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Computational Finance – Pricing The
American Option

1 Introduction

Recall that the American option has strike K and maturity T and gives the holder the right
to exercise at any time in [0, T ]. The American option is not straightforward to price in the
Monte Carlo framework that we have discussed. The reason is that the derivative cash flow
function f(S, t) is not well defined. The problem is that we cannot compute the derivative
cash flow until we know how the American option is going to be exercised. If, on the other
hand, we knew the optimal exercise strategy, then it would be a straightforward task, using
Monte Carlo, to obtain the expected discounted cashflows, and hence the price.

Lets first define what an exercise strategy is. Denote an exercise strategy by π(S, t),
which is a binary valued function of two variables, the price and the time. The exercise
strategy π(S, t) specifies whether to exercise or not at the state (S, t),

π(S, t) =

{

1 exercise in state (S, t),

0 do not exercise in state (S, t).

2 Review of the Risk Neutral Stock Dynamics

Remember that all pricing occurs in the risk-neutral world, which is governed by the Mar-

tingale measure. Let’s first recall the stock dynamics in the risk neutral world,

dS = rSdt+ σSdW,

d log S = (r − 1
2
σ2)dt+ σdW,

where dW is a more formal way to write
√
dtǫ(t) with ǫ(t) being a zero mean unit variance

independent random variable, and σ is the real world volatility of the stock. We have
alternatively written this random process as

S(t+∆t) = S(t)eη,

where η ∼ N((r− 1
2
σ2)∆t, σ2∆t). Since S = elogS and log S is a real valued random process,

this means that S is a positive valued random process. Intuitively, S has a reflective barrier
at zero. The expected move in S is an increase by a factor er∆t, a consequence of the risk
neutral dynamics because all prices are martingales,

S(t) = E[e−r∆tS(t+∆t)].

Intuitively, as S gets closer to 0, it will tend to move up by larger additive factors than down.
When S is far from 0, this is stll the case, but the asymmetry about Ser∆t will not be as
severe. This intuition has an important implication for the American call option, namely
that it is never optimal to exercise early.
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3 The American Call Option 2

3 The American Call Option

If at any time the stock S is below the strike K, then there is no reason to exercise. If,
on the other hand, S > K, there is a choice to be made. Should one exercise now, and
obtain an instant profit of S−K, or wait in the hopes that S increases fast enough (to offset
discounting). If S increases fast enough, we can exercise later and make more money.

The intuition above that the stock is more likely to increase faster than er∆t than slower
seems to suggest that it is better to wait and exercise later. This argument seems applicable
to any time, thus it should be always better to wait. This intuition seems to lead to the
bizzare conclusion that it is never optimal to exercise the American call option before expiry.
In this case, the American call option is exactly a European call option, and so its price is
also exactly the same as that of the European call. Is there something wrong with the
intuition? While it seems plausible that S is more likely to increase than decrease, does
it always increase at a fast enough rate? The answer is yes, and we are in fact led to the
following theorem

Theorem 3.1 The American call option and the European call option are equivalent.

To prove this, we will simply show that it is never optimal to exercise. Consider time
t where a decision to exercise appears for the first time, i.e., S(t) − K > 0. The cash
flow from exercising is thus S(t) − K. Consider now the alternative strategy of waiting
for a small time ∆t and then exercising. Lets compute the expected discounted cash flow
for this strategy (which is available to us, since we hold an American option). We want
E[e−r∆t(S(t+∆t)−K)+]. Since (S(t+∆t)−K)+ ≥ S(t+∆t)−K, we have

E[e−r∆t(S(t+∆t)−K)+] ≥ E[e−r∆t(S(t+∆t)−K)],

= E[e−r∆tS(t+∆t)]− e−r∆tK,
(a)
= S(t)− e−r∆tK, , (1)

> S(t)−K,

where (a) follows because we are in the risk neutral world (Martingale world), which means
that in this world, the price today of every instrument (S(t)) is the expected discounted price
tomorrow (E[e−r∆tS(t+∆t)]). Thus we see that by waiting a fixed period ∆t, the expected
discounted cash flow is larger in the risk neutral world. Since waiting for a fixed period ∆t is
only a subset of the options available to the holder of the American option, by waiting and
optimally exercising later, we should be able to access even higher discounted cash flows.
We conclude that for every time t where we have the choice to exercise, it is better to wait.
This concludes the proof of Theorem 3.1. Note that the proof we have given is not specific
to the GBM risk neutral process, and in fact applies to any risk neutral process.

Exercise 3.1
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4 The American Put Option 3

Explicitly verify equation (1) by explicitly computing E[e−r∆tS(t+∆t)] to
obtain S(t).

[Hint: Use the fact that S(t + ∆t) = S(t)eη. You thus need to compute
E[eη], where η ∼ N((r − 1

2σ
2)∆t, σ2∆t). ]

The unfortunate (or fortunate) outcome is that there is no more work to do for the American
call option. We thus turn to the American put option.

4 The American Put Option

It seems that the same argument above should apply to the American put option. Consider
a time t when K − S(t) > 0, i.e. the holder has a decision to make as to exercising or not.
If we go through the same analysis as above for the fixed strategy of waiting to exercise at
time ∆t, we obtain

E[e−r∆t(K − S(t+∆t))+] ≥ e−r∆tK − S(t).

The ≥ arises from the fact that (K − S(t + ∆t))+ ≥ K − S(t + ∆t). Now the RHS is
strictly less that K − S(t) and all we know is that the LHS is at least the RHS so we
can not conclude anything about whether it is better to exercise now or wait a small time
∆t and exercise. In fact one might argue that if K − S(t) > 0 and ∆t is small enough,
approaching 0, then this ≥ becomes close enough to equality – i.e., for small enough ∆t,
e−r∆tK−S(t) ≈ E[e−r∆t(K−S(t+∆t))+] < K−S(t). Thus it looks like by waiting a fixed
time ∆t and then exercising, one obtains smaller cash flow. This is in fact true, and so it
is always better to exercise now than wait a (small) fixed time and exercise later. However,
remember that waiting and exercising after a small fixed time is only a subset of the options
available to the holder of the American put option – if the holder decides to wait, then he will
exercise optimally later. Optimal exercise in the future has a value at least that of waiting
for a small fixed period and exercising, but if the additional value of optimal exercise over
waiting a fixed time cannot overcome the discounting (e−r∆t), then it may be optimal to
exercise now than wait and optimally exercise later. Thus, we are not in the same boat as
the American call option –

What can we say about the optimal exercise strategy? We can get some general properties
of the optimal exercise strategy. In particular, the two properties that we would like to
establish are that

1. At every time t, there is an optimal exercise price point π∗(t). Below the price π∗(t),
it is optimal to exercise at time t and above this price, it is optimal not to exercise,
holding and optimally exercising later, over (t, T ]. The function π∗(t) defines an optimal
exercise boundary.
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2. The optimal exercise boundary π∗(t) is non-decreasing, with π∗(T ) = K.

The first property is true for certain price processes in the risk neutral world, and the second
is true for any Markovian risk neutral dynamics. The upshot of all this discussion is that
the optimal exercise strategy can be represented by an optimal exercise threshold function

π∗(t). The optimal exercise strategy is then given by

π∗(S, t) =

{

1 S < π∗(t),

0 S ≥ π∗(t).

Further, the optimal exercise threshold function π∗(t) is a monotonically increasing function
of t. The situation is illustrated in the figure, where the shaded region indicates the states
where it is not optimal to exercise.

0 T

K

π∗

We will now prove the second property for any Markovian risk neutral dynamics, in particular
our GBM risk neutral dynamics. Suppose that it is optimal to exercise in state (S, t). This
means that the cash flow from exercising, equal to K−S is at least the expected discounted
cashflow from optimal exercise over (t, T ] starting from price S at time t. In particular, for
any exercise strategy,

K − S ≥ E[discounted cashflow for exercise according to any exercise strategy π].

Now consider the state (S, τ) for any τ > t. Immediate exercise gives the cash flow K − S,
just as in the state (S, t). Suppose that it is not optimal to exercise the option. In this case,
there must exist some exercise stratety π which yields an expected discounted cash flow
greater than K − S, where we follow the exercise strategy π starting from state (S, τ). Now
consider using this strategy π starting at time t with the stock at price S, i.e., starting from
the state (S, t). Since the risk neutral dynamics is Markovian, the price dynamics starting
from state (S, t) over a time period of length T − τ are exactly the same1 as the dynamics
starting from state (S, τ) over the time period of length T − τ (to maturity), because the
future dynamics over a time period of length T − τ only depends on the current price which
in both cases is S. Thus, starting from state (S, t) and following exercise strategy π one has
the same expected discounted cashflows over the time interval (t, t+T−τ ] as one would have
from following strategy π from state (S, τ) to the maturity of the option. By assumption,
this expected cash flow is greater than K − S, and so we have a stretegy π which starting

1in the sense that every price path has the same probability
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from state (S, t) produces an expected discounted cash flow greater than K − S, which is a
contradiction. Thus, we conclude that if it is optimal to exercise in state (S, t), then it is
optimal to exercise in state (S, τ) for every τ ≥ t. This proves that π∗(t) is non-decreasing
in t.

Proving that there is a well defined exercise point π∗(t) below which it is optimal to
exercise and above which it is optimal to hold is a little tricky and depends on the particular
risk neutral dynamics. The approach is to show that if π∗(S, t) = 1 then π∗(S ′, t) = 1 for
all S ′ ≤ S. We give an intuitive argument and leave a more formal argument to an exercise.
Suppose that it is optimal to exercise at (S, t). Then, intuitively, it is better to take the
money K−S and run, than wait and optimally exercise later. Thus, intuitively, it should be
optimal to exercise at (S ′, t) for all S ′ < S, since one is getting more money. This becomes
particularly so since due to the reflecting barrier at 0, the stock is “more likely” to move
up (relative to erδt) than down and hence it is even more imperative to take the money and
run – since the stock price is even more likely to go up from S ′ than it was from S, one
should definitely take the money K − S ′ if it was already optimal to take K − S and run
since the asymmetry in the up versus down moves has gotten worse. The next exercise gives
a slightly more formal discussion of this statement, which should probably be skipped on a
first reading.

Exercise 4.1

Let π∗ be the optimal exercise strategy. Show that if π∗(S, t) = 1, then
for all S′ < S, π∗(S′, t) = 1.

The following sketch should guide you through the argument. Imagine
starting two identical processes at (S, t) and (S′, t), S′ < S. Let πS be the
optimal exercise strategy starting from (S, t) and correspondingly πS′ the
optimal exercise strategy starting from (S′, t). Consider now the process
∆ logS and∆ logS′. These are identical processes. We can thus define the
optimal exercise strategies equivalently in terms of the processes ∆ logS
and ∆ logS′. Consider the paths defined with respect to ∆ logS′. Let
{pα} be the paths on which πS′ would exercise at time τ(pα) with ∆τ (pα)
denoting ∆ logS′ at this time of exercise on pα. Since one is exercising, it
must be that K − S′e∆τ (pα) > 0

Let Epα =
∫

{pα} dµ(pα), where dµ(pα) is the risk neutral measure. Then,

since it is not optimal to exercise from (S′, t), it must be that

K − S′ < Epα [e
−rτ(pα)(K − S′e∆τ (pα))]. (2)

πS′ also defines an exercise strategy starting from S (though it may be sub-
optimal). Since ∆ logS and ∆ logS′ are identical processes, the measure
is the same. Further, since it is optimal to exercise at S, it must be that

K − S ≥ Epα [e
−rτ(pα)(K − Se∆τ (pα))]. (3)
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Compining (2) and (3),

S′ − S > (S′ − S)Epα [e
−rτ(pα)e∆τ (pα)],

and since S′ − S < 0,

1 < Epα [e
−rτ(pα)e∆τ (pα)]. (4)

Rearranging (2) and using (4), we obtain

K(1− Epα [e
−rτ(pα)]) < S′(1− Epα [e

−rτ(pα)e∆τ (pα)]) < 0,

which is clearly a contradiction because the leftmost term is at least 0 since
r > 0 and τ(pα) ≥ 0.

We now consider several methods for obtaining the optimal exercise threshold function, and
the price of the American put option.

5 Dynamic Programming on the Binomial Tree for Pric-

ing the American Put

Our first algorithm will be based on a dynamic programming approach for the binomial
tree risk neutral dynamics of a stock. We briefly recap the binomial tree model for the risk
neutral dynamics. The binomial tree is illustrated in the figure below for three time steps.

3∆t

S

p̃

λ3
+S

λ2
+λ−S

λ+λ
2
−S

λ3
−S

t

0 ∆t 2∆t

in which the parameters λ± are given by

λ+ = e
µ∆t+σ

√

1−p

p

√
∆t
,

λ− = eµ∆t−σ
√

p

1−p

√
∆t.

©Malik Magdon-Ismail, RPI, October 31, 2022



5 Dynamic Programming on the Binomial Tree for Pricing the American Put 7

Here µ, σ are the real world drift and volatility, and p is arbitrary. We have droped the
subscript R for simplicity of notation. The risk neutral probability is given by

p̃ =
er∆t − λ−
λ+ − λ−

.

In the n step binomial tree, there are n discrete time steps, ∆t, 2∆t, . . . , n∆t, with n∆t = T
(T is the maturity of the option). At time step i∆t, there are i + 1 possible stock values,
λk
+λ

i−k
− S for k = 0, . . . , i. Thus we can use the pair of indices (i, k) to index a node on

the binomal tree (it is actually a grid). Note that the total number of nodes on the grid is
1 + 2 + · · ·+ n+ (n+ 1) = Θ(n2).

Let’s introduce two quantities, V (i, k) and π∗(i, k) to denote the value of holding the
option and being at node (i, k) and the optimal exercise strategy (1 or 0) evaluated on (i, k).
Remember that (i, k) stands for the time i∆t at which the stock price is λk

+λ
i−k
− S. Clearly

V (0, 0) is the price of the option. From π∗(i, k) one can easily compute the optimal exercise
threshold function π∗(i). We will thus focus on evaluating the quantities V (i, k) and π∗(i, k)
efficently.

Consider the last time step, n with the nodes (n, k), k ∈ [0, n]. Since at time T , the only
option is to exercise if it is profitable to do so, it is clear that

π∗(n, k) =

{

1 K − λk
+λ

n−k
− S ≥ 0,

0 K − λk
+λ

n−k
− S < 0,

V (n, k) = (K − λk
+λ

n−k
− S)+,

We now show how to compute V (i− 1, k) and π∗(i− 1, k) for all k ∈ [0, i− 1] given that we
know V (i, k′) for all k′ ∈ [0, i]. Once we have done this, the algorithm will be clear. We start
with {V (n, k)}nk=0 and {π∗(n, k)}nk=0 which are known. We then compute {V (n − 1, k)}n−1

k=0

and {π∗(n− 1, k)}n−1
k=0 from {V (n, k)}n−1

k=0 , and so on, proceeding backwards to V (0, 0).
Consider V (i− 1, k). In state (i− 1, k) there are two options: exercise immediately if the

option is in the money, in which case the cash flow is (K−λk
+λ

i−1−k
− S)+; or, wait. If we wait,

there are two possible scenarios: the stock goes up to λk+1
+ λi−1−k

− S, i.e. to the node (i, k+1);
or, the stock goes down to λk

+λ
i−k
− S, i.e. to the node (i, k). The values V (i, k + 1), V (i, k)

of being in both of these states are known (by assumption). Thus, the expected discounted
value (under the risk neutral measure) of holding can be computed as

Vh(i− 1, k) = e−r∆t(p̃V (i, k + 1) + (1− p̃)V (i, k)).

Similarily, the value of exercising is

Vex(i− 1, k) = (K − λk
+λ

i−1−k
− S)+.

If the cash flow of exercising is at least the expected cash flow of waiting, then it is optimal
to exercise, and vice versa. Thus, we conclude that

π∗(i− 1, k) =

{

1 Vex(i− 1, k) ≥ Vh(i− 1, k),

0 Vex(i− 1, k) < Vh(i− 1, k),
(5)

V (i− 1, k) = max{Vex(i− 1, k), Vh(i− 1, k)}. (6)
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Equations (5) and (6) are the key steps in the dynamic programming algorithm. Notice that
every node of the tree will be visited, and at each node a constant amount of work is done,
so the running time of the algorithm is Θ(n2). The quadratic running time is essentially
unavoidable. If all the values π∗(i, k) and V (i, k) are stored, then the memory requirement
is also Θ(n2), which for n reasonably large is unmanageable. Luckily, it is possible to run
the algorithm with only a memory requirement Θ(n), to store the exercise function π∗(i)
and obtain the price V (0, 0). The main idea is that once V (i − 1, k) is computed, V (i, k′)
will never be needed again, and so that memory can be reused.

Exercise 5.1

Show more explicitly that only Θ(n) memory is needed for the dynamic
programming algorithm. Try to minimize the memory requirement as much
as you can.

We give the full algorithm in pseudo code below.

1: Algorithm: Pricing American Put using Dynamic Programming
2: Select ∆t and compute λ± and p̃.
3: Initialize π∗(n) = K and a vector v of size n+ 1 to vk = V (n, k) for k ∈ [0, n].
4: for i = n− 1 to 0 do
5: for k = 0 to i do
6: vk ← max{(K − λk

+λ
i−k
− S)+, e−r∆t(p̃vk+1 + (1− p̃)vk)}

7: if vk ≤ (K − λk
+λ

i−k
− S)+ then

8: π∗(i) = λk
+λ

i−k
− S

9: v0 is the option price.
10: π∗(i) contains the optimal exercise threshold function.

The algorithm as stated above is perfectly fine for an infinite precision machine, however
on a finite precision machine, a certain amount of care needs to be taken. In particular,
lets consider the “simple” task of initializing v in step [3] of the algorithm. This involves
computing the stock price sk since vk = (K−sk)

+, so we consider the initialization of sk, for
k = 0, . . . , n. A natural approach would be to first initialize s0 = λn

−S and then initialize the

remaining sk for k ∈ [1, n] using the update sk =
λ+

λ−

sk−1. Let’s consider the numerical value

of s0 = λn
−S. Note that for ∆t = T

n
small enough,

√
∆t ≫ ∆t and so λ− ≈ e−σ

√
p

1−p

√
T
n .

Thus,

λn
− ≈ e−σ

√
nT
√

p

1−p .

Thus, for large n, to within the numerical precision of most computers, s0 will evaluate to
0, and if the update sk = λ+

λ−

vk−1 is used with starting condition s0 = 0, all the sk will be
zero, and the algorithm will be doomed from the begining.
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Exercise 5.2

Give a better approach to innitializing the vector v than the one discussed
above.

[Hint: Consider computing log sk. Show that log sk = k log λ+ + (n −
k) log λ− + logS.]

As an example, running our dynamic programming algorithm with S = K = 100, T = 2
years, r = 0.05 (annualized), σ = 0.2 (annualized) and n = 200, 000, the American put
option price was 7.723197. The optimal exercise threshold function is given in the figure
below.

0 0.5 1 1.5 2
75
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95

100
Optimal Exercise Threshold Function

t

S

As one increases n, the price converges to the true price, hence this method is one of a class
of methods known as convergent methods. However, the behavior of this convergence is
interesting. It is not monotonic, so the price cannot be used to bound the true price in any
systematic way. It is known that for the Binomial tree with n discretization time steps, the
absolute error in the price converges at a rate Θ( 1

n
). Some of these behaviors are illustrated

in the figures below.
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6 Monte Carlo Pricing of the American Put

As already mentioned, the straightforward Monte Carlo approach will not work, as the
derivative cash flows are not well defined given a path. As a result, the typical approach to
price the American put using Monte Carlo is a two stage process:

1. First obtain the optimal exercise threshold function.

2. Given the optimal exercise function, the derivative cash flows for any path are now
well defined, hence the price can be obtained using the straight forward Monte Carlo
approach discussed earlier.

Once again, the algorithm will be a dynamic programming one, however it will somehow be
based on a set of Monte Carlo paths instead of on the Binomial tree.

So, suppose that M Monte Carlo paths p1, . . . , pM have been generated. We will be
interested in computing V (S, t), the value of holding the option at time t when stock price is
S. Once again, assume that t is discretized into n time steps, t = 0,∆t, . . . , n∆t (∆t = T/n).
If we use the continuous model for generating the stock, then S will be continuous.

Recap (generating paths for the risk neutral world in the continuous model). Let S0 be the initial

price. The dynamics of the process logS are d logS = (r − 1
2
σ2)dt + σdW . To generate one path, generate

n independent random variables ∆i ∼ N((r − 1
2
σ2)∆t, σ2∆t). Set ∆logSi =

∑i

k=1 ∆i and Si = S(i∆t) =

S0e
∆ log Si .

Let’s examine in detail a single path, for example pj, j ∈ [1,M ]. We denote the n + 1
stock prices along the path pj at the times i∆t for i ∈ [0, n] by Sj(i). The figure below
illustrates.
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Sj(2)

0

t

2∆t∆t · · · T −∆t T

pj
Sj(0)

Sj(1)

Sj(N − 1)

Sj(N)

As usual, we begin at time T , where V (S, T ) is known, V (S, T ) = (K−S)+, and π∗(T ) = K.
Now consider V (S, T − ∆T ). The value of exercising, Vex(S, T − ∆T ) = (K − S)+. If we
could compute the value of holding and optimally exercising after time T −∆t which we will
denote Vh(S, T −∆t), then we would immediately have

V (S, T −∆T ) = max{Vex(S, T −∆T ), Vh(S, T −∆t)},
= max{(K − S)+, Vh(S, T −∆t)},

where Vh(S, T − ∆t) is the expected discounted cash flows from waiting and optimally ex-
ercising later, after T − ∆t. For the moment, we will focus on Vh(S, T − ∆t) and so for
notational simplicity, we will drop the dependence on T − ∆t and write Vh(S). Lets first
try to get a handle on what Vh(S) should look like as a function of S. First, since the next
available time step is ∆t in the future, and the cash flow from exercise can never be more
than K, we see that Vh(S) ≤ Ke−r∆t. Certainly Vh(S) > 0 for all S, so we immediately
have two trivial bounds. Further, it is reasonable to assume that Vh(S) is monotonically
decreasing in S (this was more formally argued in the previous section when we discussed
optimal exercise). A property of Vh(S) that we will not prove here is that it is convex (and
hence continuous). The figure below summarizes all this information about Vh(S). Also
shown is Vex(S) = (K − S)+.

VE

KSe

VH

V

K

S

Since Vh(0) < Vex(0) and Vh(K) > Vex(K) = 0, there is a point of intersection of these two
curves for some Se ∈ [0, K]. By the convexity of the two functions, this point of intersection
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is unique, and is exactly the value of the stock below which it is optimal to exercise and
above which it is optimal to hold. According to the notation in the figure, π∗(T −∆t) = Se.
Thus, we see that if we had Vh, then solving the equation Vh(S) = Vex(S) for Se gives us the
optimal exercise threshold. To be completely explicit, lets completely define what Vh(S) is.

Vh(S) is the expected discounted cash flows from holding and optimally exercising

after time T −∆t.

6.1 The Least Squares Method (LSM)

We now come back to the path pj. Remember that Sj(n − 1) is a realized stock price at
time T −∆t. Corresponding to the realized price Sj(n− 1) is the realized price Sj(n), also
on the path pj. Thus, we have the pair of prices (Sj(n − 1), Sj(n)). We know the value
V (Sj(n)) = (K − Sj(n))

+. Thus, for this particular path pj, the discounted value of holding
and optimally exercising later must equal the discounted value e−r∆tV (Sj(n)). The expected
value of this quantity E[e−r∆tV (Sj(n))] over all paths pj passing through Sj(n−1) is exactly
V (Sj(n− 1)),

Vh(Sj(n− 1)) = Epj [e
−r∆tV (Sj(n))|pj passes through Sj(n− 1)].

We could thus replace this expectation with an average over all the paths that pass through
Sj(n− 1), however it is very unlikely that there is more than one such path. No fear, we will
use the above equation to write

Vh(Sj(n− 1)) = e−r∆tV (Sj(n)) + ǫj,

were E[ǫj|Sj(n− 1)] = 0. Or equivalently,

e−r∆tV (Sj(n)) = Vh(Sj(n− 1)) + ǫj.

In words, e−r∆tV (Sj(n)) is a (noisy) unbiased estimate of Vh(Sj(n− 1)). To summarize this
discussion, let xj = Sj(n− 1) and yj = e−r∆tV (Sj(n)). Then

yj = Vh(xj) + ǫj.

In words, we wish to infer the function Vh(x), and we have a set of examples

{(x1, y1), . . . , (xM , yM)},

which are noisy examples (one from each path pj) of the function Vh(x). In this form, we
have a standard learning or regression problem. We can proceed by trying to learn the
function Vh(x) by regressing the {yj} on the {xj}. In the original paper which introduced
this approach, Longstaff and Schwarz used a quadratic form for Vh(x),

Vh(x) = a0 + a1x+ a2x
2,

and used a least squares approach to “fitting” a0, a1, a2 to the data {(xj, yj)}Mj=1.
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Exercise 6.1

Suppose that one assumes an order d polynomial form for Vh(x),

Vh(x) =
d
∑

k=0

akx
k.

Let the vector a be given by aT = [a0a1 · · · ad], and define the matrix X
and vector y by

X =











1 x1 x21 · · · xd1
1 x2 x22 · · · xd2
...

...
... · · · ...

1 xM x2M · · · xdM











, y =











y1
y2
...

yM











.

The sum of squared errors is then given by

E = (Xa− y)T (Xa− y).

Minimize this error with respect to a to obtain the least squares solution

a∗ = (XTX)−1XTy.

Exercise 6.2

Compute exactly the value function Vh(S, T − ∆t), without making any
use of the paths.

Answer: Vh(S, T −∆t) = Ke−r∆tΦ(−d−)− SΦ(−d+), where

d± =
log S

K
+ (r ± 1

2σ
2)∆t

σ
√
∆t

, and Φ(x) =
1√
2π

∫ x

−∞
ds e−

1

2
s2

is the standard normal distribution function.

[Hint: Argue first that holding the option at time T −∆t is like holding a
European option. What is the strike, what is the time to expiry and what
is the initial stock price? ]

Given the result of the last exercise, it seems a little overkill to generate paths, and do a
fitting exercise just to obtain Vh(S, T −∆t), when we can compute it exactly. We persevere
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6.1 The Least Squares Method (LSM) 14

with this approach because it is not only Vh(S, T − ∆t) that we need, but we need Vh for
all times. Since we know that entire function Vh(S, T − ∆t), then why don’t we fit this
function itself? The reason is that the simple (say) quadratic model will not be able to fit
this entire function well. Thus we would rather fit it in the important region. How do we
know what the important region is? This is exactly how the the paths help us. They serve
to (probabilistically) identify the important region as the points that are likely to occur on
a typical path. Thus in a typical path, the stock price will “tend to pass” through one of
the Sj(n − 1), thus it is important to optimally exercise in these regions. Sub-optimally
exercising on very unlikely paths will not affect our pricing of the put option. An alternative
question is then whether it should be better to use the exact price to obtain Vh(Sj(n − 1))
rather than the approximate price furnished by yj. It is true that this will improve the fit
function a little. However, we will not be able to easily extract the exact function Vh for
earlier times, so this improvement will only come at time T − ∆t and will not affect the
result significantly. However, when n is small, then this additional improvement could be
useful.

We will use the notation V̂h(S) to denote our estimate of the entire function Vh(S). When
we explicitly want to show that V̂h is specified by the set of parameters a inferred from the
examples {xj(n− 1), yj(n− 1)}Mj=1, we will write V̂h(S; an−1) – note that the subscript n− 1
on a indicates the time step.

Recap:

xj(n− 1) = Sj(n− 1),

yj(n− 1) = e−r∆tV (Sj(n)) = e−r∆t(K − Sj(n))
+

= Vh(Sj(n− 1)) + ǫj ,

an−1 = parameters a which optimally fit the examples {xj(n− 1), yj(n− 1)}Mj=1,

V̂h(S;an−1) = our estimate for the function Vh(S, (n− 1)∆t).π̂∗(n− 1) = S : V̂h(S;an−1) = Vex(S);

As M → ∞, there are many results in learning theory that justify the statement V̂h(S;an−1) → V̂h(S; a
∗
n−1)

which is the “best fit” to Vh(S) within the parameterized class of functions (parameterized by a). However, the

best fit may not be such a good approximation unless the parameterized class of functions is carefully chosen so

that it can implement the true function Vh(S). Another further consideration is that it should be possible to find

the best fit a efficiently.

Note that to compute V̂ (S; an−1), all we need are xj, yj . Once we have V̂ (S; an−1), we

can obtain the optimal exercise threshold by solving the equation V̂h = Vex. To obtain the yj,
we only need to be able to compute V (Sj(n)). This is the basis of the dynamic programming
algorithm because we know V (S;T ).

Once we have V̂h(S; an−1), there are actually two ways in which to proceed (remember
we need V (S, n− 1)). We will describe both

1. We can compute V (Sj) using the relationship

V (S, n− 1) = max{Vex(S), V̂h(S; an−1)}.
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6.1 The Least Squares Method (LSM) 15

2. Remember that we only need to compute V on the particular Sj of a particular time

step. Having computed π∗(n − 1) as the solution to Vex(S) = V̂h(S; an−1), for all
Sj ≤ π∗(n− 1), we can set V (Sj) = K −Sj . For all Sj > π∗(n− 1), we set V (Sj) = yj.

Note that one does not actually have to compute π∗(n− 1). One can simply compare
Vex(Sj) with V̂h(S; an−1) and update accordiing to

V (Sj) =

{

K − Sj Vex(Sj) ≥ V̂h(S; an−1),

yj Vex(Sj) < V̂h(S; an−1).

Exercise 6.3

What is the difference between these two approaches?

The advantage of the first approach is that the values are less noisy as they resulted from a
fit which “averages” information from all the data. However, they may be wrong depending
on how good the function V̂h is and the capabilities of the parameterized class used to
approximate Vh. As a result, this error may propagate down the chain. The advantage of
the second approach is that (modulo the determination of the threshold), the yj above the
threshold are unbiased estimates of the Vh(Sj). This is important, because it means that the
error is only in the determination of the theshold. Near the viscinity of the threshold, the
values may be wrong, and should be Vex(Sj), but by definition, near the threshold, Vex and Vh

will be close, and so should the unbiased estimates. Thus the second approach only suffers
from whatever small error there is in the optimal exercise threshold, and will propagate
backward far less. Thus, we will continue with this second approach. It is instructive,
however, to compare the prices that one would obtain from both approaches.

Once we have V (Sj, n− 1) and π∗(n− 1), we can use these values to obtain Vh(Sj, n− 2)
and π∗(n − 2), and so on down to time step 0. Thus we construct the optimal exercise
threshold function π∗. What about V (Sj, 0)? Since all the Sj are equal to S at time 0,
there will be a problem with the regression. However, we do not need to do a regression
at this time, we can simply compute the average value of holding by taking the average of
V (Sj,∆t). Then,

V (S, 0) = max{(K − S)+,
1

M

M
∑

j=1

V (Sj, 1)}.

Unfortunately, depending on the size of M , this final price will be optimistically biased (i.e.,
the price will be too high). Of course, this bias will decrease as M increases, however, it will
still be there. To see why, lets consider a particular degenerate case of three paths and we
use the quadratic polynomial form for V̂ . In this case, at every time step, we will be able to
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6.1 The Least Squares Method (LSM) 16

exactly fit the three examples. Let’s now consider time step n− 1. Since V̂h will exactly fit
the yj, the fitting process is not averaging out any noise. It is simply memorizing the values
of holding for these particular paths. As a result, we will hold and exercise later exactly for
the paths where we should hold, and we will exercise those paths which we should not hold.
It is as if we had the benefit of foresight and knew exactly what was going to happen in the
future. Thus the V (S, n− 1) that we obtain will be positively biased. This positive bias will
continue to time step n − 2, i.e., we will only exercise the options we know will not make
money. The end result is that V (S, 0) will have a serious positive bias.

Exercise 6.4

Consider the following algorithm for pricing the American put option using
the M Monte Carlo paths pj . Compute V (Sj , n) = (K − Sj)

+. Now for
time step i, assume that V (Sj , i + 1) has been computed. We compute
V (Sj , i) by comparing the value of exercising with the value of holding on
this path,

V (Sj , i) = max{(K − Sj)
+, e−r∆tV (Sj , i+ 1)}.

(a) Show that this algorithm computes the cashflow for each path pj as

max
t

e−rt(K − Sj(t))
+.

[Hint: Use induction.]

(b) What is wrong with this approach, for example will the price be too
high or too low? Why?

The previous exercise is an extreme case of looking forward and optimally exercising on each
path. The price of the resulting option will be extremely biased, similar to a lookback option
with payoff K −mintS(t). The bias in the algorithm of the previous exercise is chronic in
the sense that even as M increases, this bias will persist.

Fortunately, the LSM method will not suffer from this chronic bias. The resulting optimal
threshold function from the LSM method may or may not be good, but we can say for
sure, that the expected discounted cash flows resulting from exercising with respect to this

threshold function must be at most the price of the put option. On the other hand, V (S, 0) as
constructed by our LSM algorithm will be a serious over estimate of the expected cash flows
that would result from exercising with respect to this exercise threshold function on another
set of paths. Computing V (S, 0) using the same set of paths as were used to compute this
optimal threshold function results in a positive bias because this exercise threshold function
in some sense used some forward looking. The upshot of this discussion is that after obtaining
the optimal exercise threshold function, one must generate a new set of Monte Carlo paths

©Malik Magdon-Ismail, RPI, October 31, 2022



6.1 The Least Squares Method (LSM) 17

and re-price with respect to this exercise function. This second Monte Carlo is well defined
since now the exercise function is known, and so the derivative cash flows are well defined. We
can now summarize the entire algorithm. We show the version where the exercise threshold
is obtained by solving at each time step for Vex(S) = V̂h(S).

1: Algorithm: Pricing the American Put using LSM.
2: Select ∆t and generate M paths {pj}Mj=1.
3: Initialize π∗(n) = K and a vector v of size M to vj = (K − Sj(n))

+ for j ∈ [1,M ].
4: for i = n− 1 to 0 do
5: Construct the examples {xj, yj}Mj=1: xj = Sj(i); yj = e−r∆tvj.

6: Obtain the function V̂h(S; ai), where ai are the best fit parameters to the examples.
7: Set π∗(i) to the solution of V̂h(S; ai) = Vex(S). //π∗(i) < K
8: for j = 0 to M do
9: if Sj(i) ≤ π∗(i) then

10: vj ← K − Sj

11: else
12: vj ← yj //An alternative is: vj ← V̂h(Sj; ai).
13: Generate a new set of L paths.
14: Compute the expected discounted cash flows w.r.t. π∗ and these new paths.

Note that in step 16, the new set of paths need not be computed with the same discretization
as the first M paths. One approach is to use a few discretization steps to obtain the optimal
exercise thresholds at these steps. A continuous exercise threshold function can be obtained
using interpolation. The price can now be obtained using this exercise function and the new
paths computed on a much finer discretization.

We now analyze the computational complexity of the algorithm. Let τ(M, a) be the
computational complexity of obtaining the best a on M examples. This process needs to be
run n times. Additionally after each fit, we need to compute the exercise threshold, which
involves the solution of a (non-linear) equation. This can typically be done very efficiently, in
some constant number of steps κ. In this case, the overall complexity is O(n(τ(M, a) + κ)).
For d dimensional linear regression, τ(M, a) = O(Md2) where d is the dimension of the
regression.

As the algorithm is written, it seems that we need to store M paths of size n each for a
total memory requirement of nM . If we closely examine the algorithm, we see that at any
time, the algorithm only processes two consecutive time steps. For example consider the
first stage in the algorithm, processing the time steps Sj(n − 1) and Sj(n). We therefore
do not need the entire paths at any time, so suppose we first generate Sj(n− 1) and Sj(n).
After processing this stage, we now need Sj(n − 2), but we will never again need Sj(n), so
this memory can be reused to store Sj(n− 2) by reusing memory in this way, we see that all
we need is O(M) memory to store the paths at the time steps we are processing, and O(n)
memory to store the optimal exercise threshold function, for a total of O(M + n).

The simplest thing to do, therefore, is to randomly generate the end points of the paths,
Sj(n), and then also randomly generate Sj(n − 1). Unfortunately, this is wrong. A key to
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the algorithm is the sequence on the path. Sj(n) must have followed Sj(n− 1), i.e. the pairs
Sj(n − 1), Sj(n) are not independent, they are correlated. We know how to generate paths
forward in time. If we could somehow generate paths backward in time in such a way that
reproduces the exact distribution of paths as if they were generated forward in time, then
we would be in much better shape. As we first generate the end points, Sj(n), and then for
each end point, we can generate backward in time to get Sj(n− 1). When we are done with
this stage, we generate backward from Sj(n − 1) to obtain Sj(n − 2), reusing the memory
used for Sj(n) to store Sj(n− 2), and so on. We now discuss backward path generation.

6.1.1 Backward Path Generation

It suffices to consider how to generate ∆ log Sj(i) for i ∈ [1, n], from which we obtain Sj(i) =
Sj(0)e

∆ logSj(i).

Recap: The log process. The process ∆logS starts at 0 and follows a Brownian motion given by the
dynamics

∆logS = (r − 1
2
σ2)dt+ σdW.

Thus the distribution of ∆logS(t) has a distribution given by

∆logS(t) ∼ N((r − 1
2
σ2)t, σ2t).

The Normal density function with mean µ and variance σ2 is given by N(x;µ, σ2) = 1√
2πσ2

exp(− 1
2σ2 (x− µ)2)

Thus, we can generate ∆ log Sj(n) for j ∈ [1,M ],

∆ log Sj(n) ∼ N((r − 1
2
σ2)T, σ2T ).

To now generate backward in time from ∆ log Sj(n), we need P [∆ log Sj(i − 1)|∆ log Sj(i)]
for i = n, n − 1, . . . , 1. Note that we know how to generate forward in time, i.e., we know
P [∆ log Sj(i)|∆ log Sj(i− 1)], which follows from the more general forward law,

P [∆ log S(t+∆t)|∆ log S(t)] ∼ N(∆ log S(t) + (r − 1
2
σ2)∆t, σ2∆t).

We would like a similar backward law for P [∆ log S(t − ∆t)|∆ log S(t)]. The next exercise
develops this backward law.

Exercise 6.5

Let ut = ∆ logS(t) and let ut−∆t = ∆ logS(t−∆t). Show that

P [ut−∆t|ut] =
P [ut|ut−∆t]P [ut−∆t]

P [ut]
,

and hence show that

P [ut−∆t|ut] =
1

2πσ2∆t(1− ∆t
t
)
exp

(

−
(

ut−∆t − ut(1− ∆t
t
)
)2

2σ2∆t(1− ∆t
t
)

)

,

∼ N(ut(1− ∆t
t
), σ2∆t(1− ∆t

t
))
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Note that the mean is future value decreased by a factor 1− ∆t
t
, and the

variance also decreases by the same factor. Note also that there is no
dependence on r in the backward law. Where has the r dependence gone,
has it totally disappeared – i.e., if we can generate the paths backward
without r then we should be able to generate paths forward without r?

Do the backward paths converge to 0 – this is necessary if the algorithm is
correct, as the forward paths would begin at 0.

We can now restate the full algorithm to take backward path generation into account, which
is more memory efficient.

1: Algorithm: Pricing the American Put using LSM and backward path generation.
2: Select ∆t and generate M prices {xj}Mj=1 at time step n, corresponding to the paths
{pj}Mj=1. xj ∼ N((r − 1

2
σ2)T, σ2T ).

3: Initialize π∗(n) = K and a vector v of size M to vj = (K − Sexj)+ for j ∈ [1,M ].
4: for i = n− 1 to 0 do
5: for j = 1 to M do
6: xj ← N

(

xj(1− 1
i+1

), σ2∆t(1− 1
i+1

)
)

.

7: vj ← e−r∆tvj.

8: Obtain V̂h(S; ai) by fitting ai to the examples {Sexj , vj}Mj=1:

9: Set π∗(i) to the solution of V̂h(S; ai) = Vex(S). //π∗(i) < K
10: for j = 0 to M do
11: if xj ≤ log π∗(i)

S
then

12: vj ← (K − Sexj)+

13: Generate a new set of L paths.
14: Compute the expected discounted cash flows w.r.t. π∗ and these new paths.

Note that there is a slight degeneracy as the algorithm above gets closer to i = 0. At i = 0,
all the xj are 0, and so all the examples have Sexj equal to the same value. This means
that the fitting will be degenerate, and the way to compute Vh(S, 0) is to simply average.
For this reason, since the main goal is to obtain the exercise function in the first part of the
algorithm, it is probably better to generate the paths all starting from different S’s. Steps
[13] and [14] for pricing must all generate paths from the same initial price though. This is
easy to incorporate into the algorithm and is left as an exercise.

Exercise 6.6

Update the algorithm to compute the optimal exercise threshold function
when the initial paths are generated from different starting prices.
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6.2 Optimal Thresholds – No Least Squares

Examining the algorithm in the previous section, we see that the main purpose served by the
least squares fitting (steps [6], [7]) is to obtain the exercise threshold. We now describe how
to avoid the need for the least squares fit by giving an efficient non-parametric algorithm for
obtaining the optimal threshold. The entire algorithm will run as in the previous section,
with the exception that the least square fit is not needed, and the exercise threshold π∗(i) is
set to its optimal value.

To see how this will work, observe that the optimal threshold π∗ satisfies

f(π∗) = Vh(π
∗)− Vex(π

∗) = 0.

A more useful observation is that for S < π∗, f(S) < 0 as it is better to exercise, and for
S > π∗, f(S) > 0. We have the samples {Sj(i− 1)} and {e−r∆tV (Sj(i)), which are unbiased
realizations of Vh. We thus have noisy realizations of f(S), as shown in the figure below,
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While there is definitely a trend, going from negative to positive, it is not at all clear where
to place the threshold, which is why we first need to formalize the problem. We have the
stock prices Sj(i− 1), and we define fj = e−r∆tV (Sj(i))−max{K − Sj(i− 1), 0}. The plot
above is a plot of fj versus Sj.

It suffices to consider the possible thresholds 0, and {Sj}, with the convention that if
the threshold is Sk then the assertion is that f(S) < 0 for all S ≤ Sk. Let θ denote the
threshold, then θ ∈ {0, S1, . . . , SM}. A point is an error if it is left of the threshold and has
value > 0, or it is right of the threshold and has value < 0. Thus, for a particular threshold
θ, we define the error of that threshold as

E(θ) =
∑

Sj≤θ

max(fj, 0)−
∑

Sj>θ

min(fj, 0),

=
∑

Sj≤θ

f+
j −

∑

Sj>θ

f−
j .
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The problem we would like to solve efficiently is to find the optimal threshold θ, the one
which minimizes E(θ). If we assume that the Sj have been pre-sorted, then the following
observations lead to a linear time algorithm to solve this problem. Start with θ = 0. In this
case, E(0) = −∑Sj

f−
j . We now process points from left to right in increasing order and

update E by adding fj. Specifically, we claim that

E(Sj) = E(0) +
j
∑

k=1

fj.

Exercise 6.7

Prove the above claim, and use it to develop a linear time algorithm to find
the optimal threshold (assuming that the Sj are pre-sorted).

[Hint: Use induction. First show that E(Sj) = E(Sj−1) + fj .]

The running time of this optimal threshold algorithm will be dominated by the sort operation,
which is O(M logM). The remainder of the algorithm is exactly as in the previous section,
i.e., the optimal threshold function needs to be run for each time step, yielding a total
computational complexity of O(nM logM). Thus the computational trade off is a factor
logM versus the d2 for the regression. The advantage is that no parameteric form for Vh

need be assumed, and more importantly, the optimal thresholds are obtained.

7 Pricing By Optimizing Bounds

8 Optimal Exercise from Pricing

9 Dividend Paying Stocks and Put-Call Parity
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