
Foundations of Computer Science
Lecture 12

Matching and Coloring
Bipartite Graphs and Matching

Stable Marriage

Conflict Graphs and Coloring

Other Graph Problems.



Last Time

1 What is a graph?

2 Equivalent graphs: graph isomorphism.

3 Notation: path, degree, cycle,

4 Some common graphs: Kn, Kn,m, Cn, Ln.

5 The Handshaking Theorem:
n∑

i=1
δi = 2|E|.

6 Different kinds of graphs: trees; planar; multigraphs; weighted; directed.

7 Problem solving with graphs: first pose the problem as a graph.
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Today: Matching and Coloring

1 Matching.
Sex in America.

Bipartite graphs.

Stable marriage: the mathematics of dating.

2 Coloring.
Conflict graphs.

3 Other graph problems.
Connected components, spaning tree, Euler cycle, newtork flow. (easy)

Hamiltonian cycle, facility location, vertex cover, dominating set. (hard)
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Sex In America: Watchout for Headline News

The The Social Organization of Sexuality (1994) data showed:

“Men have 74% more opposite-gender partners than women have.”
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Sex In America: Watchout for Headline News

The The Social Organization of Sexuality (1994) data showed:

“Men have 74% more opposite-gender partners than women have.”

“groundbreaking ABC News "Primetime Live" survey finds a range of eye-popping sexual activities,

fantasies and attitudes in this country, confirming some conventional wisdom, exploding some myths –

and venturing where few scientific surveys have gone before.”

“Men have on average 20 sex-partners and women 6 (233% more for men).”

Claimed margin of error: 2.5%!
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fantasies and attitudes in this country, confirming some conventional wisdom, exploding some myths –

and venturing where few scientific surveys have gone before.”

“Men have on average 20 sex-partners and women 6 (233% more for men).”

Claimed margin of error: 2.5%!

Not to be outdone, N.Y. Times reported in 2007 on an NIH study:

“Men have on average 7 partners and women 4 (75% more for men).”
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Sex In America: Watchout for Headline News

The The Social Organization of Sexuality (1994) data showed:

“Men have 74% more opposite-gender partners than women have.”

“groundbreaking ABC News "Primetime Live" survey finds a range of eye-popping sexual activities,

fantasies and attitudes in this country, confirming some conventional wisdom, exploding some myths –

and venturing where few scientific surveys have gone before.”

“Men have on average 20 sex-partners and women 6 (233% more for men).”

Claimed margin of error: 2.5%!

Not to be outdone, N.Y. Times reported in 2007 on an NIH study:

“Men have on average 7 partners and women 4 (75% more for men).”

Which survey is right?
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Sex In America: Watchout for Headline News

The The Social Organization of Sexuality (1994) data showed:

“Men have 74% more opposite-gender partners than women have.”

“groundbreaking ABC News "Primetime Live" survey finds a range of eye-popping sexual activities,

fantasies and attitudes in this country, confirming some conventional wisdom, exploding some myths –

and venturing where few scientific surveys have gone before.”

“Men have on average 20 sex-partners and women 6 (233% more for men).”

Claimed margin of error: 2.5%!

Not to be outdone, N.Y. Times reported in 2007 on an NIH study:

“Men have on average 7 partners and women 4 (75% more for men).”

Which survey is right?
Mathematicians should stick to numbers. Real people run the world. No, No, No!

Contentious sensational issues are exactly where mathematics is needed.
We must face them head on with cold reason instead of flaring emotions.
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Sex In America: Resolving the Issue

Modeling asumptions: # men = # women.

All partners are opposite-sex.
← Can be relaxed,

Exercise 12.1
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All partners are opposite-sex.
← Can be relaxed,
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World I
M F

World II
M F

World III

Creator: Malik Magdon-Ismail Matching and Coloring: 5 / 13 Bipartite Matching →



Sex In America: Resolving the Issue

Modeling asumptions: # men = # women.

All partners are opposite-sex.
← Can be relaxed,

Exercise 12.1

M F

World I
M F

World II
M F

World III

Which world does

the media portray?
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Sex In America: Resolving the Issue

Modeling asumptions: # men = # women.

All partners are opposite-sex.
← Can be relaxed,

Exercise 12.1

M F

World I
M F

World II
M F

World III

Which world does

the media portray?

Theorem. Men and women have the same number of partners on average.

Proof. Each edge adds 1 to total partners of male and female→ totals are equal→ averages are equal.
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Sex In America: Resolving the Issue

Modeling asumptions: # men = # women.

All partners are opposite-sex.
← Can be relaxed,

Exercise 12.1

M F

World I
M F

World II
M F

World III

Which world does

the media portray?

Theorem. Men and women have the same number of partners on average.

Proof. Each edge adds 1 to total partners of male and female→ totals are equal→ averages are equal.

SOS: “Now, there is a basic adding up constraint that these gender differences seem to violate. Logically, men should
have the same number of female sex partners as women have male sex partners. We note that this inconsistency has been
found, as well, in several other surveys in recent years in the United States, the United Kingdom, France, Finland and
elsewhere. The inconsistency constitutes an important puzzle for which we, like others, have no good answer.”
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Bipartite Matching and Hall’s Matching Condition

M F
World I

matching
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Bipartite Matching and Hall’s Matching Condition

M F
World I

T1

T2

T3

T4

R1

R2

R3

R4

R5

Tasks Resources

matching
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Bipartite Matching and Hall’s Matching Condition

M F
World I

T1

T2

T3

T4

R1

R2

R3

R4

R5

Tasks Resources

T1

T2

T3

T4

R1

R2

R3

R4

R5

Tasks Resources

matching matching no matching

Hall’s Theorem.

Suppose that for all left-subsets X , |X| ≤ |N(X)| (Hall’s “matching condition”). Then,
there is a matching which covers every left-vertex.

Hall’s Theorem says that the obvious necessary condition is also sufficient.
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Proof of Hall’s Theorem: Induction Step

If for all left-subsets X , |X| ≤ |N(X)|, then there is a left-matching.
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Proof of Hall’s Theorem: Induction Step

If for all left-subsets X , |X| ≤ |N(X)|, then there is a left-matching.

Case 1. There is a proper left-subset X , with 1 ≤ |X| ≤ n, for which |X| = |N(X)|.

X N(X)

Y

N̄(Y )
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Proof of Hall’s Theorem: Induction Step

If for all left-subsets X , |X| ≤ |N(X)|, then there is a left-matching.

Case 1. There is a proper left-subset X , with 1 ≤ |X| ≤ n, for which |X| = |N(X)|.

X has a matching into N(X).
X N(X)

Y

N̄(Y )
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Proof of Hall’s Theorem: Induction Step

If for all left-subsets X , |X| ≤ |N(X)|, then there is a left-matching.

Case 1. There is a proper left-subset X , with 1 ≤ |X| ≤ n, for which |X| = |N(X)|.

X has a matching into N(X).

For any left-subset Y ⊂ X , by the matching condition,

|N(X)| + |N̄(Y )| = |N(X ∪ Y )| ≥ |X ∪ Y | = |X| + |Y |

→ |N̄(Y )| ≥ |Y |.

X N(X)

Y

N̄(Y )
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Proof of Hall’s Theorem: Induction Step

If for all left-subsets X , |X| ≤ |N(X)|, then there is a left-matching.

Case 1. There is a proper left-subset X , with 1 ≤ |X| ≤ n, for which |X| = |N(X)|.

X has a matching into N(X).

For any left-subset Y ⊂ X , by the matching condition,

|N(X)| + |N̄(Y )| = |N(X ∪ Y )| ≥ |X ∪ Y | = |X| + |Y |

→ |N̄(Y )| ≥ |Y |.

X̄ has as separate matching into N̄ (X).

X N(X)

Y

N̄(Y )

Case 2. For every proper left-subset X (with 1 ≤ |X| ≤ n), |X| < |N(X)|.

Y

N̄(Y )
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Proof of Hall’s Theorem: Induction Step

If for all left-subsets X , |X| ≤ |N(X)|, then there is a left-matching.

Case 1. There is a proper left-subset X , with 1 ≤ |X| ≤ n, for which |X| = |N(X)|.

X has a matching into N(X).

For any left-subset Y ⊂ X , by the matching condition,

|N(X)| + |N̄(Y )| = |N(X ∪ Y )| ≥ |X ∪ Y | = |X| + |Y |

→ |N̄(Y )| ≥ |Y |.

X̄ has as separate matching into N̄ (X).

X N(X)

Y

N̄(Y )

Case 2. For every proper left-subset X (with 1 ≤ |X| ≤ n), |X| < |N(X)|.

Match the first left-vertex along any edge to a neighbor.

Y

N̄(Y )
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Proof of Hall’s Theorem: Induction Step

If for all left-subsets X , |X| ≤ |N(X)|, then there is a left-matching.

Case 1. There is a proper left-subset X , with 1 ≤ |X| ≤ n, for which |X| = |N(X)|.

X has a matching into N(X).

For any left-subset Y ⊂ X , by the matching condition,

|N(X)| + |N̄(Y )| = |N(X ∪ Y )| ≥ |X ∪ Y | = |X| + |Y |

→ |N̄(Y )| ≥ |Y |.

X̄ has as separate matching into N̄ (X).

X N(X)

Y

N̄(Y )

Case 2. For every proper left-subset X (with 1 ≤ |X| ≤ n), |X| < |N(X)|.

Match the first left-vertex along any edge to a neighbor.

For any left-subset Y in the remaining graph of n left-vertices,

|N̄(Y )| ≥ |N(Y )| − 1 ≥ |Y | + 1− 1 = |Y |

The remaining left-vertices have a matching to the remaining right-vertices.

Y

N̄(Y )

In both cases, there is a left-matching which covers the n + 1 left-vertices.
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Proof of Hall’s Theorem: Induction Step

If for all left-subsets X , |X| ≤ |N(X)|, then there is a left-matching.

Case 1. There is a proper left-subset X , with 1 ≤ |X| ≤ n, for which |X| = |N(X)|.

X has a matching into N(X).

For any left-subset Y ⊂ X , by the matching condition,

|N(X)| + |N̄(Y )| = |N(X ∪ Y )| ≥ |X ∪ Y | = |X| + |Y |

→ |N̄(Y )| ≥ |Y |.

X̄ has as separate matching into N̄ (X).

X N(X)

Y

N̄(Y )

Case 2. For every proper left-subset X (with 1 ≤ |X| ≤ n), |X| < |N(X)|.

Match the first left-vertex along any edge to a neighbor.

For any left-subset Y in the remaining graph of n left-vertices,

|N̄(Y )| ≥ |N(Y )| − 1 ≥ |Y | + 1− 1 = |Y |

The remaining left-vertices have a matching to the remaining right-vertices.

Y

N̄(Y )

In both cases, there is a left-matching which covers the n + 1 left-vertices.

Exercise. If (min left-degree) ≥ (max right-degree) then Hall’s condition holds.

Example 12.3. Building Latin Squares.
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Stable Marriage: Mathematics of Dating

Matching with preferences: Alice, Barb and Carla want to date Xavier, Yariv and Zach.
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Stable Marriage: Mathematics of Dating

Matching with preferences: Alice, Barb and Carla want to date Xavier, Yariv and Zach.

X Y Z

1. A A B

2. B C A

3. C B C

A B C

1. Z Y Z

2. Y X X

3. X Z Y

X

Y

Z

A

B

C
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Stable Marriage: Mathematics of Dating

Matching with preferences: Alice, Barb and Carla want to date Xavier, Yariv and Zach.

X Y Z

1. A A B

2. B C A

3. C B C

A B C

1. Z Y Z

2. Y X X

3. X Z Y

X

Y

Z

A

B

C

Yariv prefers Alice to Barb (Barb is Yariv’s current mate).
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Stable Marriage: Mathematics of Dating

Matching with preferences: Alice, Barb and Carla want to date Xavier, Yariv and Zach.

X Y Z

1. A A B

2. B C A

3. C B C

A B C

1. Z Y Z

2. Y X X

3. X Z Y

X

Y

Z

A

B

C

Yariv prefers Alice to Barb (Barb is Yariv’s current mate).

Alice prefers Yariv to Xavier (Xavier is Alice’s current mate).
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Stable Marriage: Mathematics of Dating

Matching with preferences: Alice, Barb and Carla want to date Xavier, Yariv and Zach.

X Y Z

1. A A B

2. B C A

3. C B C

A B C

1. Z Y Z

2. Y X X

3. X Z Y

X

Y

Z

A

B

C

Yariv prefers Alice to Barb (Barb is Yariv’s current mate).

Alice prefers Yariv to Xavier (Xavier is Alice’s current mate).

Yariv and Alice both prefer each other to their current mates.
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Stable Marriage: Mathematics of Dating

Matching with preferences: Alice, Barb and Carla want to date Xavier, Yariv and Zach.

X Y Z

1. A A B

2. B C A

3. C B C

A B C

1. Z Y Z

2. Y X X

3. X Z Y

X

Y

Z

A

B

C

Yariv prefers Alice to Barb (Barb is Yariv’s current mate).

Alice prefers Yariv to Xavier (Xavier is Alice’s current mate).

Yariv and Alice both prefer each other to their current mates.

That kind of volatile match-up leads to scandal.

Creator: Malik Magdon-Ismail Matching and Coloring: 8 / 13 The Dating Ritual →



A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y

Day 2. Y and Z return to A and B respectively. (“dating”)
X Y Z
A A B
B C A
C B C

A B C

Y Z –
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y

Day 2. Y and Z return to A and B respectively. (“dating”)
X goes to B’s balcony.

X Y Z
A A B
B C A
C B C

A B C

Y X, Z –
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y

Day 2. Y and Z return to A and B respectively. (“dating”)
X goes to B’s balcony.
B rejects Z. Z erases B; X and Y will return.

X Y Z
A A B
B C A
C B C

A B C

Y X, Z –
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y

Day 2. Y and Z return to A and B respectively. (“dating”)
X goes to B’s balcony.
B rejects Z. Z erases B; X and Y will return.

X Y Z
A A B
B C A
C B C

A B C

Y X, Z –

Day 3. Y and X return to A and B respectively. (“dating”)
Z goes to A’s balcony.

X Y Z
A A B
B C A
C B C

A B C

Y , Z X –

Creator: Malik Magdon-Ismail Matching and Coloring: 9 / 13 Conflict Graphs and Coloring →



A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y

Day 2. Y and Z return to A and B respectively. (“dating”)
X goes to B’s balcony.
B rejects Z. Z erases B; X and Y will return.

X Y Z
A A B
B C A
C B C

A B C

Y X, Z –

Day 3. Y and X return to A and B respectively. (“dating”)
Z goes to A’s balcony.
A’s patience is rewarded. A rejects Y for her top-choice Z.

X Y Z
A A B
B C A
C B C

A B C

Y , Z X –
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y

Day 2. Y and Z return to A and B respectively. (“dating”)
X goes to B’s balcony.
B rejects Z. Z erases B; X and Y will return.

X Y Z
A A B
B C A
C B C

A B C

Y X, Z –

Day 3. Y and X return to A and B respectively. (“dating”)
Z goes to A’s balcony.
A’s patience is rewarded. A rejects Y for her top-choice Z.

X Y Z
A A B
B C A
C B C

A B C

Y , Z X –

Day 4. Each girl has found her boy.
X Y Z
A A B
B C A
C B C

A B C

Z X Y
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!

X Y Z
A A B
B C A
C B C

A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y

Day 2. Y and Z return to A and B respectively. (“dating”)
X goes to B’s balcony.
B rejects Z. Z erases B; X and Y will return.

X Y Z
A A B
B C A
C B C

A B C

Y X, Z –

Day 3. Y and X return to A and B respectively. (“dating”)
Z goes to A’s balcony.
A’s patience is rewarded. A rejects Y for her top-choice Z.

X Y Z
A A B
B C A
C B C

A B C

Y , Z X –

Day 4. Each girl has found her boy.
The dating ritual ends with non-volatile marriages

A—Z B—X C—Y

X Y Z
A A B
B C A
C B C

A B C

Z X Y
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A Dating Ritual That Ends with No Volatile Pairs

Day 1. Ladies on balconies.
Each gent serenades their top choice.
Ladies ask only their favored suitor to come back (“dating”).
A rejected gent will never again woo that lady!
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A A B
B C A
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A B C

X , Y Z –

A B C
Z Y Z
Y X X
X Z Y

Day 2. Y and Z return to A and B respectively. (“dating”)
X goes to B’s balcony.
B rejects Z. Z erases B; X and Y will return.

X Y Z
A A B
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A B C

Y X, Z –

Day 3. Y and X return to A and B respectively. (“dating”)
Z goes to A’s balcony.
A’s patience is rewarded. A rejects Y for her top-choice Z.

X Y Z
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B C A
C B C

A B C

Y , Z X –

Day 4. Each girl has found her boy.
The dating ritual ends with non-volatile marriages

A—Z B—X C—Y

X Y Z
A A B
B C A
C B C

A B C

Z X Y

Theorem. [Gale-Shapely, 1962]

1 For n men and women, the dating ritual ends after at most n2 days of dating.
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Day 4. Each girl has found her boy.
The dating ritual ends with non-volatile marriages
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Theorem. [Gale-Shapely, 1962]

1 For n men and women, the dating ritual ends after at most n2 days of dating.
2 Every man and woman will be matched at the end.
3 The resulting set of marriages is stable (no volatile pairs).
4 The girls are in control but they lose.
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Chromatic Number χ(G). The minimum number of colors needed.

Lemma. Using Sequential Greedy, color(vi) ≤ δi + 1.
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(2 colors suffice)

Chromatic Number χ(G). The minimum number of colors needed.

Lemma. Using Sequential Greedy, color(vi) ≤ δi + 1.

Theorem. Chromatic number is bounded by maximum degree.

χ(G) ≤ ∆(G) + 1, where ∆(G) is the maximum degree in G, ∆(G) = maxi δi.
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Trees are 2-Colorable

Let us prove this for RBT’s. We show that the constructor rule preserves 2-colorability.
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Trees are 2-Colorable

Let us prove this for RBT’s. We show that the constructor rule preserves 2-colorability.

T1 T2

→

T1 T2

How do we know T1’s root is colored red?
How do we know T2’s root is colored red?

A graph is bipartite if and only if its chromatic number is 2. Trees are bipartite.
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Other Graph Problems

Connected Components. For “viral”
marketing, pick one vertex in each con-

nected component (e.g. target the “cen-
tral (red)” vertices). [easy]
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Donalds wants to place K = 2 restau-
rants (red) in a road network so that no
customer has too drive far to reach their
closest McDonalds. [hard]

Vertex Cover. Place the minimum
number of policemen at intersections so
that all roads can be surveiled or “cov-
ered”. The policeman form a vertex cover.
Can you do it with fewer than 6? [hard]

Dominating Set. Place the fewest hos-
pitals at intersections (vertices) so that
every intersection is either at a hospital or
one block away from a hospital. The red
hospitals are a dominating set. [hard]

Network Flow. A source-ISP (blue)
sends packets to a sink-ISP (red). What
is the maximum transmission rate achiev-
able without exceeding the link capaci-
ties? We achieved flow rate 10. [easy]

6|7 4|5
2|2

4|4
3|3

3|3

1|2
8|10 2|2
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