# Learning From Data Lecture 26 Kernel Machines 

Popular Kernels<br>The Kernel Measures Similarity<br>Kernels in Different Applications

M. Magdon-Ismail

CSCI 4100/6100

## recap: The Kernel Allows Us to Bypass $\mathcal{Z}$-space



$$
\mathbf{x}_{n} \in \mathcal{X}
$$

$$
\downarrow^{K(\cdot, \cdot)}
$$


$g(\mathbf{x})=\operatorname{sign}\left(\sum_{\alpha_{n}^{*}>0} \alpha_{n}^{*} y_{n} K\left(\mathbf{x}_{n}, \mathbf{x}\right)+b^{*}\right)$
$b^{*}=y_{s}-\sum_{\alpha_{n}^{*}>0} \alpha_{n}^{*} y_{n} K\left(\mathbf{x}_{n}, \mathbf{x}_{s}\right)$
(One can compute $b^{*}$ for several SVs and average)

Solve the QP

$$
\left.\begin{array}{ll}
\underset{\alpha}{\operatorname{minimize}} & \frac{1}{2} \boldsymbol{\alpha}^{\mathrm{T}} \mathrm{G} \boldsymbol{\alpha}-\mathbf{1}^{\mathrm{T}} \boldsymbol{\alpha} \\
\text { subject to: } & \mathbf{y}^{\mathrm{T}} \boldsymbol{\alpha}=0 \\
& \mathbf{C} \geq \boldsymbol{\alpha} \geq \mathbf{0}
\end{array}\right\} \longrightarrow \begin{aligned}
& \boldsymbol{\alpha}^{*} \\
& \text { index } s: C>\alpha_{s}^{*}>0 \\
& \alpha_{\uparrow} \\
& \text { free support vectors }
\end{aligned}
$$

## Overfitting

SVM

high $\tilde{d} \rightarrow$ complicated separator
few support vectors $\rightarrow$ low effective complexity
Can go to high (infinite) $\tilde{d}$

## Computation

Inner products with Kernel

$$
K(\cdot, \cdot)
$$

high $\tilde{d} \rightarrow$ expensive or infeasible computation
kernel $\rightarrow$ computationally feasible to go to high $\tilde{d}$
Can go to high (infinite) $\tilde{d}$

## Polynomial Kernel

2nd-Order Polynomial Kernel

$$
\begin{aligned}
& \Phi(\mathbf{x})=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d} \\
x_{1}^{2} \\
x_{2}^{2} \\
\vdots \\
x_{d}^{2} \\
\sqrt{2} x_{1} x_{2} \\
\sqrt{2} x_{1} x_{3} \\
\vdots \\
\sqrt{2} x_{1} x_{d} \\
\sqrt{2} x_{2} x_{3} \\
\vdots \\
\sqrt{2} x_{d-1} x_{d}
\end{array}\right] \\
& K\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\Phi(\mathrm{x})^{\mathrm{T}} \Phi\left(\mathrm{x}^{\prime}\right) \\
& =\sum_{i=1}^{d} x_{i} x_{i}^{\prime}+\sum_{i=1}^{d} x_{i}^{2} x_{i}^{\prime 2}+2 \sum_{i<j} x_{i} x_{j} x_{i}^{\prime} x_{j}^{\prime} \quad \leftarrow O\left(d^{2}\right) \\
& =\left(\frac{1}{2}+\mathrm{x}^{\mathrm{T}} \mathrm{x}^{\prime}\right)^{2}-\frac{1}{4} \\
& \text { computed quickly } \\
& \text { in } \underline{\mathcal{X} \text {-space, in } O(d)}
\end{aligned}
$$

$Q$-th order polynomial kernel

$$
\begin{array}{ll}
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(r+\mathbf{x}^{\mathrm{T}} \mathbf{x}^{\prime}\right)^{Q} & \leftarrow \text { inhomogeneous kernel } \\
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{\mathrm{T}} \mathbf{x}^{\prime}\right)^{Q} & \leftarrow \text { homogeneous kernel }
\end{array}
$$

## RBF-Kernel

One dimensional RBF-Kernel
$\Phi(x)=e^{-x^{2}}\left[\begin{array}{c}1 \\ \sqrt{\frac{2^{1}}{1!}} x \\ \sqrt{\frac{2^{2}}{21}} x^{2} \\ \sqrt{\frac{2^{3}}{3}} x^{3} \\ \sqrt{\frac{2^{4}}{4} x^{4}} \\ \vdots\end{array}\right] \quad \begin{aligned} & K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\Phi(\mathbf{x})^{\mathrm{T}} \Phi\left(\mathbf{x}^{\prime}\right) \\ &=e^{-x^{2}} e^{-x^{\prime 2}} \sum_{i=0}^{\infty} \frac{\left(2 x x^{\prime}\right)^{i}}{i!} \quad \leftarrow \text { not feasible } \\ &=e^{-x^{2}} e^{-x^{\prime 2}} e^{2 x x^{\prime}} \\ &=e^{-\left(x-x^{\prime}\right)^{2}} \\ & \uparrow \uparrow \begin{array}{c}\text { computed quickly } \\ \text { in } \mathcal{X} \text {-space, in } O(d)\end{array}\end{aligned}$


Soft Margin $(\gamma=2000, C=0.25)$


Soft Margin $(\gamma=100, C=0.25)$

## Choosing RBF-Kernel Width $\gamma$

$$
e^{-\gamma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}
$$



Small $\gamma$


Medium $\gamma$


Large $\gamma$ !

## RBF-Kernel Simulates $k$-RBF-Network

RBF-Kernel

$$
g(\mathbf{x})=\operatorname{sign}\left(\sum_{\alpha_{n}^{*}>0} \alpha_{n}^{*} y_{n} e^{-\left\|\mathbf{x}-\mathbf{x}_{n}\right\|^{2}}+b^{*}\right)
$$

Centers are at support vectors
Number of centers auto-determined

Centers chosen to represent the data Number of centers $k$ is an input
$\underline{k \text {-RBF-Network }}$

$$
g(\mathbf{x})=\operatorname{sign}\left(\sum_{j=1}^{k} w_{j} e^{-\left\|\mathbf{x}-\mu_{j}\right\|^{2}}+w_{0}\right)
$$

## Neural Network Kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\tanh \left(\kappa \cdot \mathbf{x}^{\mathrm{T}} \mathbf{x}^{\prime}+c\right)
$$

## Neural Network Kernel

$$
g(\mathbf{x})=\operatorname{sign}\left(\sum_{\alpha_{n}^{*}>0} \alpha_{n}^{*} y_{n} \tanh \left(\kappa \cdot \mathbf{x}_{n}^{\mathrm{T}} \mathbf{x}+c\right)+b^{*}\right)
$$

First layer weights are support vectors Number of hidden nodes auto-determined

## 2 Layer Neural Network

$$
g(\mathbf{x})=\operatorname{sign}\left(\sum_{j=1}^{m} w_{j} \tanh \left(\mathbf{v}_{j}{ }^{\mathrm{T}} \mathbf{x}\right)+w_{0}\right)
$$

First layer weights arbitrary Number of hidden nodes $m$ is an input

## The Inner Product Measures Similarity

$$
\begin{aligned}
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{z}^{\mathrm{T}} \mathbf{z}^{\prime} & =\|\mathbf{z}\| \cdot\left\|\mathbf{z}^{\prime}\right\| \cdot \cos \left(\theta_{\mathbf{z}, \mathbf{z}^{\prime}}\right) \\
& =\|\mathbf{z}\| \cdot\left\|\mathbf{z}^{\prime}\right\| \cdot \operatorname{CosSim}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)
\end{aligned}
$$

Normalizing for size, Kernel measures similarity between input vectors

## Designing Kernels

- Construct a similarity measure for the data
- A linear model should be plausible in that transformed space


## String Kernels

## Applications: DNA sequences, Text

$$
\begin{aligned}
& \text { Dear Sir, } \\
& \text { With reference to your letter dated 26th } \\
& \text { March, I want to confirm the Order No. } \\
& 34-09-10 \text { placed on 3rd March, 2010. I } \\
& \text { would appreciate if you could send me } \\
& \text { the account details where the payment has } \\
& \text { to be made. As per the invoice, we are } \\
& \text { entitled to a cash discount of } 2 \% \text { Can } \\
& \text { you please let us know whether it suits } \\
& \text { you if we make a wire transfer instead of } \\
& \text { a cheque? }
\end{aligned}
$$

## Dear Jane,

I am terribly sorry to hear the news of your hip fracture. I can only imagine what a terrible time you must be going through. I hope you and the family are coping well. If there is any help you need, don't hesitate to let me know.

## Similar?

Yes, if classifying spam versus non-spam
No, if classifying business versus personal

To design the kernel $\longrightarrow$ measure similarity between strings
Bag of words (number of occurences of each atom)
Co-occurrence of substrings or subsequences

## Graph Kernels

Performing classification on:
Graph structures (eg. protein networks for function prediction)
Graph nodes within a network (eg. advertise of not to Facebook users)

## Similarity between graphs:

random walks degree sequences, connectivity properties, mixing properties.

## Measuring similarity between nodes:

Looking at neighborhoods, $K\left(v, v^{\prime}\right)=\frac{\left|N(v) \cap N\left(v^{\prime}\right)\right|}{\left|N(v) \cup N\left(v^{\prime}\right)\right|}$.

## Image Kernels



## Similar?

Yes - if trying to regcognize pictures with faces.
No - if trying to distinguish Malik from Christos

