
Foundations of Computer Science
Lecture 14

Advanced Counting
Sequences with Repetition

Union of Overlapping Sets: Inclusion-Exclusion

Pigeonhole Principle



Last Time

To count complex objects, construct a sequence of “instructions” that can be
used to construct the object uniquely. The number of possible sequences of
instructions equals the number of possible complex objects.

1 Sum and product Rules.

2 Build-up counting:
(

n

k

)

, n-bit sequences with k 1’s; goody-bags.

3 Counting one set by counting another: bijection.

4 Permutations and combinations.

5 Binomial Theorem.
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Today: Advanced Counting

1 Sequences with repetition.
Anagrams.

2 Inclusion-exclusion: extending the sum-rule to overlapping sets.
Derangements.

3 Pigeonhole principle.
Social twins.

Subset sums.
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence

k-subset
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!

k-subset
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no repetition with repetition

k-sequence
n!

(n − k)!
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!

k!(n − k)!
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!

k!(n − k)!







k + n − 1

n − 1






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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!

k!(n − k)!







k + n − 1

n − 1







(k1, k2, · · · , kr)-sequence

(5, 4, 3)-sequence of 5 , 4 , 3
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!

k!(n − k)!







k + n − 1

n − 1







(k1, k2, · · · , kr)-sequence

(5, 4, 3)-sequence of 5 , 4 , 3

1 2 3 4 5 6 7 8 9 10 11 12
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!

k!(n − k)!







k + n − 1

n − 1







(k1, k2, · · · , kr)-sequence

(5, 4, 3)-sequence of 5 , 4 , 3

1 2 3 4 5 6 7 8 9 10 11 12

subset of slots used for each type
type -

{1, 3, 4, 7, 11}

Choose slots for :
(

12
5

)

ways
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!

k!(n − k)!







k + n − 1

n − 1







(k1, k2, · · · , kr)-sequence

(5, 4, 3)-sequence of 5 , 4 , 3

1 2 3 4 5 6 7 8 9 10 11 12

subset of slots used for each type
type - type -

{1, 3, 4, 7, 11} {2, 5, 6, 10}

Choose slots for :
(

12
5

)

ways

Then choose slots for :
(

7
4

)

ways
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!

k!(n − k)!







k + n − 1

n − 1







(k1, k2, · · · , kr)-sequence

(5, 4, 3)-sequence of 5 , 4 , 3

1 2 3 4 5 6 7 8 9 10 11 12

subset of slots used for each type
type - type - type -

{1, 3, 4, 7, 11} {2, 5, 6, 10} {8, 9, 12}

Choose slots for :
(

12
5

)

ways

Then choose slots for :
(

7
4

)

ways

Then choose slots for :
(

3
3

)

ways
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!

k!(n − k)!







k + n − 1

n − 1







(k1, k2, · · · , kr)-sequence

(5, 4, 3)-sequence of 5 , 4 , 3

1 2 3 4 5 6 7 8 9 10 11 12

subset of slots used for each type
type - type - type -

{1, 3, 4, 7, 11} {2, 5, 6, 10} {8, 9, 12}

Choose slots for :
(

12
5

)

ways

Then choose slots for :
(

7
4

)

ways

Then choose slots for :
(

3
3

)

ways

Product rule:




12

5, 4, 3



 =





12

5



 ×





7

4



 ×





3

3




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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n

k



 =
n!
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




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n − 1




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(k1, k2, · · · , kr)-sequence

(5, 4, 3)-sequence of 5 , 4 , 3

1 2 3 4 5 6 7 8 9 10 11 12

subset of slots used for each type
type - type - type -

{1, 3, 4, 7, 11} {2, 5, 6, 10} {8, 9, 12}

Choose slots for :
(

12
5

)

ways

Then choose slots for :
(

7
4

)

ways

Then choose slots for :
(

3
3

)

ways

Product rule:




12

5, 4, 3



 =





12

5



 ×





7

4



 ×





3

3





=
12!

5! · 7!
×

7!

4! · 3!
×

3!

3! · 0!
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Selecting k from n Distinguishible Objects

no repetition with repetition
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Selecting k from n Distinguishible Objects

no repetition with repetition

k-sequence
n!

(n − k)!
nk

k-subset




n
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

 =
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




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

 =
k!

k1! · k2! · · · kr!

(5, 4, 3)-sequence of 5 , 4 , 3

1 2 3 4 5 6 7 8 9 10 11 12

subset of slots used for each type
type - type - type -

{1, 3, 4, 7, 11} {2, 5, 6, 10} {8, 9, 12}

Choose slots for :
(

12
5

)

ways

Then choose slots for :
(

7
4

)

ways

Then choose slots for :
(

3
3

)

ways

Product rule:
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Anagrams: All “Words” Using the Letters of aardvark

A sequence of 8 letters: 3a’s, 2r’s, 1d, 1v, 1k.
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Anagrams: All “Words” Using the Letters of aardvark

A sequence of 8 letters: 3a’s, 2r’s, 1d, 1v, 1k.

Number of such sequences is






8

3, 2, 1, 1, 1





 =
8!

3! · 2! · 1! · 1! · 1!
= 3360.
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Anagrams: All “Words” Using the Letters of aardvark

A sequence of 8 letters: 3a’s, 2r’s, 1d, 1v, 1k.

Number of such sequences is






8

3, 2, 1, 1, 1





 =
8!

3! · 2! · 1! · 1! · 1!
= 3360.

Exercise. What is the coefficient of x2y3z4 in the expansion of (x + y + z)9?
[Hint: Sequences of length 9 (why?) with 2 x’s, 3 y’s and 4 z’s.]
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Extending the Sum Rule to Overlapping Sets

|A ∪ B| = |A| + |B| − |A ∩ B|.

(Breaks A ∪ B into smaller sets.)

A ∩ B A ∩ BA ∩ B
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Extending the Sum Rule to Overlapping Sets

|A ∪ B| = |A| + |B| − |A ∩ B|.

(Breaks A ∪ B into smaller sets.)

A ∩ B A ∩ BA ∩ B

Example. How many numbers in 1, . . . , 10 are divisible by 2 or 5.
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Extending the Sum Rule to Overlapping Sets

|A ∪ B| = |A| + |B| − |A ∩ B|.

(Breaks A ∪ B into smaller sets.)

A ∩ B A ∩ BA ∩ B

Example. How many numbers in 1, . . . , 10 are divisible by 2 or 5.

A = {numbers divisible by 2}. |A| = 5. (|A| = ⌊ 10/2 ⌋)
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Extending the Sum Rule to Overlapping Sets

|A ∪ B| = |A| + |B| − |A ∩ B|.

(Breaks A ∪ B into smaller sets.)

A ∩ B A ∩ BA ∩ B

Example. How many numbers in 1, . . . , 10 are divisible by 2 or 5.

A = {numbers divisible by 2}. |A| = 5. (|A| = ⌊ 10/2 ⌋)

B = {numbers divisible by 5}. |B| = 2. (|B| = ⌊ 10/5 ⌋)
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Extending the Sum Rule to Overlapping Sets

|A ∪ B| = |A| + |B| − |A ∩ B|.

(Breaks A ∪ B into smaller sets.)

A ∩ B A ∩ BA ∩ B

Example. How many numbers in 1, . . . , 10 are divisible by 2 or 5.

A = {numbers divisible by 2}. |A| = 5. (|A| = ⌊ 10/2 ⌋)

B = {numbers divisible by 5}. |B| = 2. (|B| = ⌊ 10/5 ⌋)

A ∩ B = {numbers divisible by 2 and 5}. |A ∩ B| = 1. (|A ∩ B| = ⌊ 10/lcm(2, 5) ⌋)
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Extending the Sum Rule to Overlapping Sets

|A ∪ B| = |A| + |B| − |A ∩ B|.

(Breaks A ∪ B into smaller sets.)

A ∩ B A ∩ BA ∩ B

Example. How many numbers in 1, . . . , 10 are divisible by 2 or 5.

A = {numbers divisible by 2}. |A| = 5. (|A| = ⌊ 10/2 ⌋)

B = {numbers divisible by 5}. |B| = 2. (|B| = ⌊ 10/5 ⌋)

A ∩ B = {numbers divisible by 2 and 5}. |A ∩ B| = 1. (|A ∩ B| = ⌊ 10/lcm(2, 5) ⌋)

A∪B = {numbers divisible by 2 or 5}.

|A ∪ B| = |A| + |B| − |A ∩ B| = 5 + 2 − 1 = 6.
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Inclusion-Exclusion

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.

Proof.

A2 A3

A1
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Inclusion-Exclusion

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.

Proof. Consider x ∈ A2 ∩ A3. How many times is x counted?

A2 A3

A1
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Inclusion-Exclusion

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.

Proof. Consider x ∈ A2 ∩ A3. How many times is x counted?

|A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|
0 +1 +1 0 0 −1 0

A2 A3

A1
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Inclusion-Exclusion

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.

Proof. Consider x ∈ A2 ∩ A3. How many times is x counted?

|A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|
0 +1 +1 0 0 −1 0

Contribution of x to sum is +1. Repeat for each region. A2 A3

A1
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Inclusion-Exclusion

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.

Proof. Consider x ∈ A2 ∩ A3. How many times is x counted?

|A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|
0 +1 +1 0 0 −1 0

Contribution of x to sum is +1. Repeat for each region. A2 A3

A1

Example (Derangements). Give 3 coats to 3 girls so that noone gets their coat. How many ways?
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Inclusion-Exclusion

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.

Proof. Consider x ∈ A2 ∩ A3. How many times is x counted?

|A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|
0 +1 +1 0 0 −1 0

Contribution of x to sum is +1. Repeat for each region. A2 A3

A1

Example (Derangements). Give 3 coats to 3 girls so that noone gets their coat. How many ways?

Ai = {girl i gets her coat}. |Ai| = 2!.
Aij = {girls i and j get their coats}. |Aij| = 1!.
A123 = {girls 1, 2 and 3 get their coats}. |A123| = 1.
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Inclusion-Exclusion

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.

Proof. Consider x ∈ A2 ∩ A3. How many times is x counted?

|A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|
0 +1 +1 0 0 −1 0

Contribution of x to sum is +1. Repeat for each region. A2 A3

A1

Example (Derangements). Give 3 coats to 3 girls so that noone gets their coat. How many ways?

Ai = {girl i gets her coat}. |Ai| = 2!.
Aij = {girls i and j get their coats}. |Aij| = 1!.
A123 = {girls 1, 2 and 3 get their coats}. |A123| = 1.

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A12| − |A13| − |A23| + |A123|

= 2 + 2 + 2 − 1 − 1 − 1 + 1 = 4.

Creator: Malik Magdon-Ismail Advanced Counting: 7 / 11 Pigeonhole Principle →



Inclusion-Exclusion

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|.

Proof. Consider x ∈ A2 ∩ A3. How many times is x counted?

|A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|
0 +1 +1 0 0 −1 0

Contribution of x to sum is +1. Repeat for each region. A2 A3

A1

Example (Derangements). Give 3 coats to 3 girls so that noone gets their coat. How many ways?

Ai = {girl i gets her coat}. |Ai| = 2!.
Aij = {girls i and j get their coats}. |Aij| = 1!.
A123 = {girls 1, 2 and 3 get their coats}. |A123| = 1.

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A12| − |A13| − |A23| + |A123|

= 2 + 2 + 2 − 1 − 1 − 1 + 1 = 4.

The answer we seek is 3! − 4 = 2. (why?)

Exercise. How many numbers in 1,. . . ,100 are divisible by 2,3 or 5?
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Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.
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Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

More pigeons than pigeonholes.
A pigeonhole has two or more pigeons.
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Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

More pigeons than pigeonholes.
A pigeonhole has two or more pigeons.

Proof. (By contraposition). Suppose no pigeonhole has 2 or more pigeons.
Let xi be the number of pigeons in hole i, xi ≤ 1.

number of pigeons =
∑

i
xi ≤

∑

i
1 = number of pigeonholes.
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Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

More pigeons than pigeonholes.
A pigeonhole has two or more pigeons.

Proof. (By contraposition). Suppose no pigeonhole has 2 or more pigeons.
Let xi be the number of pigeons in hole i, xi ≤ 1.

number of pigeons =
∑

i
xi ≤

∑

i
1 = number of pigeonholes.

Example. If you have 8 people, at least two are born on the same day of the week.

We have 8 pigeons (the people) and 7 pigeonholes (the days of the week).
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Pigeonhole Principle

If you have more guests than spare rooms, then some guests will have to share.

More pigeons than pigeonholes.
A pigeonhole has two or more pigeons.

Proof. (By contraposition). Suppose no pigeonhole has 2 or more pigeons.
Let xi be the number of pigeons in hole i, xi ≤ 1.

number of pigeons =
∑

i
xi ≤

∑

i
1 = number of pigeonholes.

Example. If you have 8 people, at least two are born on the same day of the week.

We have 8 pigeons (the people) and 7 pigeonholes (the days of the week).

How many people do you need to ensure two are born on a Monday?
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Every Graph Has At Least One Pair of Social Twins

Two nodes are social twins if they have the same degree.
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Every Graph Has At Least One Pair of Social Twins

Two nodes are social twins if they have the same degree.

Assume the graph is connected.

v1 v2

v3 v4 v5

v6

1 2 3 4 5degree:

v1

v4

v2

v3

v5v6
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Every Graph Has At Least One Pair of Social Twins

Two nodes are social twins if they have the same degree.

Assume the graph is connected.

v1 v2

v3 v4 v5

v6

1 2 3 4 5degree:

v1

v4

v2

v3

v5v6

Degrees 1, 2, . . . , (n − 1), the pigeonholes. (Why no degree 0?)

Vertices v1, v2, . . . , vn, the pigeons.

n pigeons and (n − 1) pigeonholes, so at least two vertices are in the same degree-bin.
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Every Graph Has At Least One Pair of Social Twins

Two nodes are social twins if they have the same degree.

Assume the graph is connected.

v1 v2

v3 v4 v5

v6

1 2 3 4 5degree:

v1

v4

v2

v3

v5v6

Degrees 1, 2, . . . , (n − 1), the pigeonholes. (Why no degree 0?)

Vertices v1, v2, . . . , vn, the pigeons.

n pigeons and (n − 1) pigeonholes, so at least two vertices are in the same degree-bin.

If the graph is not connected, no one has degree n − 1.

Non-constructive proof: Who are those social twins? What are their degrees?
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Non-Constructive Proof and the Eye-Spy Dilemma
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Non-Constructive Proof and the Eye-Spy Dilemma

Prove to the 4 year old that the target exists in the picture
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Non-Constructive Proof and the Eye-Spy Dilemma

Prove to the 4 year old that the target exists in the picture
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Subset Sums

10 numbers between 1 and 100. Two distinct subsets have matching subset-sum.
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Subset Sums

10 numbers between 1 and 100. Two distinct subsets have matching subset-sum.

A subset’s sum is x1 + x2 + · · · + x10 ≤ 10 × 100 = 1000.
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Subset Sums

10 numbers between 1 and 100. Two distinct subsets have matching subset-sum.

A subset’s sum is x1 + x2 + · · · + x10 ≤ 10 × 100 = 1000.

1 2 3 · · · k · · · 1000sum:

subset S with subset sum k

Pigeonholes: bins corresponding to each possible subset-sum, 1, 2, . . . , 1000.

Pigeons: the non-empty subsets of a 10-element set: 210 − 1 = 1023.
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Subset Sums

10 numbers between 1 and 100. Two distinct subsets have matching subset-sum.

A subset’s sum is x1 + x2 + · · · + x10 ≤ 10 × 100 = 1000.

1 2 3 · · · k · · · 1000sum:

subset S with subset sum k

Pigeonholes: bins corresponding to each possible subset-sum, 1, 2, . . . , 1000.

Pigeons: the non-empty subsets of a 10-element set: 210 − 1 = 1023.

At least two subsets must be in the same subset-sum-bin.

Practice. Exercise 14.6. $100 matching subsets problem has a solution. Professor didn’t set a wild-goose chase.

Practice. Exercise 14.7.
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