
Learning From Data
Lecture 9

Logistic Regression and Gradient Descent

Logistic Regression
Gradient Descent

M. Magdon-Ismail
CSCI 4100/6100

recap: Linear Classification and Regression

The linear signal:
s = wtx

Good Features are Important Algorithms

Before looking at the data, we can reason that
symmetry and intensity should be good features

based on our knowledge of the problem.

Linear Classification.
Pocket algorithm can tolerate errors
Simple and efficient

x1
x2

y

Linear Regression.

Single step learning:

w = X†y = (XtX)−1Xty

Very efficient O(Nd2) exact algorithm.

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 2 /23 Predicting a probability −→

Predicting a Probability

Will someone have a heart attack over the next year?

age 62 years

gender male

blood sugar 120 mg/dL40,000

HDL 50

LDL 120

Mass 190 lbs

Height 5′ 10′′

.

Classification: Yes/No

Logistic Regression: Likelihood of heart attack logistic regression ≡ y ∈ [0, 1]

h(x) = θ

(
d∑

i=0

wixi

)

= θ(wtx)

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 3 /23 What is θ? −→

Predicting a Probability

Will someone have a heart attack over the next year?

age 62 years

gender male

blood sugar 120 mg/dL40,000

HDL 50

LDL 120

Mass 190 lbs

Height 5′ 10′′

.

Classification: Yes/No

Logistic Regression: Likelihood of heart attack logistic regression ≡ y ∈ [0, 1]

h(x) = θ

(
d∑

i=0

wixi

)

= θ(wtx)
θ(s)

1

0 s

θ(s) =
es

1 + es
=

1

1 + e−s

.

θ(−s) =
e−s

1 + e−s

=
1

1 + es
= 1− θ(s).

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 4 /23 Data is binary ±1 −→

The Data is Still Binary, ±1

D = (x1, y1 = ±1), · · · , (xN , yN = ±1)

xn ← a person’s health information

yn = ±1 ← did they have a heart attack or not

We cannot measure a probability.

We can only see the occurence of an event and try to infer a probability.

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 5 /23 f is noisy −→

The Target Function is Inherently Noisy

f(x) = P[y = +1 | x].

The data is generated from a noisy target function:

P (y | x) =

f(x) for y = +1;

1− f(x) for y = −1.

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 6 /23 When is h good? −→

What Makes an h Good?

‘fitting’ the data means finding a good h

h is good if:

h(xn) ≈ 1 whenever yn = +1;

h(xn) ≈ 0 whenever yn = −1.

A simple error measure that captures this:

Ein(h) =
1

N

N∑

n=1

(
h(xn)−

1
2(1 + yn)

)2
.

Not very convenient (hard to minimize).

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 7 /23 Cross entropy error −→

The Cross Entropy Error Measure

Ein(w) =
1

N

N∑

n=1

ln(1 + e−yn·w
tx)

It looks complicated and ugly (ln, e(·), . . .),

But,
– it is based on an intuitive probabilistic interpretation of h.

– it is very convenient and mathematically friendly (‘easy’ to minimize).

Verify: yn = +1 encourages wtxn ≫ 0, so θ(wtxn) ≈ 1; yn = −1 encourages wtxn ≪ 0, so θ(wtxn) ≈ 0;

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 8 /23 Probabilistic interpretation −→

The Probabilistic Interpretation

Suppose that h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =

θ(wtx) for y = +1;

1− θ(wtx) for y = −1.

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 9 /23 1− θ(s) = θ(−s) −→

The Probabilistic Interpretation

So, if h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =

θ(wtx) for y = +1;

θ(−wtx) for y = −1.

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 10 /23 Simplify to one equation −→

The Probabilistic Interpretation

So, if h(x) = θ(wtx) closely captures P[+1|x]:

P (y | x) =

θ(wtx) for y = +1;

θ(−wtx) for y = −1.

. . . or, more compactly,
P (y | x) = θ(y ·wtx)

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 11 /23 The likelihood −→

The Likelihood

P (y | x) = θ(y ·wtx)

Recall: (x1, y1), . . . , (xN , yN) are independently generated

Likelihood:
The probability of getting the y1, . . . , yN in D from the corresponding x1, . . . ,xN :

P (y1, . . . , yN | x1, . . . ,xn) =
N∏

n=1

P (yn | xn).

The likelihood measures the probability that the data were generated if f were h.

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 12 /23 Maximize the likelihood −→

Maximizing The Likelihood (why?)

max
∏N

n=1P (yn | xn)

⇔ max ln
(
∏N

n=1P (yn | xn)
)

≡ max
∑N

n=1 lnP (yn | xn)

⇔ min − 1
N

∑N
n=1 lnP (yn | xn)

≡ min 1
N

∑N
n=1 ln

1
P (yn|xn)

≡ min 1
N

∑N
n=1 ln

1
θ(yn·wtxn)

← we specialize to our “model” here

≡ min 1
N

∑N
n=1 ln(1 + e−yn·w

txn)

Ein(w) =
1

N

N∑

n=1

ln(1 + e−yn·w
txn)

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 13 /23 How to minimize Ein(w) −→

How To Minimize Ein(w)

Classification – PLA/Pocket (iterative)

Regression – pseudoinverse (analytic), from solving ∇wEin(w) = 0.

Logistic Regression – analytic won’t work.

Numerically/iteratively set ∇wEin(w)→ 0.

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 14 /23 Hill analogy −→

Finding The Best Weights - Hill Descent

Ball on a complicated hilly terrain

— rolls down to a local valley

↑
this is called a local minimum

Questions:

How to get to the bottom of the deepest valey?

How to do this when we don’t have gravity?

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 15 /23 Our Ein is convex −→

Our Ein Has Only One Valley

Weights, w

In
-s
am

p
le
E
rr
or
,
E

in

. . . because Ein(w) is a convex function of w. (So, who care’s if it looks ugly!)

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 16 /23 How to roll down? −→

How to “Roll Down”?

Assume you are at weights w(t) and you take a step of size η in the direction v̂.

w(t + 1) = w(t) + ηv̂

We get to pick v̂ ← what’s the best direction to take the step?

Pick v̂ to make Ein(w(t + 1)) as small as possible.

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 17 /23 The gradient −→

The Gradient is the Fastest Way to Roll Down

Approximating the change in Ein

∆Ein = Ein(w(t+ 1))− Ein(w(t))

= Ein(w(t) + ηv̂)− Ein(w(t))

= η∇Ein(w(t))tv̂

︸ ︷︷ ︸

minimized at v̂ = − ∇Ein(w(t))
|| ∇Ein(w(t)) ||

+O(η2) (Taylor’s Approximation)

>
≈ −η||∇Ein(w(t)) || ←attained at v̂ = − ∇Ein(w(t))

|| ∇Ein(w(t)) ||

The best (steepest) direction to move is the negative gradient:

v̂ = −

∇Ein(w(t))

|| ∇Ein(w(t)) ||

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 18 /23 Iterate the gradient −→

“Rolling Down” ≡ Iterating the Negative Gradient

w(0)
↓ ← negative gradient

w(1)
↓ ← negative gradient

w(2)
↓ ← negative gradient

w(3)
↓ ← negative gradient

... η = 0.5; 15 steps

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 19 /23 What step size? −→

The ‘Goldilocks’ Step Size

η too small η too large variable ηt – just right

Weights, w

In
-s
am

p
le
E
rr
or
,
E

in

Weights, w

In
-s
am

p
le
E
rr
or
,
E

in

Weights, w

In
-s
am

p
le
E
rr
or
,
E

in

large η

small η

η = 0.1; 75 steps η = 2; 10 steps variable ηt; 10 steps

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 20 /23 Fixed learning rate gradient descent −→

Fixed Learning Rate Gradient Descent

ηt = η · || ∇Ein(w(t)) ||

|| ∇Ein(w(t)) || → 0 when closer to the minimum.

v̂ = −ηt ·
∇Ein(w(t))

||∇Ein(w(t)) ||

= −η · ||∇Ein(w(t)) || ·
∇Ein(w(t))

||∇Ein(w(t)) ||

v̂ = −η · ∇Ein(w(t))

1: Initialize at step t = 0 to w(0).
2: for t = 0, 1, 2, . . . do

3: Compute the gradient

gt = ∇Ein(w(t)). ←− (Ex. 3.7 in LFD)

4: Move in the direction vt = −gt.
5: Update the weights:

w(t+ 1) = w(t) + ηvt.

6: Iterate ‘until it is time to stop’.
7: end for

8: Return the final weights.

Gradient descent can minimize any smooth function, for example

Ein(w) =
1

N

N∑

n=1

ln(1 + e−yn·w
tx) ← logistic regression

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 21 /23 Stochastic gradient descent −→

Stochastic Gradient Descent (SGD)

A variation of GD that considers only the error on one data point.

Ein(w) =
1

N

N∑

n=1

ln(1 + e−yn·w
tx) =

1

N

N∑

n=1

e(w,xn, yn)

• Pick a random data point (x∗, y∗)

• Run an iteration of GD on e(w,x∗, y∗)

w(t + 1)← w(t)− η∇we(w,x∗, y∗)

1. The ‘average’ move is the same as GD;

2. Computation: fraction 1
N

cheaper per step;

3. Stochastic: helps escape local minima;

4. Simple;

5. Similar to PLA.

Logistic Regression:

w(t + 1)← w(t) + y∗x∗

(
η

1 + ey∗w
tx∗

)

(Recall PLA: w(t+ 1)← w(t) + y∗x∗)

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 22 /23 GD versus SGD, a picture −→

Stochastic Gradient Descent

GD SGD

η = 6
10 steps
N = 10

η = 2
30 steps

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 23 /23

