Recap: Similarity and Nearest Neighbor

- Similarity
 \[d(x, x') = ||x - x'|| \]

- 1-NN rule
 1. Simple.
 2. No training.
 3. Near optimal \(E_{\text{out}} \):
 \[k \to \infty, \; k/N \to 0 \implies E_{\text{out}} \to E^*_{\text{out}}. \]
 4. Good ways to choose \(k \):
 \[k = 3; \; k = \lceil \sqrt{N} \rceil; \; \text{validation/cross validation}. \]
 5. Easy to justify classification to customer.
 6. Can easily do multi-class.
 7. Can easily adapt to regression or logistic regression
 \[g(x) = \frac{1}{k} \sum_{i=1}^{k} y_i(x) \]

- 21-NN rule
 \[g(x) = \frac{1}{\sum_{i=1}^{k} y_i(x)} \]

- Computationally demanding.

Computational Demands of Nearest Neighbor

Memory.

Need to store all the data, \(O(Nd) \) memory.

\(N = 10^6, \; d = 100, \) double precision: 1GB

Finding the nearest neighbor of a test point.

Need to compute distance to every data point, \(O(Nd) \).

\(N = 10^6, \; d = 100, \) 3GHz processor

\[\approx 3 \text{ms (compute } g(x)) \]

\[\approx 1 \text{hr (compute CV error)} \]

\[> \text{months (choose best } k \text{ from among 1000 using CV)} \]

Two Basic Approaches

- **Reduce the amount of data.**
 The 5-year old does not remember every horse he has seen, only a few representative horses.

- **Store the data in a specialized data structure.**
 Ongoing research field to develop geometric data structures to make finding nearest neighbors fast.
Throw Away Irrelevant Data

\[k' = 1 \]

Decision Boundary Consistent

\[g(x) \text{ unchanged} \]

Training Set Consistent

\[g(x_0) \text{ unchanged} \]

Decision Boundary Vs. Training Set Consistent

\[g(x) \text{ unchanged} \text{ versus} \quad g(x_0) \text{ unchanged} \]
Consistent Does Not Mean \(g(x_n) = y_n \)

\[k = 3 \]

Training Set Consistent \((k = 3)\)

\(g(x_n) \) unchanged

CNN: Condensed Nearest Neighbor \((k = 3)\)

Consider the solid blue point:

i. blue w.r.t. selected points
ii. red w.r.t. \(D \)

Add a red point:

i. not already selected
ii. closest to the inconsistent point
CNN: Condensed Nearest Neighbor

Consider the solid blue point:
1. blue w.r.t. selected points
2. red w.r.t. D

Add a red point:
1. not already selected
2. closest to the inconsistent point

Minimum consistent set (MCS)? \leftarrow NP-hard

Nearest Neighbor on Digits Data

1-NN rule
21-NN rule

Condensing the Digits Data

1-NN rule
21-NN rule

Finding the Nearest Neighbor

1. S_1, S_2 are 'clusters' with centers μ_1, μ_2 and radii r_1, r_2.
2. [Branch] Search S_1 first $\rightarrow \hat{x}_1$.
3. The distance from x to any point in S_2 is at least
 $$|x - \mu_1| - r_2$$
4. [Bound] So we are done if
 $$|x - \hat{x}_1| \leq |x - \mu_2| - r_2$$

A branch and bound algorithm
Can be applied recursively
When Does the Bound Hold?

Bound condition: \(\| x - \hat{x}_1 \| \leq \| x - \mu_2 \| - r_2. \)

\[|x - \hat{x}_1| \leq |x - \mu_1| + r_1 \]

So, it suffices that

\[r_1 + r_2 \leq |x - \mu_2| - |x - \mu_1|. \]

| \(x - \mu_1 \| \approx \) 0 means \(|x - \mu_2| \approx |\mu_2 - \mu_2| \).

It suffices that

\[r_1 + r_2 \leq |\mu_2 - \mu_1| \]

within cluster spread should be less than between cluster spread

Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.

Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.
Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.
2. Compute Voronoi regions as the clusters.
3. Update the Centers.
4. Update the Voronoi regions.
5. Compute centers and radii:
 \[
 \mu_j = \frac{1}{|S_j|} \sum_{x_n \in S_j} x_n, \quad r_j = \max_{x_n \in S_j} \| x_n - \mu_j \|.
 \]
Radial Basis Functions (RBF)

k-Nearest Neighbor: Only considers k-nearest neighbors.
 each neighbor has equal weight

What about using *all* data to compute $g(x)$?

RBF: Use all data.
 data further away from x have less weight.