Learning From Data
Lecture 5
Training Versus Testing

The Two Questions of Learning
Theory of Generalization \((E_{\text{in}} \approx E_{\text{out}})\)
An Effective Number of Hypotheses
A Combinatorial Puzzle

M. Magdon-Ismail
CSCI 4100/6100
RECAP: The Two Questions of Learning

1. Can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
2. Can we make $E_{in}(g)$ small enough?

The Hoeffding generalization bound:

$$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}}$$

E_{in}: training (eg. the practice exam)

E_{out}: testing (eg. the real exam)

There is a tradeoff when picking $|\mathcal{H}|$.
What Will The Theory of Generalization Achieve?

\[E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}} \]

\[E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_\mathcal{H}}{\delta}} \]

The new bound will be applicable to infinite \(\mathcal{H} \).
Why is $|\mathcal{H}|$ an Overkill

How did $|\mathcal{H}|$ come in?

Bad events

$\mathcal{B}_g = \{ |E_{\text{out}}(g) - E_{\text{in}}(g)| > \epsilon \}$

$\mathcal{B}_m = \{ |E_{\text{out}}(h_m) - E_{\text{in}}(h_m)| > \epsilon \}$

We do not know which g, so use a worst case union bound.

$$P[\mathcal{B}_g] \leq P[\text{any } \mathcal{B}_m] \leq \sum_{m=1}^{\mathcal{H}} P[\mathcal{B}_m].$$

- \mathcal{B}_m are events (sets of outcomes); they can overlap.
- If the \mathcal{B}_m overlap, the union bound is loose.
- If many h_m are similar, the \mathcal{B}_m overlap.
- There are “effectively” fewer than $|\mathcal{H}|$ hypotheses.
- We can replace $|\mathcal{H}|$ by something smaller.

$|\mathcal{H}|$ fails to account for similarity between hypotheses.
Measuring the Diversity (Size) of \(H \)

We need a way to measure the *diversity* of \(H \).

A simple idea:

Fix *any* set of \(N \) data points.

If \(H \) is diverse it should be able to implement all functions

\[\ldots \text{on these } N \text{ points.} \]
A Data Set Reveals the True Colors of an \mathcal{H}
A Data Set Reveals the True Colors of an \mathcal{H}

\mathcal{H}

\mathcal{H} through the eyes of the \mathcal{D}
From the point of view of \mathcal{D}, the entire \mathcal{H} is just one *dichotomy*.
An Effective Number of Hypotheses

If \mathcal{H} is diverse it should be able to implement many dichotomys.

$|\mathcal{H}|$ only captures the maximum possible diversity of \mathcal{H}.

Consider an $h \in \mathcal{H}$, and a data set x_1, \ldots, x_N.

h gives us an N-tuple of ± 1’s:

$$(h(x_1), \ldots, h(x_N)).$$

A dichotomy of the inputs.

If \mathcal{H} is diverse, we get many different dichotomies.
If \mathcal{H} contains similar functions, we only get a few dichotomies.

The growth function quantifies this.
The Growth Function $m_{\mathcal{H}}(N)$

Define the restriction of \mathcal{H} to the inputs $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$:

$$\mathcal{H}(\mathbf{x}_1, \ldots, \mathbf{x}_N) = \{ (h(\mathbf{x}_1), \ldots, h(\mathbf{x}_N)) \mid h \in \mathcal{H} \}$$

(set of dichotomies induced by \mathcal{H})

The largest set of dichotomies induced by \mathcal{H}:

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \ldots, \mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1, \ldots, \mathbf{x}_N)|.$$

$m_{\mathcal{H}}(N) \leq 2^N$.

Can we replace $|\mathcal{H}|$ by $m_{\mathcal{H}}$, an effective number of hypotheses?

- Replacing $|\mathcal{H}|$ with 2^N is no help in the bound. (why?)
- We want $m_{\mathcal{H}}(N) \leq \text{poly}(N)$ to get a useful error bar.
Example: 2-D Perceptron Model

$m_H(3) = 8 = 2^3$.

$m_H(4) = 14 < 2^4$.

What is $m_H(5)$?
• $h(x) = \text{sign}(x - w_0)$

• Consider N points.

• There are $N + 1$ dichotomies depending on where you put w_0.

• $m_H(N) = N + 1$.

Example: 1-D Positive Ray Model
Example: Positive Rectangles in 2-D

\mathcal{H} implements all dichotomies

\[m_{\mathcal{H}}(4) = 2^4 \]

some point will be inside a rectangle defined by others

\[m_{\mathcal{H}}(5) < 2^5 \]

We have not computed $m_{\mathcal{H}}(5)$ – not impossible, but tricky.
Example Growth Functions

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>N</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D perceptron</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-D pos. ray</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-D pos. rectangles</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>$< 2^5$</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

- $m_\mathcal{H}(N)$ drops below 2^N – there is hope for the generalization bound.
- A **break point** is any n for which $m_\mathcal{H}(n) < 2^n$.
A Combinatorial Puzzle

A set of dichotomys

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
</tbody>
</table>

Two points shattered →
Two points are *shattered*
A Combinatorial Puzzle

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

No pair of points is shattered
A Combinatorial Puzzle

If \(N = 4 \) how many possible dichotomies with no 2 points shattered?