Learning From Data
Lecture 17
Memory and Efficiency in Nearest Neighbor

Memory
Efficiency

M. Magdon-Ismail
CSCI 4100/6100
RECAP: Similarity and Nearest Neighbor

Similarity

\[d(x, x') = \| x - x' \| \]

1. Simple.
2. No training.
3. Near optimal \(E_{out} \):
 \[k \to \infty, \frac{k}{N} \to 0 \implies E_{out} \to E^*_{out}. \]
4. Good ways to choose \(k \):
 \[k = 3; \quad k = \left\lceil \sqrt{N} \right\rceil; \text{ validation/cross validation}. \]
5. Easy to justify classification to customer.
6. Can easily do multi-class.
7. Can easily adapt to regression or logistic regression:
 \[g(x) = \frac{1}{k} \sum_{i=1}^{k} y[i](x) \]
 \[g(x) = \frac{1}{k} \sum_{i=1}^{k} \left[y[i](x) = +1 \right] \]
8. **Computationally demanding.**
Computational Demands of Nearest Neighbor

Memory.

Need to store all the data, $O(Nd)$ memory.

$N = 10^6$, $d = 100$, double precision ≈ 1GB

Finding the nearest neighbor of a test point.

Need to compute distance to every data point, $O(Nd)$.

$N = 10^6$, $d = 100$, 3GHz processor

≈ 3ms (compute $g(x)$)

≈ 1hr (compute CV error)

> 1month (choose best k from among 1000 using CV)
Two Basic Approaches

Reduce the amount of data.

The 5-year old does not remember every horse he has seen, only a few representative horses.

Store the data in a specialized data structure.

Ongoing research field to develop geometric data structures to make finding nearest neighbors fast.
Throw Away Irrelevant Data

\[k = 1 \]
Decision Boundary Consistent

\[g(x) \text{ unchanged} \]
Training Set Consistent

\[g(x_n) \text{ unchanged} \]
Decision Boundary Vs. Training Set Consistent

\[g(\mathbf{x}) \text{ unchanged} \]
versus
\[g(\mathbf{x}_n) \text{ unchanged} \]
Consistent Does Not Mean $g(x_n) = y_n$

$k = 3$
Training Set Consistent \((k = 3) \)

\[g(x_n) \text{ unchanged} \]
CNN: Condensed Nearest Neighbor \((k = 3)\)

Consider the solid blue point:
1. blue w.r.t. selected points
2. red w.r.t. \(\mathcal{D}\)
CNN: Condensed Nearest Neighbor

Consider the solid blue point:

i. blue w.r.t. selected points

ii. red w.r.t. \mathcal{D}

Add a red point:

i. not already selected

ii. closest to the inconsistent point
CNN: Condensed Nearest Neighbor

Consider the solid blue point:
 i. blue w.r.t. selected points
 ii. red w.r.t. \mathcal{D}

Add a red point:
 i. not already selected
 ii. closest to the inconsistent point

1. Randomly select k data points into \mathcal{S}.
2. Classify all data according to \mathcal{S}.
3. Let \mathbf{x}_* be an inconsistent point and y_* its class w.r.t. \mathcal{D}.
4. Add the closest point to \mathbf{x}_* not in \mathcal{S} that has class y_*.
5. Iterate until \mathcal{S} classifies all points consistently with \mathcal{D}.

Minimum consistent set (MCS)? \leftarrow NP-hard
Nearest Neighbor on Digits Data

1-NN rule

21-NN rule
Condensing the Digits Data

1-NN rule

21-NN rule
Finding the Nearest Neighbor

1. S_1, S_2 are ‘clusters’ with centers μ_1, μ_2 and radii r_1, r_2.

2. [Branch] Search S_1 first $\rightarrow \hat{x}_{[1]}$.

3. The distance from x to any point in S_2 is at least

 $$\|x - \mu_2\| - r_2$$

4. [Bound] So we are done if

 $$\|x - \hat{x}_{[1]}\| \leq \|x - \mu_2\| - r_2$$

A branch and bound algorithm
Can be applied recursively
When Does the Bound Hold?

Bound condition: \(\| x - \hat{x}[1] \| \leq \| x - \mu_2 \| - r_2. \)

\[
\| x - \hat{x}[1] \| \leq \| x - \mu_1 \| + r_1
\]

So, it suffices that

\[
r_1 + r_2 \leq \| x - \mu_2 \| - \| x - \mu_1 \|.
\]

\(\| x - \mu_1 \| \approx 0 \) means \(\| x - \mu_2 \| \approx \| \mu_2 - \mu_2 \|. \)

It suffices that

\[
r_1 + r_2 \leq \| \mu_2 - \mu_1 \|.
\]

within cluster spread should be less than *between cluster spread*
Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.
Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.

\[\mu_j = \frac{1}{|S_j|} \sum_{x_n \in S_j} x_n; \]
\[r_j = \max_{x_n \in S_j} ||x_n - \mu_j||. \]
1. Pick well separated centers for each cluster.

\[\mu_j = \frac{1}{|S_j|} \sum_{x_n \in S_j} x_n; \]
\[r_j = \max_{x_n \in S_j} ||x_n - \mu_j||. \]
Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.
Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.

2. Compute Voronoi regions as the clusters.
Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.

2. Compute Voronoi regions as the clusters.

3. Update the Centers.

\[\mu_j = \frac{\sum_{x_n \in S_j} x_n}{|S_j|}; \quad r_j = \max_{x_n \in S_j} ||x_n - \mu_j||. \]
Finding Clusters – Lloyd’s Algorithm

1. Pick well separated centers for each cluster.

2. Compute Voronoi regions as the clusters.

3. Update the Centers.

4. Update the Voronoi regions.

5. Compute centers and radii:

\[\mu_j = \frac{1}{|S_j|} \sum_{x_n \in S_j} x_n; \quad r_j = \max_{x_n \in S_j} \|x_n - \mu_j\|. \]
Radial Basis Functions (RBF)

k-Nearest Neighbor: Only considers k-nearest neighbors.
 each neighbor has equal weight

What about using all data to compute $g(x)$?

RBF: Use all data.
 data further away from x have less weight.