Foundations of Computer Science Lecture 27

Unsolvable Problems

No Automatic Program Verifier for Hello-World No Ultimate Debugger or Algorithm for PCP The Complexity Zoo

Last Time: Turing Machines

 $\begin{array}{rcl} \text{Intuitive notion of algorithm} & \equiv & \text{Turing Machine} \\ & & \text{Solvable problem} & \equiv & \text{Turing-} decidable \end{array}$

$$\mathcal{L} = \{ \langle G \rangle \mid G \text{ is connected} \}$$

 $\langle G \rangle$ = 2; 1; 3; 4 # 1,2; 2,3; 1,3; 3,4

 $(\langle G \rangle$ is the encoding of graph G as a string.)

M =Turing Machine that solves graph connectivity

input: $\langle G \rangle$, the encoding of a graph G.

- 1: Check that $\langle G \rangle$ is a valid encoding of a graph and mark the first vertex in G.
- 2: REPEAT: Find an edge in G between a marked and an unmarked vertex.

Mark the unmarked node or GOTO step 3 if there is no such edge.

3: REJECT if there is an unmarked vertex remaining in G; otherwise ACCEPT.

To tell your friend on the other coast about this fancy Turing Machine M, encode its description into the bit-string $\langle M \rangle$ and send over the telegraph.

You want to solve a different problem? Build another Turing Machine!

Programmable Turing Machines.

Examples of unsolvable problems.

- Post's Correspondence Problem (PCP)?
- HalfSum?
- Auto-Grade?
- Ultimate-Debugger?

³ \mathcal{L}_{TM} : The language recognized by a Universal Turing Machine.

• \mathcal{L}_{TM} is undecidable – cannot be solved!

AUTO-GRADE and ULTIMATE-DEBUGGER do not exist.

What about HALFSUM?

Programmable Turing Machine: Universal Turing Machine

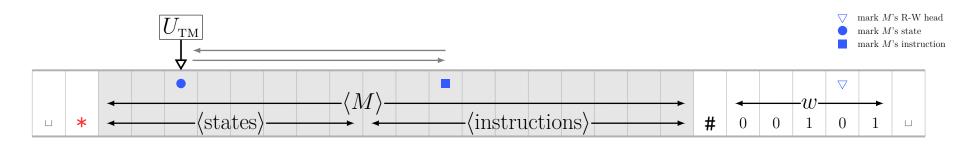
A Turing Machine M has a binary encoding $\langle M \rangle$. Its input w is a binary string.

 $\langle M \rangle$ #w can be the input to another Turing Machine U_{TM} .

$$U_{\text{TM}}(\langle M \rangle \# w) = \begin{cases} \text{halt with ACCEPT} & \text{if } M(w) = \text{halt with ACCEPT}; \\ \text{halt with REJECT} & \text{if } M(w) = \text{halt with REJECT}; \\ \text{loop forever} & \text{if } M(w) = \text{loop forever}; \end{cases}$$

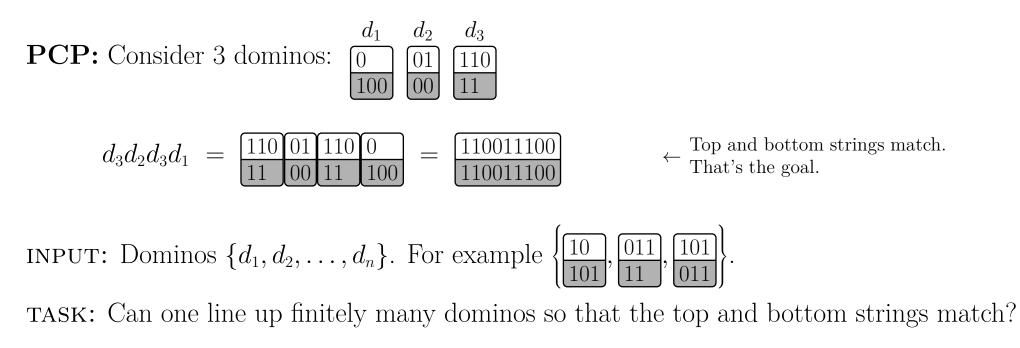
 U_{TM} outputs on $\langle M \rangle \# w$ whatever M outputs on w. U_{TM} simulates M

Challenge: U_{TM} is fixed but can simulate any M, even one with a million states.



Entire simulation is done on the tape.

Post's Correspondence Problem (PCP) and HALFSUM



HalfSum: Consider the multiset $S = \{1, 1, 1, 3, 4, 4, 5, 6, 9\}$, and subset $A = \{1, 3, 4, 9\}$.

$$\operatorname{sum}(A) = 17 = \frac{1}{2} \times \operatorname{sum}(S).$$

INPUT: Multiset $S = \{x_1, x_2, \dots, x_n\}$. For example, $S = \{1, 1, 1, 3, 4, 4, 5, 6, 9\}$. TASK: Is there a subset whose sum is $\frac{1}{2} \times \text{sum}(S) = \frac{1}{2} \times (x_1 + x_2 + \dots + x_n)$? Your first CS assignment: Write a program to print "Hello World!" and halt.

CS1: 700+ submissions!

Naturally, we do not grade these by hand.

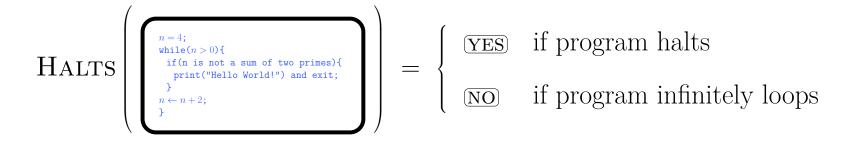
AUTO-GRADE: runs each submission and determines if its correct. \leftarrow program verification

What does AUTO-GRADE say for this program:

```
n = 4;
while(n > 0) {
if(n is not a sum of two primes) {
print("Hello World!") and exit;
}
n \leftarrow n + 2;
}
```

Wouldn't it be nice to have the ULTIMATE-DEBUGGER.

 $\leftarrow \text{ solves the } \textit{Halting Problem}$



- We can grade the students program correctly.
- We can solve Goldbach's conjecture.
- Just think what you could do with ULTIMATE-DEBUGGER.
 - ▶ No more infinite looping programs.

 $\mathcal{L}_{\text{\tiny TM}} = \{ \langle M \rangle \# w \mid M \text{ is a Turing Machine and } M \text{ accepts } w \}.$

 U_{TM} is a *recognizer* for \mathcal{L}_{TM} .

Is there a Turing Machine A_{TM} which <u>decides</u> \mathcal{L}_{TM} ?

- A decider must always halt with an answer.
- U_{TM} may loop forever if M loops forever on w.
- Question: What do these mean: $M(\langle M \rangle)$ and $A_{\text{\tiny TM}}(\langle M \rangle \# \langle M \rangle)$?

A diabolical Turing Machine D built from A_{TM} :

 $D = \text{``Diagonal'' Turing Machine derived from } A_{\text{TM}} \text{ (the decider for } \mathcal{L}_{\text{TM}} \text{)}$ input: $\langle M \rangle$ where M is a Turing Machine. 1: Run A_{TM} with input $\langle M \rangle \# \langle M \rangle$. 2: If A_{TM} accepts then REJECT; otherwise (A_{TM} rejects) ACCEPT

D does the *opposite* of $A_{\scriptscriptstyle\rm TM}.$ Is D a decider?

Theorem. A_{TM} does not exist (\mathcal{L}_{TM} Cannot be Solved)

 $A_{\text{\tiny TM}}$ exists $\rightarrow D$ exists.

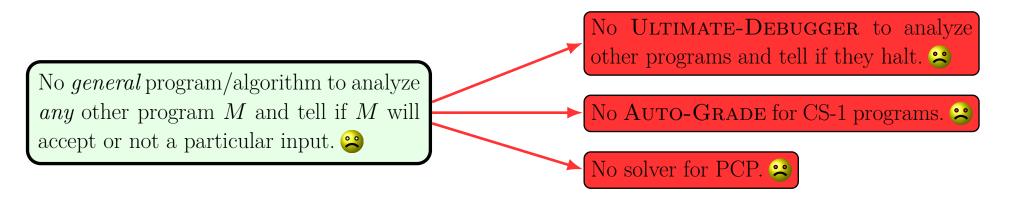
D exists means it will appear on the list of all Turing Machines, $\langle M_1 \rangle, \langle M_2 \rangle, \langle M_3 \rangle, \langle M_4 \rangle, \langle D \rangle, \dots$

Consider what happens when M_i runs on $\langle M_j \rangle$, that is $A_{\text{TM}}(\langle M_i \rangle \# \langle M_j \rangle)$.

$A_{\scriptscriptstyle \mathrm{TM}}(\langle M_i angle {m \#} \langle M_j angle)$	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$	$\langle D \rangle$	•••
$\langle M_1 angle$	ACCEPT	ACCEPT	REJECT	ACCEPT	ACCEPT	•••
$\langle M_2 angle$	REJECT	<u>REJECT</u>	REJECT	ACCEPT	ACCEPT	•••
$\langle M_3 angle$	ACCEPT	ACCEPT	<u>REJECT</u>	REJECT	ACCEPT	•••
$\langle M_4 angle$	ACCEPT	REJECT	REJECT	<u>REJECT</u>	ACCEPT	•••
$\langle D angle$	REJECT	ACCEPT	ACCEPT	ACCEPT	ACCEPREJECT?	•••
:	:	:	:	÷	÷	·

 $D(\langle M_i \rangle)$ does the *opposite* of $A_{\text{TM}}(\langle M_i \rangle \# \langle M_i \rangle)$.

ULTIMATE-DEBUGGER and AUTO-GRADE Don't Exist



Suppose ULTIMATE-DEBUGGER H_{TM} exists and *decides* if any other program halts.

We can use H_{TM} to construct a solver A_{TM} for \mathcal{L}_{TM} .

 $\frac{A_{\text{TM}} = \text{Turing Machine derived from } H_{\text{TM}} \text{ (the decider for } \mathcal{L}_{\text{HALT}} \text{)}}{\text{input: } \langle M \rangle \# w \text{ where } M \text{ is a Turing Machine and } w \text{ an input to } M. \\
1: \text{ Run } H_{\text{TM}} \text{ on input } \langle M \rangle \# w. \text{ If } H_{\text{TM}} \text{ rejects, then REJECT.} \\
2: \text{ Run } U_{\text{TM}} \text{ on input } \langle M \rangle \# w \text{ and output the decision } U_{\text{TM}} \text{ gives.}$

Exercise. Show that AUTO-GRADE does not exist.

Exercise. Show that HALFSUM is solvable by giving a decider.

