Learning From Data
Lecture 15
Reflecting on Our Path - Epilogue to Part I

What We Did
The Machine Learning Zoo
Moving Forward

M. Magdon-Ismail
CSCI 4100/6100

Our Plan

1. What is Learning?
 Output $g \approx f$ after looking at data (x_n, y_n).

2. Can We do it?
 $E_{in} \approx E_{out}$ simple H, finite d_{vc}, large N
 $E_{in} \approx 0$ good H, algorithms

3. How to do it?
 Linear models, nonlinear transforms
 Algorithms: PLA, pseudoinverse, gradient descent

4. How to do it well?
 Overfitting: stochastic & deterministic noise
 Cures: regularization, validation.

5. General principles?
 Occam’s razor, sampling bias, data snooping

6. Advanced techniques.

7. Other Learning Paradigms.

Learning From Data: It’s A Jungle Out There

c⃝AML
Creator: Malik Magdon-Ismail

Reflecting on Our Path: 2/10

Theoretical concepts
Practical theory
Practice

1. Recap: Three Learning Principles
 - Occam’s razor: simpler is better; falsifiable.
 - Sampling bias: ensure that training and test distributions are the same, or else acknowledge/account for it. You cannot sample from one bin and use your estimates for another bin.
 - Data snooping: you are charged for every choice influenced by D. Choose the learning process (usually H) before looking at D.

 We know the price of choosing g from H.

Learning From Data: It’s A Jungle Out There

c⃝AML
Creator: Malik Magdon-Ismail

Reflecting on Our Path: 3/10

Our Plan

1. What is Learning?
 Output $g \approx f$ after looking at data (x_n, y_n).

2. Can We do it?
 $E_{in} \approx E_{out}$ simple H, finite d_{vc}, large N
 $E_{in} \approx 0$ good H, algorithms

3. How to do it?
 Linear models, nonlinear transforms
 Algorithms: PLA, pseudoinverse, gradient descent

4. How to do it well?
 Overfitting: stochastic & deterministic noise
 Cures: regularization, validation.

5. General principles?
 Occam’s razor, sampling bias, data snooping

6. Advanced techniques.

7. Other Learning Paradigms.

Learning From Data: It’s A Jungle Out There

c⃝AML
Creator: Malik Magdon-Ismail

Reflecting on Our Path: 4/10

Theory
Navigating the Jungle: Paradigms

THEORY

- VC-analysis
- bias-variance
- complexity
- Bayesian
- Rademacher
- SRM

TECHNIQUES

- Models:
 - linear
 - neural networks
 - SVM
 - similarity
 - Gaussian processes
 - graphical models
 - bilinear/SVD

- Methods:
 - regularization
 - validation
 - aggregation
 - preprocessing

PARADIGMS

- supervised
- unsupervised
- reinforcement

- active
- online
- unlabeled
- transfer learning
- big data

PARADIGMS

- supervised
- unsupervised
- reinforcement

- active
- online
- unlabeled
- transfer learning
- big data

Moving Forward

1. What is Learning?
 - Output $y \approx f$ after looking at data (x_n, y_n).

2. Can We do it?
 - $E_{in} \approx E_{out}$
 - simple H, finite d_{vc}, large N
 - $E_{in} = 0$ good H, algorithms

3. How to do it?
 - Linear models, nonlinear transforms
 - Algorithms: PLA, pseudoinverse, gradient descent

4. How to do it well?
 - Overfitting: stochastic & deterministic noise
 - Cures: regularization, validation

5. General principles?
 - Occam's razor, sampling bias, data snooping

6. Advanced techniques
 - Similarity, neural networks, SVMs, preprocessing & aggregation

7. Other Learning Paradigms.
 - Unsupervised, reinforcement