)7 (U27 U3)7 (U27 U4)7

E = (v27 U5)7 (’Ug, U4), (’Ug, ’U4), (U37 U4);
(04, U5), (U6, 07)7 (Us, Us), (Uﬁ, U6)

Handshaking Theorem still valid. How quickly can one route
between the red ISPs?




Other Types of Graphs: Multigraph, Weighted, Directed

KONINGSBERGA
B2 =y

Multigraph (NOT simple) Weighted Directed Graphs
U, ®
1()()1)-\1 6 @A@
J 2 l ()
parallel @ @ @

V' = {v1, va, v3, vy, U5, Vg, U7 }.

_ {(Ul—)vg), (v3—v1), (V3—v9), (v2—>v4),}
(U2—>U5), (U3—>U4), (U5—>U4), (U6—>U7) )

V - {U17 V2, U3, V4, Us, Vg, 'U7}.
(Ula U2)7 (Ub U3)7 (U27 U3)7 (U27 U4)7
E = { (v, v5), (v3,v4), (v3,04), (3, V1),
(v4,v5), (v6, v7), (v3, v3), (Vs, Vg)

Handshaking Theorem still valid. How quickly can one route Ancestry graphs, tournaments, one-way streets,
between the red ISPs? partialy ordered sets (Example 11.6), ...
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Graphs are everywhere because relationships are everywhere.
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Problem Solving with Graphs

Graphs are everywhere because relationships are everywhere.

On the right is elevation data in a park.

One unit of rain falls on each grid-square.

Water flows to a neighbor of lowest elevation (e.g. 17 — 1)

Where should we install drains and what should their capacities be?

Model the problem as a directed graph.

Directed edges indicate how water flows: three disjoint trees.
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Problem Solving with Graphs

Graphs are everywhere because relationships are everywhere.

On the right is elevation data in a park.

One unit of rain falls on each grid-square.

Water flows to a neighbor of lowest elevation (e.g. 17 — 1)

Where should we install drains and what should their capacities be?

Model the problem as a directed graph.

Directed edges indicate how water flows: three disjoint trees.

The red, green and blue vertices are “sinks” (no out-going arrow).
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Problem Solving with Graphs

Graphs are everywhere because relationships are everywhere.

32 7 11 12
On the right is elevation data in a park. ‘
. . : 18 10 7
One unit of rain falls on each grid-square.

Water flows to a neighbor of lowest elevation (e.g. 17 — 1)
Where should we install drains and what should their capacities be? 200135 1979
25 24 6 14 15

21 22 23 16 8

Model the problem as a directed graph.

Directed edges indicate how water flows: three disjoint trees.
The red, green and blue vertices are “sinks” (no out-going arrow).

Place drains at the sinks. % }
Drain capacities: blue=9 units, red=7 units and green=9 units.

The solution pops out once we formulate the problem as a graph.

8 Croator: Mallk MogdonTsmail e Py L
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