Learning From Data
Lecture 13
Validation and Model Selection

The Validation Set
Model Selection
Cross Validation

M. Magdon-Ismail
CSCI 4100/6100
RECAP: Regularization

Regularization combats the effects of noise by putting a leash on the algorithm.

\[E_{\text{aug}}(h) = E_{\text{in}}(h) + \frac{\lambda}{N} \Omega(h) \]

\(\Omega(h) \rightarrow \text{smooth, simple } h \)
— noise is rough, complex.

Different regularizers give different results
— can choose \(\lambda \), the amount of regularization.

Overfitting \(\rightarrow \) \(\rightarrow \) Underfitting

Optimal \(\lambda \) balances approximation and generalization, bias and variance.
Validation: A Sneak Peek at E_{out}

\[E_{\text{out}}(g) = E_{\text{in}}(g) + \text{overfit penalty} \]

VC bounds this using a complexity error bar for \mathcal{H}
regularization estimates this through a heuristic complexity penalty for g

Validation goes directly for the jugular:

\[E_{\text{out}}(g) = E_{\text{in}}(g) + \text{overfit penalty} \]

validation estimates this directly

In-sample estimate of E_{out} is the Holy Grail of learning from data.
The Test Set

\mathcal{D} (N data points) $\xrightarrow{\text{ } } \mathcal{D}_{\text{test}}$ (K test points)

$g \xrightarrow{\text{ } } e_k = e(g(x_k), y_k) \xrightarrow{\text{ } } e_1, e_2, \ldots, e_K \xrightarrow{\text{ } } g_{\text{test}} = \frac{1}{K} \sum_{k=1}^{K} e_k \xrightarrow{\text{ } } E_{\text{out}}(g)$

E_{test} is an estimate for $E_{\text{out}}(g)$

$\mathbb{E}_{\mathcal{D}_{\text{test}}} [e_k] = E_{\text{out}}(g)$

$\mathbb{E}[E_{\text{test}}] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[e_k] = \frac{1}{K} \sum_{k=1}^{K} E_{\text{out}}(g) = E_{\text{out}}(g)$

e_1, \ldots, e_K are independent

$\text{Var}[E_{\text{test}}] = \frac{1}{K^2} \sum_{k=1}^{K} \text{Var}[e_k] = \frac{1}{K} \text{Var}[e]$

decreases like $\frac{1}{K}$

bigger $K \implies$ more reliable E_{test}.
The Validation Set

1. Remove K points from \mathcal{D}

$$\mathcal{D} = \mathcal{D}_{\text{train}} \cup \mathcal{D}_{\text{val}}.$$

\mathcal{D} (N data points) → $\mathcal{D}_{\text{train}}$ (N – K training points) → \mathcal{D}_{val} (K validation points) → $g = (g(x_k), y_k)$ → e_1, e_2, \ldots, e_K → $E_{\text{val}} = \frac{1}{K} \sum_{k=1}^{K} e_k$ → $E_{\text{out}}(g)$
The Validation Set

- \(\mathcal{D} \) (\(N \) data points)

\[\mathcal{D} \xrightarrow{\text{Remove } K \text{ points}} \mathcal{D} \]

\[\mathcal{D} = \mathcal{D}_{\text{train}} \cup \mathcal{D}_{\text{val}}. \]

1. Remove \(K \) points from \(\mathcal{D} \)

2. Learn using \(\mathcal{D}_{\text{train}} \rightarrow g \).

3. Test \(g \) on \(\mathcal{D}_{\text{val}} \rightarrow E_{\text{val}}. \)

4. Use error \(E_{\text{val}} \) to estimate \(E_{\text{out}}(g) \).

\[E_{\text{val}} = \frac{1}{K} \sum_{k=1}^{K} e_k \]
The Validation Set

\[D \]
(N data points)

\[D_{\text{train}} \]
(N − K training points)

\[D_{\text{val}} \]
(K validation points)

\[g \]
\[e_k = e(g^{-}(x_k), y_k) \rightarrow e_1, e_2, \ldots, e_K \]

\[\mathbb{E}[E_{\text{test}}] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[e_k] = \frac{1}{K} \sum_{k=1}^{K} E_{\text{out}}(g^{-}) = E_{\text{out}}(g^{-}) \]

\[e_1, \ldots, e_K \text{ are independent} \]

\[Var[E_{\text{val}}] = \frac{1}{K^2} \sum_{k=1}^{K} Var[e_k] \]

\[= \frac{1}{K} \text{Var}[e(g^{-})] \]

\[\text{decreases like } \frac{1}{K} \]

\[\text{depends on } g^{-}, \text{not } H \]

\[\text{bigger } K \implies \text{more reliable } E_{\text{val}}? \]
Rule of thumb: $K^* = \frac{N}{5}$.
Restoring \mathcal{D}

Primary goal: output best hypothesis.

g was trained on all the data.

Secondary goal: estimate $E_{out}(g)$.

g^{-} is behind closed doors.

\[E_{out}(g) \quad E_{out}(g^{-}) \]
\[\downarrow \quad \downarrow \]
\[E_{in}(g) \quad E_{val}(g^{-}) \]

which should we use?

CUSTOMER
$E_{\text{val}} \text{ Versus } E_{\text{in}}$

\[E_{\text{out}}(g) \leq E_{\text{in}}(g) + O\left(\sqrt{\frac{d_{\text{vc}}}{N}} \log N\right) \]

\[E_{\text{out}}(g) \leq E_{\text{out}}(g^{-}) \leq E_{\text{val}}(g^{-}) + O\left(\frac{1}{\sqrt{K}}\right) \]

$E_{\text{val}}(g)$ usually wins as an estimate for $E_{\text{out}}(g)$, especially when the learning curve is not steep.

Biased error bar depends on \mathcal{H}.

Unbiased error bar depends on g^{-}.

Learning curve is decreasing (a practical truth, not a theorem)
The most important use of validation

\[\mathcal{H}_1 \rightarrow g_1 \]
\[\mathcal{H}_2 \rightarrow g_2 \]
\[\mathcal{H}_3 \rightarrow g_3 \]
\[\cdots \]
\[\mathcal{H}_M \rightarrow g_M \]
The most important use of validation

Validation Estimate for \mathcal{H}_1, g_1
The most important use of validation

\[
\mathcal{H}_1 \quad \overset{\mathcal{D}_{\text{train}}}{\longrightarrow} \quad \overset{\mathcal{G}_1}{\downarrow} \quad \overset{\mathcal{D}_{\text{val}}}{\longrightarrow} \quad E_1
\]
Compute Validation Estimates for All Models

The most important use of validation

\[\mathcal{H}_1 \rightarrow \mathcal{H}_2 \rightarrow \mathcal{H}_3 \rightarrow \cdots \rightarrow \mathcal{H}_M \]

\[\mathcal{D}_{\text{train}} \rightarrow \mathcal{G}_1 \rightarrow \mathcal{G}_2 \rightarrow \mathcal{G}_3 \rightarrow \cdots \rightarrow \mathcal{G}_M \]

\[\mathcal{D}_{\text{val}} \rightarrow \mathcal{E}_1 \rightarrow \mathcal{E}_2 \rightarrow \mathcal{E}_3 \rightarrow \cdots \rightarrow \mathcal{E}_M \]
Pick The Best Model According to Validation Error

The most important use of validation

\[\mathcal{H}_1 \xrightarrow{D_{\text{train}}} \mathcal{G}_1 \xrightarrow{} E_1 \]
\[\mathcal{H}_2 \xrightarrow{} \mathcal{G}_2 \xrightarrow{} E_2 \]
\[\mathcal{H}_3 \xrightarrow{} \mathcal{G}_3 \xrightarrow{} E_3 \]
\[\cdots \]
\[\mathcal{H}_M \xrightarrow{} \mathcal{G}_M \xrightarrow{} E_M \]
\(E_{\text{val}}(g_{m^*}) \) is not Unbiased For \(E_{\text{out}}(g_{m^*}) \)

\[E_{\text{out}}(g_{m^*}) \leq E_{\text{val}}(g_{m^*}) + O\left(\sqrt{\frac{\ln M}{K}}\right) \]

\(\uparrow \)

VC error bar for selecting a hypothesis from \(M \) using a data set of size \(K \).

\[\text{...because we choose one of the } M \text{ finalists.} \]
Restoring \mathcal{D}

\mathcal{H}_1 \hspace{1cm} \mathcal{H}_2 \hspace{1cm} \mathcal{H}_3 \hspace{1cm} \cdots \hspace{1cm} \mathcal{H}_M

\downarrow \hspace{1cm} \downarrow \hspace{1cm} \downarrow \hspace{1cm} \cdots \hspace{1cm} \downarrow

g_1 \hspace{1cm} g_2 \hspace{1cm} g_3 \hspace{1cm} \cdots \hspace{1cm} g_M

Model with best g also has best \mathfrak{g}

We can find model with best \mathfrak{g} using validation

\leftarrow leap of faith

\leftarrow true modulo E_{val} error bar
Comparing E_{in} and E_{val} for Model Selection

Validation Set Size, K

Expected E_{out}

- Validation: g_{m^*}
- In-sample: $g_{\hat{m}}$
- Optimal g_{m^*}

D_{train} \rightarrow H_1 \rightarrow g_1 \rightarrow E_1 \rightarrow H_{m^*}

D_{val} \rightarrow H_2 \rightarrow g_2 \rightarrow E_2 \rightarrow H_M

D_{val} \rightarrow H_M \rightarrow g_M \rightarrow E_M

Pick the best (H_{m^*}, E_{m^*})

g_{m^*}
Application to Selecting λ

Which regularization parameter to use?

$$\lambda_1, \lambda_2, \ldots, \lambda_M.$$

This is a special case of \textit{model selection} over M models,

$$\begin{align*}
(\mathcal{H}, \lambda_1) &\rightarrow g_1 \\
(\mathcal{H}, \lambda_2) &\rightarrow g_2 \\
(\mathcal{H}, \lambda_3) &\rightarrow g_3 \\
&\cdots \\
(\mathcal{H}, \lambda_M) &\rightarrow g_M
\end{align*}$$

Picking a model amounts to choosing the optimal λ
The Dilemma When Choosing K

Validation relies on the following chain of reasoning,

$$E_{\text{out}}(g) \approx E_{\text{out}}(g^-) \approx E_{\text{val}}(g^-)$$

(small K) \hspace{1cm} (large K)
Can we get away with $K = 1$?

Yes, almost!
The Leave One Out Error \((K = 1)\)

\[
E[e_1] = E_{out}(\mathcal{g}_1)
\]

...but it is a **wild** estimate
The Leave One Out Errors

\[E_{cv} = \frac{1}{N} \sum_{n=1}^{N} e_n \]
Cross Validation is Unbiased

Theorem. E_{cv} is an unbiased estimate of $E_{out}(N - 1)$.
Reliability of E_{cv}

e_n and e_m are not independent.

- e_n depends on g_n which was trained on (x_m, y_m).
- e_m is evaluated on (x_m, y_m).

Effective number of fresh examples giving a comparable estimate of E_{out}
Cross Validation is Computationally Intensive

\(N \) epochs of learning each on a data set of size \(N - 1 \).

- Analytic approaches, for example linear regression with weight decay

\[
\mathbf{w}_{\text{reg}} = (Z^T Z + \lambda I)^{-1} Z^T \mathbf{y}
\]

\[
E_{\text{cv}} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\hat{y}_n - y_n}{1 - H_{nn}(\lambda)} \right)^2
\]

\[
H(\lambda) = Z(Z^T Z + \lambda I)^{-1} Z^T.
\]

- 10-fold cross validation

\[\begin{array}{cccccccccc}
D_1 & D_2 & D_3 & D_4 & D_5 & D_6 & D_7 & D_8 & D_9 & D_{10} \\
\text{train} & \text{validate} & \text{train} & & & & & & & \\
\end{array} \]
Restoring \mathcal{D}

$$E_{\text{out}}(g^{(N)}) \leq \bar{E}_{\text{out}}(N - 1) \leq E_{\text{cv}} + O\left(\frac{1}{\sqrt{N}}\right).$$

E_{cv} can be used for model selection just as E_{val}, for example to choose λ.

CUSTOMER
Digits Problem: ‘1’ Versus ‘Not 1’

Average Intensity

\[x = (1, x_1, x_2) \]

\[z = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3, \ldots, x_1^5, x_1^4 x_2, x_1^3 x_2^2, x_1^2 x_2^3, x_1 x_2^4, x_2^5) \]

5th order polynomial transform \(\rightarrow \) 20 dimensional non linear feature space
Validation Wins In the Real World

Average Intensity

no validation (20 features)

\[E_{in} = 0\% \]

\[E_{out} = 2.5\% \]

cross validation (6 features)

\[E_{in} = 0.8\% \]

\[E_{out} = 1.5\% \]