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Computational Finance – Financial Instruments

The Greek philosopher Thales of Miletus (circa 624-546 BC) is widely regarded as the first
“thinker” to make use of the notion of an option. One version of the story has Thales as a
frustrated philosopher who wanted to show his peer businessmen that he could use his intelligence
to be rich if he wanted to, but it was just that he chose to remain poor.

One year, Thales predicted a bumper crop for that year’s olive harvest. On the basis of this
prediction, he paid a small deposit to all owners of olive presses to buy himself the right to rent
all the olive presses at some standard rate. Imagine the owners of oil presses thinking this was a
win-win. Not only were they getting a deposit ahead of time, but they were also going to be able to
rent the presses at their standard rate. Indeed, the bumper olive crop did arrive, and Thales, the
effective owner of all the olive presses, was able to make a small fortune renting out these presses
at a significant premium to the price he had already agreed to rent the presses for.

This very first use of the notion of an option has already embedded in it many of the important
reasons for the existence of financial derivatives. Most importantly, one wishes to somehow monetize
a prediction for some quantity (the weather in Greece) which is not something that can be bought
and sold as some good in some marketplace. As a result one writes a contract on some quantity
(olive presses) which one can buy and sell. The key consideration here is that the future value of
the olive press (the quantity which can be bought or sold) depends directly or indirectly on the
weather in Greece (the quantity predicted, which cannot be bought or sold). Constructing such
“derivative contracts” is itself a creative task, and in some sense represents the real ingenuity of
Thales – he figured out a way to profit from a weather prediction based on commodities already
existing. However, given the existence of such a derivative contract (which embodies the right to
rent the olive presses at the standard rate in the future) an important computational task presents
itself. How much should this “small deposit” (the price of the option) be that Thales should be
willing to pay to own this right to rent? The price of this option naturaly would depend on: the
probability of Thales’ prediction on the weather coming true; the size of the bumper crop in that
event (and hence the level of demand for the olive presses) which would indirectly determine the
profit that Thales stood to make had his prediction come true; and, how valuable the profit that
Thales stands to make really is, given that it only arrives at the end of the summer and he has to
pay the deposit at the begining, denying himself all the consumption that that deposit could have
bought him over the summer.

Rather than deal with goods in a barter economy, we will deal with money and within this
framework we can explicitly quantify, through the notion of an interest rate, the last consideration
above regarding how valuable future profit really is today.

1 Money

Roughly speaking, money can be equated to consumption, and it is more or less accepted that
present consumption is worth more than an equal consumption at some future date.

Fundamental Principle: Money today is worth more than the same amount of money
tomorrow.

Intuitively, this statement says that if I consume today, I am better off.
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1 Money 2

Example: Suppose that $1 today buys me a corn seed. If I plant it, in a year, this
crop produces 1 corn cob (which I can eat) and 2 corn seeds. Therefore, the $1 today
buys me 1 seed, but in a year it is worth a cob and 2 seeds. If we assume that my labor,
water, land, etc. would be idle unless I plant the seed, we see that 1 seed today is worth
2 seeds and a cob tomorrow.

To formalize this intuition, we say that

$1 (today) = $(1 +R) (in a year).

R is called the interest for the period of time from today to a year later. To make this more general,
we may talk about any two times in the future, t1 < t2, and we can define the [t1, t2] interest rate
R(t1, t2) by

$1 (at t1) = $(1 +R(t1, t2)) (at t2).

Thus, R(t1, t2) is the additional monetary value needed to equate the $1 at time t1 with its equivalent
amount at t2.

For simplicity, we will assume that the interest rate over a given period of time (for example
[t1, t2]) does not change with time. For example, suppose t1 = 1 year and t2 = 2 years. Then the
value of R(1, 2) today is the same as what it would be tomorrow.

The [t1, t2]-Period Interest Rate R(t1, t2). We summarize the interest rate computation here
for clarity, but generalize it to any amount of money X at time t1.

Having X at time t1 is equivalent to having X · (1 +R(t1, t2)) at time t2.

Consequently, if you give a bank X at time t1, you can expect the bank to give you back X · (1 +
R(t1, t2)) at time t2. Thus, your X has accrued an amount XR(t1, t2) in interest. We will assume
that you can borrow and lend at the same interest rate, which is a slight approximation because
typically you can lend to a bank at a lower interest rate than you can borrow from the bank.

The Interest Rate Law. It suffices to know the function R(0, t) because as we will now derive,
there is a relationship between R(t1, t2) and R(0, t1), R(0, t2). Suppose we have an amount X which
we place in the bank at time 0. We know that at time t1, it grows to an amount

X · (1 +R(0, t1)).

By definition of R(t1, t2), an amount X ′ at time t1 grows to an amount X ′ · (1 +R(t1, t2)) by time
t2; applying this equation to X ′ = X · (1 +R(0, t1)), we see that X · (1 +R(0, t1)) at time t1 grows
to an amount X · (1 +R(0, t1)) · (1 +R(t1, t2)) by time t2. Thus X at time 0 grows to

X · (1 +R(0, t1)) · (1 +R(t1, t2))

at time t2. But by definition of R(0, t2), this must equal X · (1 +R(0, t2)). We therefore have that

(1 +R(0, t1)) · (1 +R(t1, t2)) = 1 +R(0, t2). (1)

Multiplying out the LHS, we obtain the fundamental equation

R(0, t2) = R(0, t1) +R(t1, t2) +R(0, t1) ·R(t1, t2) (2)
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Note that the above law must hold for any choice of t1. Alternatively, we can obtain an expression
for R(t1, t2) only in terms of R(0, t1) and R(0, t2),

R(t1, t2) =
R(0, t2)−R(0, t1)

1 +R(0, t1)
. (3)

Since we can work only in terms of R(0, t), we will usually simplify notation and use R(t) to denote
R(0, t). Equation (2) places quite a strong constraint on what possibilities can be chosen for the
interest rate function R(t).

Exercise 1.1

The above discussion considered two periods [0, t1] and [t1, t2]. Generalize the
interest rate law to N periods defined by the times 0, t1, t2, . . . , tN . Specifically,
show that for all 2 ≤ k ≤ N ,

k
∏

i=1

(1 +R(ti−1, ti)) = 1 +R(0, tk).

(Consider X dollars put in the bank at time 0). This is called the multi-period
compounding law.

In the above exercise, let ri = R(ti−1, ti), and let X0 be put in the bank at time 0. Then at time
tk, the money has grown to

Xk = X0 ·
k
∏

i=1

(1 + ri).

This is known as multi-period compounding. When all the ri are constant equal to r, this expression
becomes Xk = X0 · (1 + r)k. The compounded value Xk is called the time-tk future value of X0.
We can reverse this process. Suppose that at time tk, we have an amount of money Xk. Then we
know that this is equivalent to having an amount X0 = Xk/

∏k
i=1(1+ ri) at time 0, as this amount

would grow to Xk by time tk. This is known as the present value (PV) of Xk,

PV (Xk) =
Xk

∏k
i=1(1 + ri)

.

Exercise 1.2

Specialize the above equation to the case where all the ri are equal. In a practical
sense (roughly speaking) what relationship among the ti’s do you expect for all the
ri to be the same.

We will now try to understand what this function R(t) must look like.
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A Stationarity Assumption. Suppose that the function R(t1, t2) does not depend on the choice
of origin. This means that it depends on the actual values of t1, t2 only through their difference
τ = t2−t1. Let R(τ) be this function, where the stationarity is explicitly shown by R only depending
on τ . Consider two times t1 = t and t2 = t + ∆t. The intuition is that we will eventually let ∆t
tend to zero. Rewriting Equation (1) using the stationarity assumption for the selected values of
t1, t2, we have

1 +R(t+∆t) = (1 +R(t)) · (1 +R(∆t)). (4)

Let D(τ) = 1 +R(τ). Clearly after zero time, no amount of interest could have accrued; it follows
that R(0) = 0, or that D(0) = 1. After a little massaging, we can rewrite the above equation in a
more useful form:

D(t+∆t) = D(t) ·D(∆t),

= D(t) · (D(∆t)−D(0) +D(0)),

=⇒ D(t+∆t)−D(t) ·D(0) = D(t) · (D(∆t)−D(0)).

Now, using D(0) = 1 and dividing both sides by D(t)∆t,
(

D(t+∆t)−D(t)

∆t

)

1

D(t)
=

D(∆t)−D(0)

∆t
. (5)

Notice that the LHS looks like D′(t)/D(t) and the RHS looks like D′(0). This becomes true in a
more formal sense only in the limit ∆t → 0 and if D(τ) (i.e., R(τ)) is a continuously differentiable
function. When D(τ) is continuously differentiable, we can take the ∆t → 0 limit in Equation (5)
to obtain a differential equation that D(τ) must satisfy. This differential equation can be uniquely
solved using the boundary condition D(0) = 1 to obtain the only possible functional form for
the interest rate function D(τ). To cut a long story short, the assumptions of stationarity and
differentiability essentially uniquely determines the interest rate function.

Theorem 1.1 (Exponential Growth) The unique stationary, continuously differentiable func-
tion D(τ) which satisfies (1) is D(τ) = erτ , where r = D′(0) is a constant.

Exercise 1.3

[For the analysis inclined] Prove Theorem 1.1 by showing that D(τ) must satisfy
the differential equation D′(t) = rD(t) and solve.

The constant r in the theorem is usually denoted the instantaneous rate of interest. The function
D(τ) is sometimes called the discount factor to time τ for reasons that will become clear shortly.
In terms of R(t1, t2), the theorem states that

R(t1, t2) = er(t2−t1) − 1.

We can now rewrite all the previous formulas using this form for R(t1, t2).
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Exercise 1.4

Consider an investment X0 in the bank at time 0. Consider the value of the
investment at the times t1, . . . , tN , and let Xk be the value at time tk. Using
the formula Xk = X0

∏k

i=1(1 + ri), where ri = R(ti−1, ti) and the fact that
R(t1, t2) = er(t2−t1) − 1, show that Xk = X0e

rtk .

(Show that
∏k

i=1(1 + ri) = ertk .)

Analogous to exponential growth, we can now compute present values,

PV (Xk) = Xke
−rtk =

Xk

D(tk)
.

The present value is the amount of money needed today to generate Xk at time tk. The above
formula is the reason for D(τ) being refered to as the discount function.

Streams of Payments (Cash Flows). How much money would we need today to give a stream
of cashflows X1, X2, . . . , XN at the future times t1, t2, . . . , tN . One might want to do this, for
example, to make periodic payments in the future. We know how much money it takes today for
any one of these payments, for example for payment Xk at time tk, we need PV (Xk) today. If we
need to make all these payments, it seems reasonable that we would need the sum of these present
values,

PV (X1, . . . , XN ; t1, . . . , tN ) =
N
∑

i=1

PV (Xi),

=
N
∑

i=1

Xi

D(ti)
,

=

N
∑

i=1

Xie
−rti .

Exercise 1.5

Suppose that you start with X0 = PV (X1, . . . , XN ; t1, . . . , tN ) as given in the
formula above and you do the normal thing: put this amount in the bank; when
payment X1 is due at time t1, you withdraw X1 from the bank and pay it; similarily
you payoff all the payments Xk at the required time tk, as they become due.

Show that you will be able to make all the payments, i.e., the balance in your bank
account will never be less than zero. Further, at the end of your last payment, you
have no money in the bank account.

The last exercise really justifies our definition of the present value of a stream of cash flows.
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Non-Stationary Setting. While we have defined the rate of interest in the statiionary setting, it
is still convenient to define the rate of interest in a non-stationary setting via the discount function.
The reason is (as we will soon see), the discount function is something that is set in the market-place
by a financial instrument known as a Bond, specifically a Zero Coupon Bond. Thus, suppose that
the discount function D(t) is defined and is continuously differentiable. Then the instantaneous
interest rate at time t, r(t), is defined by

r(t) =
d

dt
logD(t) =

D′(t)

D(t)
.

The function r(t) is some times referred to as the forward interest rate, and its dependence on time
is often termed the term structure of the interest rate. An alternative way to get something that
looks like an interest rate is by the definition

r̄(t) =
logD(t)

t
.

This is also referred to as the yield and corresponds to the implied constant interest rate which
matches D(t) at time t. Its dependence on time is also the term structure of the interest rate.
For the stationary setting, with an exponentially growing discount factor, the forward rate and the
yield are equivalent. As will be seen later, the yield is typically an easier quantity to compute from
real data.

Exercise 1.6

When will the forward rate be larger than the yield. When will it be smaller?

Exercise 1.7

[The Mortgage Calculation]

(a) A mortgage with principle P andN payments of sizeX at the times t1, . . . , tN
is fair if you are indifferent about being the lender or borrower in the mortgage.
For a given r, P, {t1, . . . , tN}, determine the fair payment value X.

(Answer: X = P/
∑N

i=1 e
−rti .)

Specialize your answer to the case where ti = 1, . . . , N (i.e., ti = i), and
obtain an answer that does not have a summation – i.e., get a closed form.

(b) Suppose that you can only afford to pay $500 at the times 1, 2, 3, . . . , 360 (i.e.
ti = i). Compute the maximum mortgage that you can afford to take out.
Assume that er = 1.005. (This roughly corresponds to a 30 year mortgage
with a monthly payment of $500 and a yearly interest rate of about 6%.)

Suppose that you need a mortgage amount of $100, 000. For how many
months will you be paying off the mortgage.
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1.1 The No Arbitrage Axiom. 7

Exercise 1.8

Show that the special case of D(t) = ert which we derived in the stationary setting
gives a constant (instantaneous) forward interest rate r.

Show that analogous to the formula D(t) = ert (in the stationary case), in the
non-stationary case, one has that

D(t) = e
∫

t

0
ds r(s).

Exercise 1.9

We give an alternate derivation of the formulas D(t) = ert (D(t) = e
∫

t

0
ds r(s) in

the non-stationary case.) by taking the continuous limit of compunding.

Divide the time period [0, t] into n time periods each of length ∆t = t/n. Let
ri(∆t) be the interest rate function over the ith period. Assume that you invest
X0 in a bank at time 0 and let Xt be the amount accrued at time t.

Show that

Xt = X0 · exp

(

n
∑

i=1

log(1 + ri(∆t))

)

.

We can assume that ri(∆t) must go to zero as ∆t goes to zero, as one should not
be able to gain any interest over a period of time tending to zero. Hence, using
the Taylor expansion for the logarithm, show that

Xt = X0 · exp

(

lim
n→∞

n
∑

i=1

ri(∆t)

)

.

The exponent has exactly the form of an integral, providing ri(∆t) satisfies some
regularity conditions. In particular if ri(∆t) = r( i

n
t)∆t then we recover the Rie-

mann limit for the integral form we expect.

1.1 The No Arbitrage Axiom.

We heuristically state an important concept here that we will make much more formal later on,
namely the concept of no arbitrage.
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1.1 The No Arbitrage Axiom. 8

In a market that is in a stable equilibrium, there does not exist a stream of cash flows
accessible to an individual consisting only of non-negative cash flows, with at least one
cash flow positive.

Essentially the intuition for why this is so is that if such a stream of cashflows did exist, then
someone would immediately grab it. In fact, someone would want an infinite amount of it. If we
assume the market is in equilibrium, then no one is grabbing opportunities here or there, hence the
no arbitrage axiom. Note that it is an axiom, i.e. we simply believe it to be true. One particular
implication of this is that in any accessible stream of cash flows must have present value zero.

Exercise 1.10

Show that the following axiom and the previous axiom of no arbitrage are equivalent.

In a market that is in a stable equilibrium, there does not exist a stream

of cash flows with positive present value accessible to any individual.

(The “hard” part is to show that if there exists an accessible stream of cash flows
with positive present value then there exists an accessible stream of non-negative
cash flows, at least one of which is positive.)

Assume that a stream is accessible means it can either be bought or sold. Conclude
that every accessible stream of cash flows must have present value zero.

(Hint: By selling a stream of cashflows with negative present value, show that one
obtains a stream with positive present value.)

The no arbitrage axiom is a main tool in the pricing of complex deals in the financial marketplace.
We will illustrate with a “complex deal”, involving a stream of cash flows. Consider the following
deal, which a friend asks you to commit to.

For $100 at time t1, you will get back X at time t2.

How will you determine whether to enter into this deal. If we convert this into a stream of cashflows,
it looks like (−100, X; t1, t2). A natural approach would be to first compute the present value of
this stream of cash flows,

PV (−100, X; t1, t2) = −100 · e−rt1 +X · e−rt2 .

If PV (−100, X; t1, t2) ≥ 0, then ones natural instinct would be to engage in this deal. Thus a
criterion for engaging in this deal is

X ≥ 100 · e−r(t1−t2).

In essence, we are pricing this deal for the friend, saying that if he is willing to pay at least this
amount at time t2, then we are willing to engage in this deal. Are we justified in this intuition?

Lets approach it from the arbitrage opportunity perspective. Assume X ≥ 100 · e−r(t1−t2), and
we accept this deal. Now at time t1, borrow $100 from the bank, and give it to the friend. In
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2 The Bond 9

this case, your cash flow at time t1 netts out to zero. Now at time t2, you will obtain X from
your friend, and you will owe the bank 100 · er(t2−t1). Your nett cash flows at time t2 are therefore
X − 100 · er(t2−t1) ≥ 0 by the assumption on X. Hence, we have constructed a stream of cash
flows (0, Y ; t1, t2) where Y ≥ 0. Certainly you cannot be averse to these cash flows. In fact, if
X > 100 · e−r(t1−t2), then Y > 0, and we have constructed an arbitrage opportunity.

Why would your friend every be willing to pay more than 100 · e−r(t1−t2)? The only reasonable
answer is that he does not have access to the bank, eg. he is a bad credit risk. In effect you are
acting as a broker between your friend and the bank. In doing so you are “charging” a premium,
Y > 0, but you are also assuming some of the risk that your friend does not pay you back. We will
assume that all players in the market have equal access to all deals, so in this case, your friend will
not pay more than 100 · e−r(t1−t2). More formally, X > 100 · e−r(t1−t2) implies that you have access
to an arbitrage opportunity, so we conclude that X ≤ 100 · e−r(t1−t2).

Exercise 1.11

Show that X < 100 · e−r(t1−t2) allows your friend to construct an arbitrage oppor-
tunity.

As a result of the exercise, we conclude that X = 100 · e−r(t1−t2).

Recap. What have we done? Essentially, we have priced a “complex” deal using arbitrage ar-
guments. We examined various scenarios for the “price” X. We then argued that under some
scenarios we could construct arbitrage opportunities, hence ruling out these prices. We were then
left with only one possible price X that was consistent with no arbitrage. We were lucky to end up
with only one arbitrage-free price. Sometimes there may be more than one, and sometimes there
may be none. If there are none, it means that the mere existence of this deal, together with the
other available deals creates arbitrage possibilities.

This activity is a large part of this course, and a large part of what goes on in big banks. Various
complex deals are presented to a big bank. Some of them allow that bank to construct arbitrage
opportunities1, which are the favorable deals to the bank. These are the deals it would certainly
desire to engage in.

2 The Bond

A contract that guarantees you $1 at time T is a zero coupon bond with face value
$1 and maturity T .

One can buy and sell zero coupon bonds on the open marketplace. The question is how much
should one pay today for such a contract. Let’s assume that we are in a stationary market, with
instanteneous interest rate r. Intuitively, we know that the present value of this contract is e−rT ,
and so we should not be willing to pay more. Lets see how to prove this using the no arbitrage
axiom.

1We have discussed pure arbitrage. There is also a notion of statistical arbitrage which becomes more relevent in

the context of uncertainty, for example when the interest rate is not certain.
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2.1 The Market Price of Bonds. 10

Suppose that the price of this contract is B, and suppose that B < e−rT . In this case, borrow
B dollars from a bank and buy the bond. At time T , you owe the bank B · erT , but you are also
getting a sure $1 from the bond contract. Thus, your cash flow is 1−B · erT = erT (e−rT −B) > 0,
where the inequality follows from the assumption on B. Lets look at the stream of your cash flows.
Cash flow only occurs at the times 0 and T . At time 0, the cash flow is 0, and at time T , the cash
flow is > 0. Thus, you have access to a stream of cash flows, all of which are non-negative, and at
least one of which is positive. This contradicts the no arbitrage axiom, so B ≥ e−rT .

Exercise 2.1

Show that the assumption B > e−rT also leads to a contradiction of the no
arbitrage axiom. In this case, sell the bond and place e−rT of the proceeds in the
bank. Evaluate your cash flows at time 0 and T .

Hence, conclude that B = e−rT .

Coupon Paying Bonds. We can generalize our discussion to coupon paying bonds. Typically, a
bond with face value $1 has a last payment, and coupons at regular time intervals (typically every
6 months). The coupon payment tends to be analogous to the interest rate and will usually have
a value of about r/2, so when r = 0.05 (corresponding to 5%), a typical coupon payment may be
$0.025. In practice, the face value may be $100 and the coupon payment will then be $2.50.

In general, a coupon paying bond can be formalized as a stream of payments X1, . . . , XN at the
times t1, . . . , tN .

Exercise 2.2

Use an arbitrage argument to show that the price of the coupon paying bond with
payments X1, . . . , XN at the times t1, . . . , tN should be

N
∑

i=1

Xie
−rti .

2.1 The Market Price of Bonds.

While the Federal reserve may set the interest rate r, and banks may have their own lend-
ing/borrowing interest rate, the true measure of the value of present consumption versus the value
of future consumption is set in the market place, because bonds (both zero coupon and coupon
paying) are bought and sold in large quantities every day. Thus, the zero coupon bond with face
value $1 and maturity T has some price in the market. We will generally denote this price by
B(0, T ), or B(T ) for short. By definition, B(T ) = 1/D(T ), where D(T ) = 1+R(T ) is the discount
factor defined earlier. Since the yield r̄(T ) is defined as 1

T logD(T ), the market prices indirectly
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2.1 The Market Price of Bonds. 11

imply a term structure of interest rates: from the observed market prices B(T ), one can compute
the implied term structure r̄(T ) = − 1

T logB(T ). We show two snapshots of this in the figures
below, one from the market price data for zero coupon bonds available on August 29 2003, and one
from data taken on September 2 2005.
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These curves can be viewed in some sense as the markets perception on the two specified dates of
how the interest rate should behave in the future. Given the zero coupon bond price, we can price
any coupon paying bond. More generally, we can price any stream of cash flows.

Exercise 2.3

Suppose that the zero coupon bonds of any maturity are available in the mar-
ket, priced at B(0, T ). Let C be a contract offering a stream of cash flows
X1, . . . , XN ; t1, . . . , tN . Use an arbitrage argument to show that the price of this
contract today should be

price(C) =

N
∑

i=1

B(ti)Xi.

If the market were stationary, what would the mathematical form for B(t) be?

(For a contract such as C, we will often not explicitly say price(C), but rather just
use C to refer to the contract itself, as well as its price when the context is clear.)

Exercise 2.4

The Interest Rate Swap. Agreeing that the markets are not stationary, the
[t1, t2] period interest rate R(t1, t2) for a fixed period in the future may change
with time.

An interest rate swap is the following somewhat bizzare contract.
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2.1 The Market Price of Bonds. 12

A set of times t1, . . . , tN are specified. The fixed payment or par value
is X. The contract is between two parties. The receiver receives the
fixed payment X at the times t1, . . . , tN from the payer. In return,
the receiver pays the payer an amount R(ti−1, ti; ti−1) at time ti, for
i = 1, . . . , N . R(ti−1, ti; ti−1) is the [ti−1, ti] interest rate determined
at time ti−1. For convenience set t0 = 0. The third argument of R(·)
indicates that the value of the interest rate for the period [ti−1, ti] is
determined at the time ti−1. We will use the notation R(i−1)i to denote
the payment R(ti−1, ti; ti−1).

The reason for calling it a swap should be clear – one is swapping a fixed payment
X for a variable payment whose exact value will depend on a particular periods
interest rate when that period arrives. So, right now, this interest rate is not
known. Hence, from the present point of view, the variable payments are non-
deterministic. This is a fairly complicated contract and it may be worth spending
some time to understand it, before proceeding. In particular, it can be represented
by the following picture.

time

R23

0

· · ·

X

t3t2t1 · · ·

R01

R12

X X X

tN

R(N−1)N

The blue arrows indicate received payments, and the red arrows indicate payments
out. The complication in this contract is that the payments out are not known at
time 0. For example the payment R12 is only known at time t1. Nevertherless,
in this problem, we will investigate how to price this contract (i.e., determine
the equilibrium par value for X) using an arbitrage argument. The R(i−1)i are
typically called the floating payments, since they are not determined a priori, and
X is typically called the fixed payment. Notice that the payments occur at time ti,
and that the exact value of the payments at time ti are only known at ti−1, which
is when the floating payment gets determined.

1. Consider one of the floating payment R(i−1)i. Construct the following “port-
folio” which buys a zero coupon bond with maturity ti−1 and sells one with
maturity ti.

(a) Show that the cash flow at time 0 is B(ti)−B(ti−1).

(b) At time ti−1, show that the value of this portfolio is 1−B(ti−ti−1; ti−1),
where the zero coupon value is the value determined at time ti−1.

(c) Use the relationship between B(t) and R(t) to conclude that the value
of this portfolio at time ti−1 is

R(i−1)i

1 +R(i−1)i
.
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2.2 Bond Portfolio Immunization 13

Note that this value is the value at time ti−1, which is not known at
time 0.

(d) Now consider the floating payment R(i−1)i which is made at time ti.
This payment is determined precisely at time ti−1. Argue (for example
using an arbitrage argument) that the value of this cash flow at time
ti−1 is

R(i−1)i

1 +R(i−1)i
.

(Remember that this cash flow only occurs at time ti.)

(e) Use an arbitrage argument to conclude that the value of the floating
payment R(i−1)i today must be equal to B(ti)−B(ti−1).

(f) Use an arbitrage argument to conclude that the total value today of all
the floating payments is

1−B(tN ).

(g) Using the result in the previous exercise, show that the total value of all
the fixed payments is

X ·

N
∑

i=1

B(ti).

(h) Use an arbitrage argument to show that the value of X must be

X̄ =
1−B(tN )
∑N

i=1 B(ti)

if there is to be no arbitrage opportunity. X̄ is usually referred to as
the equilibrium par swap rate. It is the rate at which one is indifferent
between taking on the fixed or floating end of the contract.

2. Typically in the market place, there are published par swap rates and zero
coupon rates, and there may be a difference (usually denoted the spread)
between the par rate and the formula above that gives the par rate in terms
of the zero coupon rates. What are possible explanations for this?

We obtained the “price” of a fairly complicated bond portfolio involving cash flows
that were not determined at time 0 using a fairly sophisticated arbitrage argument.
One might wonder how one comes up with such arbitrage arguments, it almost
looks like magic. Later we will set up a systematic framework using risk neutral
(martingale) measures for addressing such topics.

2.2 Bond Portfolio Immunization

Bond portfolios alone present several computational tasks that are generally non-trivial. We will
now consider one such task, which is that of immunizing a bond portfolio. To understand the need
for this, we need to cast the problem in a practical setting. Specifically, suppose that you have a
payment X which is due at time t, and would like to have as little uncertainty as possible at time
t. Hence, you would like to set aside some money now, in order to “guarantee” that you will be
able to meet your commitment at time t.
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The simplest thing to do is to purchase X zero coupon bonds with maturity t, which will cost
you X · B(t) now. You now have no need to worry about meeting your commitment because at
time t you will owe X which is exactly the amount that your bonds will furnish you with at that
time. The problem that you will face when you attempt to implement this strategy is that you
will generally not find zero coupon bonds available on the market with maturity exactly at time t;
typically, the bonds are issued at discrete times, with discrete time to maturuty (usually bonds are
issued quarterly and at time of issue, the time to maturity is usually either 3 months, 1, 5, 10, 30
years). As time passes, the time to maturity for a given bond will decrease, however there will still
only be a discrete set of maturities available to you. All of a sudden, your task has taken a non
trivial twist.

Let’s try to formalize the problem we would like to solve, and at the same time simplify the
setting to illustrate the essential issues. Your commitment is X at time t; in the market place
are two bonds, with maturities t1 < t2. Lets for simplicity assume that the market percieves a
stationary interest rate, and so there is a well defined instanteous interest rate r. Thus, the prices
of the two bonds are e−rt1 and e−rt2 . For simplicity, your strategy will be to buy α1 and α2 units
of each bond (you will not hold cash to settle your debt – this more general setting will be treated
in an exercise). What are α1 and α2 units of each bond worth at time t? We obtain this by
multiplying their value today by ert. Since we need to settle our debt of X, we see that α1, α2 must
satisfy the settlement constraint

α1e
−r(t1−t) + α2e

−r(t2−t) = X.

Exercise 2.5

Show that for any choice of α1, α2 satisfying the settlement constraint, the present
value of the bond portfolio is the same. Why must this be the case?

How should we select α1, α2. The market being stationary means that there is a constant rate
of interest r. This can be viewed as the perceived rate of interest. After some time ∆t, this
instantaneous interest rate may change to r + ∆r. The settlement condition for the new interest
rate r+∆r at time ∆t may not be satisfied any more. In fact the degree to which it is not satisfied
can be viewed as an instability in our bond portfolio, or as a sensitivity to the interest rate. We
can measure the degree to which we are immunized to changes in the interest rate by how much
the settlement condition is violated. Thus, we consider

ǫ(∆r;α1, α2) = α1e
−(r+∆r)(t1−t) + α2e

−(r+∆r)(t2−t) −X

as a measure of how sensitive we are to the interest rate. ǫ(∆r) measures how secure I am in the
knowledge that I will be able to meet my debt with minimal additional cash flows at time t. We
emphasize that if ǫ(∆r) > 0 then it is certainly a good thing for you, as this means you expect
to not only cover your commitment but also get cash flow back. However we view the goal as
not to maximize profit, but rather to reduce uncertainty. We wish to make ǫ(∆r) a small, if not
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zero function of fluctuations in the interest rate. Lets formalize this notion. Expanding ǫ(∆r) as a
power series, we obtain

ǫ(∆r;α1, α2) = a0(α1, α2) + a1(α1, α2)∆r + a2(α1, α2)∆r2 + · · · ,

=

∞
∑

k=0

ak(α1, α2)∆rk.

Exercise 2.6

Show that

a0(α1, α2) = 0;

a1(α1, α2) = α1(t− t1)e
−r(t1−t) + α2(t− t2)e

−r(t2−t);

a2(α1, α2) = 1
2α1(t− t1)

2e−r(t1−t) + 1
2α2(t− t2)

2e−r(t2−t).

Obtain a general formula for ak(α1, α2).

A natural approach to minimizing the sensitivity to interest rate fluctuations is for ǫ to depend
only on high order powers of ∆r. Since the settlement constraint provides only one constraint, and
we have two parameters, we can choose the parameters α1, α2 so that the first order dependence
disappears and ǫ will fluctuate only in proportion to ∆r2. Thus we minimize the sensitivity to the
interest rate by setting

a1(α1, α2) = 0.

This plus the settlement constraint gives two equations in two unknowns, which can be solved to
get optimally immunized bond portfolio. The details are an exercise.

Exercise 2.7

Show that the optimally immunized bond portfolio is obtained by setting

α1 = −
ρ

1− ρ
X · e−r(t−t1),

α2 =
1

1− ρ
X · e−r(t−t2),

where ρ = (t− t2)/(t− t1).

Thus, while we do not know the interest rate fluctuations, we can minimize our exposure to it. An
alternative way of writing the settlement constraint is to use present values,

α1e
−rt1 + α2e

−rt2 = Xe−rt.
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Correspondingly, one could define the sensitivity ǫ by

ǫ(∆r;α1, α2) = α1e
−(r+∆r)(t1−∆t) + α2e

−(r+∆r)(t2−∆t) −Xe−(r+∆r)(t−∆t)

Exercise 2.8

Show that using the sensitivities defined according to the present value constraint
leads to exactly the same optimal portfolio.

The next exercise generalizes exactly this task. Specifically, assume that your commitments are
X1, . . . , Xm at the times τ1, . . . , τm, and in the market place you have access to zero coupon bonds
with maturities t1, . . . , tn. Assume that the current instantaneous interest rate is r.

Exercise 2.9

In this exercise we will discuss one approach to imunizing the bond portfolio that
meets the commitments (X1, . . . , Xm; τ1, . . . , τm). Suppose that the bond portfo-
lio which you choose contains αi units of the bond with maturity ti.

(a) Show that the settlement constraint is given by

n
∑

i=1

αie
−rti −

m
∑

j=1

Xje
−rτj = 0.

(b) At time ∆t, assume that the interest rate changes to r+∆r. We define the
sensitivity with respect to fluctuation in the interest rate (∆r) over the time
∆t, denoted ǫ(∆r;α1, . . . , αn), to be the amount by which the settlement
condition is violated. Show that

ǫ(∆r;α1, . . . , αn) =

n
∑

i=1

αie
−(r+∆r)(ti−∆t) −

m
∑

j=1

Xje
−(r+∆r)(τj−∆t).

(c) Writing ǫ(∆r;α1, . . . , αn) as a Taylor series in ∆r, we have

ǫ(∆r;α1, . . . , αn) =

∞
∑

k=1

ak(α1, . . . , αn)∆rk.

Show that

ak(α1, . . . , αn) =
er∆t

k!





n
∑

i=1

αi(∆t− ti)
ke−rti −

m
∑

j=1

Xj(∆t− τj)
ke−rτj



 .

What is a0?
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(d) Argue that since there are n parameters, α1, . . . , αn (one for each bond), and
since the settlement constraint provides one constraint, we should be able to
set n− 1 of the coefficients to 0. Which coefficients do you choose to set to
0 and why?

(e) The natural choice which gives optimal immunization is to set

a1 = a2 = · · · = an−1 = 0.

Define a′k(α1, . . . , αn) by

a′k(α1, . . . , αn) =

n
∑

i=1

αit
k
i e

−rti −

m
∑

j=1

Xjτ
k
j e

−rτj .

Show that a1 = a2 = · · · = an−1 = 0 if and only if a′1 = a′2 = · · · = a′n−1 =
0. Note that this set of equations is independent of ∆t.

(f) Show that this set of equations, together with the settlement constraint has
a unique solution.

Here is an outline of the argument. Let βk =
∑m

j=1 Xjτ
k
j e

−rτj for k =
0, . . . , n− 1, and define α,β as follows.

α =











α1

α2

...
αn











, β =











β0

β1

...
βn−1











.

Show that the set of constraints can be written in the matrix form


















λ1 λ2 · · · λn

λ1x1 λ2x2 · · · λnxn

λ1x
2
1 λ2x

2
2 · · · λnx

2
n

λ1x
3
1 λ2x

3
2 · · · λnx

3
n

...
...

. . .
...

λ1x
n−1
1 λ2x

n−1
2 · · · λnx

n−1
n





























α1

α2

...
αn











=











β0

β2

...
βn−1











,

where λi = e−rti > 0 and xi = ti. More compactly, this can be written as

Λα = β,

for an appropriately defined Λ. The task is to now show that Λ is invertible.
This can be done by showing that

Λ = V L,

where V is a Vandermonde matrix and L is a positive diagonal matrix,

V =



















1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

x3
1 x3

2 · · · x3
n

...
...

. . .
...

xn−1
1 xn−1

2 · · · xn−1
n



















, L =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











.

©Malik Magdon-Ismail, RPI, October 10, 2022



2.2 Bond Portfolio Immunization 18

Clearly L is invertible, and it is well known that the Vandermonde matrix is
invertible if and only if all the xi are distinct. (The energetic may wish to
prove this.) Show that in our case, all the xi are distinct to conclude the
proof.

This exercise shows that the immunization problem reduces to solving a linear
system involving a Vandermonde matrix. Clearly this system can be solved
by inverting the Vandermonde matrix. We refer the interested reader to texts
on matrix analysis (eg. [?]) for efficient algorithms to invert Vandermonde
matrices. When the bond maturities have the form ti = i · t, then the
Vandermonde matrix V has a very special form, and can be inverted in closed
form, [?].

(g) Suppose one also held cash. How does our general solution apply even in this
setting?

Exercise 2.10

Consider a stream of commitments of $100 at each of the times 1, 2, 3. Let the
interest rate be 0.05, and assume that there are 10 bonds in the market place with
maturities 1

2 , 1
1
2 , 2

1
2 , . . . , 9

1
2 . You would like to build an immunized bond portfolio

to guarantee this cashflow stream.

(a) What is the maximum value of k for which you can be immunized to fluctu-
ations up to order ∆rk.

(b) Construct the bond portfolio which is immunized up to order ∆rk for the
value of k in the previous part.

(c) Plot the amount by which the settlement constraint is violated as a function
of the fluctuation in the interest rate for interest rate fluctuations ∆r ∈
[−0.02, 0.02]. The settlement constraint violation is given by

ǫ(∆r) = e(r+∆r)∆t





n
∑

i=1

αie
−(r+∆r)ti −

m
∑

j=1

Xje
−(r+∆r)τj



 .

Select a value of ∆t for your plot, for example ∆t = 1
12 corresponds to 1

month.

Exercise 2.11

For the general case of one commitment and n bonds, one could define the settle-
ment constraint and sensitivity ǫ either using the present value or the value at the
time of the commitment.

Show that both ways lead to the same optimally immunized portfolio.
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Exercise 2.12

A much harder bond portfolio immunization problem arises if there are a large
number (hundreds) of bonds with different maturities available, and there are con-
straints on the size of the bond portfolio. For example, imagine there are 1000
bond maturities, but your bond portfolio is limited to size 3.

Naturally, any 3 bond maturities will serve to immunize the settlement constraint
violation against fluctuations of order 2, but what is the best set of 3 maturities to
select. One criterion is that the coefficient of the 3rd order fluctuation should be
minimized. More generally, suppose that there are n maturities available, but the
portfolio is limited to size ℓ.

(a) Formulate the problem as one of finding the optimal set of bonds which
immunize the portfolio to fluctuations of order ℓ− 1 and minimizes the mag-
nitude of the order ℓ coefficient of the fluctuation. Specifically show that the
problem reduces to the following mixed integer-linear program (MILP),

min z, s.t.

αi ∈ {0, 1},
n
∑

i=1

αi ≤ k,

n
∑

i=1

αit
k
i e

−rti −

m
∑

j=1

Xjτ
k
j e

−rτj = 0, k ∈ {0, . . . , ℓ− 1},

n
∑

i=1

αit
ℓ
ie

−rti −

m
∑

j=1

Xjτ
ℓ
j e

−rτj ≤ z,

−
n
∑

i=1

αit
ℓ
ie

−rti +
m
∑

j=1

Xjτ
ℓ
j e

−rτj ≤ z.

(b) Formulate a brute force strategy for solving this problem, and determine its
running time complexity.

(c) Formulate a gready heuristic strategy for solving this problem and determine
its run time complexity. Run some experiments to com compare the perfor-
mance of the greedy with the brute force.

(d) [hard, open- ended] Can you formulate a heuristic with a provable approx-
imation guarantee on the quality of the solution with respect to the optimal
solution. One approach would be to relax this MILP to an LP and then use
a randomized rounding technique to obtain a valid solution. Then show that
the expected value of the objective after randomized rounding is within some
approximation factor of the objective in the relaxed LP solution. Since the
solution to the relaxed LP gives an upper bound on the solution to the MILP,
you have your result.
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Exercise 2.13

Other important complex contracts derived from bonds are interest rate caps
and interest rate swaptions. We define these complex contracts here, and the
energetic reader may want to ponder how to price these contracts.

2.3 Yield Curve Interpolation from Coupon Bond Data

Just as a reminder, the zero coupon price for the bond with maturity t is B(t), and the yield Y (t)

is defined by Y (t) = − logB(t)
t . Typically, bonds are only available at discrete maturities. A sample

of the daily yields as published by the US treasury department (http://www.ustreas.gov/) is given
in the table below.

Date 1 mo 3 mo 6 mo 1 2 3 5 7 10 20 30
01/02/90 – 7.83 7.89 7.81 7.87 7.90 7.87 7.98 7.94 – 8.00
01/03/90 – 7.89 7.94 7.85 7.94 7.96 7.92 8.04 7.99 – 8.04
01/04/90 – 7.84 7.90 7.82 7.92 7.93 7.91 8.02 7.98 – 8.04
01/05/90 – 7.79 7.85 7.79 7.90 7.94 7.92 8.03 7.99 – 8.06

...
08/26/08 1.67 1.71 1.95 2.19 2.35 2.64 3.06 3.37 3.79 4.43 4.40
08/27/08 1.58 1.67 1.93 2.16 2.31 2.58 3.02 3.34 3.77 4.41 4.38
08/28/08 1.63 1.74 1.98 2.19 2.37 2.62 3.09 3.42 3.79 4.41 4.38
08/29/08 1.63 1.72 1.97 2.17 2.36 2.60 3.10 3.45 3.83 4.47 4.43

Notice that in the early days, some maturities were not available since the US government was not
issuing those bonds. The immediate problem is one of obtaining the present value of a cashflow
at a maturity which is not one of the discrete maturities available. One needs to interpolate bond
prices in order to obtain prices at other maturities.

The typical properties one would like of any interpolation method are that it be continuous,
and that it be local. Local means that the value of the interpolated price at some maturity τ
depends only on the available maturities close to τ . An additional bonus is that the interpolated
function has a continuous derivative. There are many approaches for interpolation of yield curves
[?]. The simplest is the linear interpolation which is local, continuous, though not continuously
differentiable.

Even with linear interpolation, the results differ depending on whether one interpolates the
bond prices B(t) or whether one interpolates the yields Y (t), and obtain the bond prices from the
resulting interpolated yield.

For a set of maturities t1 ≤ t2 ≤ · · · ≤ tn and corresponding values y1, y2, . . . , yn, for a given t
such that ti ≤ t < ti+1, the interpolated value is given by

I(t) = yi
ti+1 − t

ti+1 − ti
+ yi+1

t− ti
ti+1 − ti

.
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Linear interpolation of the yields gives smoother looking bond prices. One can now use the inter-
polated bond prices for computing present values.

2.4 Yield Curve Interpolation from Swap Data

Exercise 2.1 gives a relationship between the par swap rates and the bond prices. Swap rates are
also periodically published by the Federal reserve, again at discrete maturities. The swap rates
could also be used to infer the yields, which can then be interpolated.

2.5 Data Driven Yield Curve Dynamics

If we look at the yield curve over time, it is definitely not constant. The daily evolution of the
yield curve over a short period of time is shown in the next figure. Each line is the yield curve for
a particular day.
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While the yield curve is not constant, it is believed that the yield curve exhibits only a few main
degrees of freedom which capture most of its dynamics. Typically three degrees of freedom are
used, often denoted by the shift (the whole curve shifts up or down), the rotation (the whole yield
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curve rotates) and the bend (the center of the yield curve moves in one direction while the extremes
move in the other).
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The fact that a small number of degrees of freedom should suffice to describe yield curve dynamics
suggests that it should be possible to effectively model yield curve dynamics using some kind of
Markov Models.

2.5.1 Modeling Yield Curve Dynamics Using Hidden Markov Models

Hidden Markov Models are very useful for modeling processes in computational finance, and we
will use the context of yield curve modeling to introduce them. A Hidden Markov Model (HMM) is
a state based model. The market exists in various states, for example the high interest rate state,
the low interest rate state, the upward sloping yield curve state, the inverted yield curve state
(downward sloping), etc. The actual yield curve depends on the state the market is in. Finally,
the market may transition from one state to the next, according to some transition probability
distribution.

Suppose that there are K state S = {s1, . . . , sK}. If the market is in state si, it will transition
to state sj ∈ S with probability Pij ≥ 0, where

∑K
j=1 Pij = 1. The matrix P is called the state

transition matrix.
Given that the state of the market on a particular day is si, the observed yield curve x will be

drawn from some (state dependent) distribution Pi(x). The Hidden Markov Model is then fully
specified by the initial state (or initial probability distribution for the initial state), the transition
matrix P and the state dependent densities Pi. Let πi(t) be the probability that the state at time
t is si. Then the probability distribution for the yield curve at time t+ 1 is given by

Pt+1(x) =
K
∑

i=1

πi(t)
K
∑

j=1

PijPi(x).

Pt+1(x) is the probability distribution for the yield curve at time t + 1. The first sum is over the
possible states at time t, weighting each state by the probability of being in that state. The second
sum considers all possible states that one can transition to from the state at time t, weighting
by the probability of transitioning to that state and the probability of observing x from the state
transitioned into. Note that we can obtain a relationship between πj(t) and πi(t+ 1):

πi(t+ 1) =
∑

j

πj(t)Pji,

©Malik Magdon-Ismail, RPI, October 10, 2022



3 The Stock 23

or in more compact vector notation,

π(t+ 1) = PTπ(t).

Exercise 2.14

Show that if
∑

i πi(t) = 1, then
∑

i πi(t+ 1) = 1.

By induction one then has that
π(t) = (PT )tπ(0).

We will assume that the state dependent yield curve distribution Pi(x) is a Normal distribution.
The number of dimensions in the vector x is equal to the number of maturities for which the yield
curve data exists. Thus,

Pi(x) = N(x;µi,Σi),

=
1

(2π)d/2|Σi|1/2
exp

(

−
1

2
(x− µi)

TΣ−1
i (x− µi)

)

.

The Hidden Markov Model is therefore fully specified by π(0),P, {µi,Σi}
K
i=1. The first task is to

estimate, or callibrate these parameters of the HMM to observed market yield curves.

2.5.2 Immunization of Bond Portfolios to Data Driven Yield Curve Dynamics

3 The Stock

A share of stock in a company entitles the owner to a part ownership in the company. The payoff for
owning stock in a company typically comes in two forms: dividends (cash flows) that are distributed
by the company to share holders and capital gain of the company – the company becomes worth
more, hence the value of your part ownership in the company has increased. We will not spend
much time discussing the ins and outs of stock valuation, and how one would analyze the financial
accounts of a company in order to determine its value. Rather, here we will give a very simple idea
of how much one should be willing to pay for a share of stock in a company.

Assume that cashflows in the form of dividends are expected to be distributed yearly in the
amounts of X1, X2, . . ., and assume that the 1 year interest rate R(1) is known. In this case let P0

be the be the price of the share now, then using the tools of the previous section, we know that the
price P0 should be the present value of the future stream of cash flows,

P0 = PV (X1, X2, X3 . . . ; 1, 2, 3 . . .),

=
X1

1 +R(1)
+

X2

(1 +R(1))2
+

X3

(1 +R(1))3
+ · · · .
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Similarily, the price of the share at time 1, denoted P1, would be the present value computed at
time 1,

P1 =
X2

1 +R(1)
+

X3

(1 +R(1))2
+ · · · .

Multiplying P0 by 1 +R(1), we see that

R(1)P0 = X1 + P1 − P0.

The RHS is the cash flow after 1 year plus the gain in the stock price (the capital gain). This sum
is typically called the economic earnings per share (EPS), which includes the dividend plus any
capital gain. Thus we see that

P0

EPS
=

1

R(1)
.

The LHS is typically called the price to earnings ratio (P to E ratio). Typically the yearly interest
rate R(1) is around 0.05, in which case the P to E ratio of a company should be about 20. Note the
use of R(1) assumes the dividends Xi are deterministic. Since companies have non-trivial default
risks, one should replace R(1) with the corresponding implied interest rate for the company’s
bonds. This could be significantly higher than R(1), implying a lower “fair” price to earnings ratio.
Companys with a significantly lower P to E ratio that the cair value of 1/R(1) could be considered
a good buy, of course, assuming that the previous P to E ratio is a good indicator of the future P
to E ratio.

The formula above explains a well known behavior in the markets. As the interest rate rises, so
the P to E ratio will fall, and since typically the EPS will not rise, this means that the price will
fall. Thus it is often the case the the Federal Reserve uses the yearly interest as a way to stimulate
or hold back the stock markets, as a way to control inflation.

3.1 Predicting Stock Prices

Of course, if we (the author) could do this, then we would stop writing immediately, get rich and
go home. Thus, it is likely that your author cannot predict stock prices, however many people
believe that it is possible to predict stock prices. For those who are in this category, we will briefly
discuss some approaches that one might take. Specifically, on the basis of what indicators should
one try to do prediction. We briefly discuss some approaches that people have found useful. Are
they profitable? well many of these techniques have been profitable when applied to historical data.
The real question is whether they will remain profitable on future data. An alternative way to look
at this problem is that the systems that have survived are precisely the ones that are profitable on
historical data. If you try many systems, one of them will be profitable, by chance. There is no
reason to believe that this system will be profitable in the future. These issues fall into the realm
of inference and learning from data. When can one conclude that the best system you have picked
with respect to performace on historical data is really a system which is above random.

To drive the point further, suppose that all the systems you try are really just random. In-
evitably some of these systems will do better than others on historical data. Picking one of these
good performers has still left you with a random system. What has happened? This type of issue
is sometimes called data snooping or overfitting. We will not address these issues here. Rather,
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we will discuss some indicators that you may want to use in developing a predictor. How you will
determine whether your predictor performs well in practice is an issue you undertake at your own
risk. In fact, this task is an entire area of research itself, within the realm of statistical learning
theory. For an introduction to these issues, see our book Learning From Data, by Abu-Mostafa,
Magdon-Ismail and Lin.

3.1.1 Plotting or Charting Methods

The basic idea is to plot the price P (t) and try to observe/detect trends. An example is shown
below for a small sample of the price data from IBM, a fairly heavily traded stock.

33

33.5

34

34.5

35

35.5

36

The band seems to indicate both the trending behavior of the price of IBM stock, in addition to
defining its region of activity. Extrapolating the upper and lower boundaries into the future in the
natural way suggested by the picture, one might expect that a trading strategy which sells when
the price approaches the upper boundary and buys when it approaches the lower boundary should
be profitable. Along these lines, several tactics are used.

Support and Resistance Levels. Support and resistance levels are “psychological” barriers
that the price appears not to break. A resistance is an upper barrier. Typically, the price will
approach this upper barrier and then get reflected down. If one could determine a resistance, then
it might be possible to make money by shorting the stock when the price approaches the resistance.
A support is a lower barrier below which the price is not expected to fall.

Typical resistances might be the previously attained high, or a round number that is above the
current trading price. For example if the current trading price is $34.50, then a support might be
$35.00. Similarily, a support tends to be the previous low, or a round number below the price. In
the previous example, a support might be $34.00.

The reason for the round numbers is a purely psyghological one, because most people will place
limit buy orders at a round number below the trading price and similarly for limit sell orders above
the trading price.
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Trade Lines. Trade lines are similar to support and resistance in that they try to determine and
extrapolate the trading region of a stock price by joining together successive maxima (to obtain
the upper trade line) and successive minima (to obtain the lower trade line). This is illustrated
with the small sampling from IBM stock price in the picture.

Bollinger Bands. Bollinger bands define the upper resistance curve and the lower support curve
as some number of standard deviations above and below a specified moving average indicator (see
below for the definition of moving average indicators). The standard deviation is typically computed
on the same window length as the moving average.

Exercise 3.15
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In this example we will explore an algorithm to construct the lower support curve
and the upper resistance curve as illustrated in the above example. As we see, the
algorithm reasonably captures what we would intuitively expect of these lower and
upper envelopes.

Let S0 = {s0, s1, . . . , sT } be the time series of prices at the times 0, 1, . . . , T .
For simplicity, assume that all the si are distinct. A local maximum of S0 oc-
curs at time t if st−1 < st and st+1 < st. Suppose that the local maxima
of S0 occur at the times t1, t2, . . . , tk. We define the level-1 upper envelope
of U1 as the time series u0, u1, . . . , uT which linearly interpolates between the
points {(0, s0), (t1, st1), (t2, st2), . . . , (tk, stk), (T, sT )}, which is the sequence of
local maxima together with the first and last point.

We define the level-2 upper envelope U2 as the level-1 upper envelope of the time
series U1. Similarly we define Uk recursively as the level-1 upper envelope of Uk−1.

Analogously, the level-1 lower envelope L1 is defined as the linear interpolator of the
local minima of S0, and the level-k lower envelope Lk is the level-1 lower envelope
of Lk−1.

The higher level envelopes are successively smoothed versions of the lower level
envelopes.

(a) Implement this algorithm and show its result on a randomly generated time
series. The example shown in this exercise is the level-2 envelope of the time
series.
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(b) Show that the envelopes are invariant to scaling of the price or time axes.
This is a useful property of this approach, i.e., it does not depend on any
absolute thresholds or scales.

3.1.2 Quantitative Indicators

Moving Averages. A moving average is an average (over some probability distribution) of the
previous prices of the stock. The resolution of the moving average is related to the time interval
separating the points at which the stock price is sampled (the smaller the time interval, the higher
the resolution). To be more specific, let τ be the time interval, and let p0, p1, p2, . . . be a probability
distribution over 0, 1, 2, . . .. Then a moving average has the form

MV (t) =
∞
∑

i=0

piS(t− iτ),

= p0S(t) + p1S(t− τ) + p2S(t− 2τ) + p2S(t− 3τ) + · · · .

Note that this sum typically gets truncated because the time series of stock prices does not go back
to −∞. Some typical choices for the probability distributions are

Uniform Fixed Window.

pi =
1

T + 1
,

for i = 1 . . . T . This choice for pi corresponds to a arithmetic average over the previous T +1
time steps,

MV (t) =
1

T + 1

T
∑

i=0

S(t− iτ).

Typically, one may use such moving averages with different choices of the window size T .
For example, if τ = 1 trading day, then some useful choices of T are T = 10 trading days (2
weeks), T = 60 trading days (3 months), T = 120 trading days (6 months). A good indication
of the market trend migh be obtained by looking at (for example) when the 10 day moving
average crosses the 60 day moving average to indicate a change in the trend.

Exercise 3.16

You are given a time series for the stock price, S1, S2, . . . , SN . Assume that τ = 1
and that the window size is T .

(a) For what values of t is MV (t) defined?

(b) Give a linear time algorithm (linear in N and independent of T ) to compute
the time series MV (t) for all values of t on which it is defined.
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Exponentially Weighted Moving Average.

pi = (1− e−λ)e−λi.

This form of a moving average gives more weight to recent values of the stock price, and may
be useful when the market dynamics is changing often. λ is often called the exponential decay
factor in the weighting. One can roughly equate 1

λ to an effective fixed window width, since
once i becomes greater than 1

λ , the probabilities drop very sharply.

Exercise 3.17

You are given a time series for the stock price, S1, S2, . . . , SN . Assume that τ = 1
and that the exponential decay factor is λ. You may assume that Si = 0 for i < 1.

(a) Give an algebraic expression (a summation formula) for MV (t).

(b) For what values of t is MV (t) defined?

(c) Give a linear time algorithm (linear in N) to compute the time series MV (t)
for all values of t on which it is defined.
(Hint: First show that MV (t+ 1) = e−λMV (t) + (1− e−λ)St+1.)

(d) How would your answers above change if you did not assume that Si = 0 for
i < 1, i.e., you computed the weighted sum only back till i = 1.
(Hint: you need to renormalize the pi’s at each time. Try to do this efficiently
to still maintain a linear time algorithm. One approach is to define A(t) =
∑t

i=1 e
−λ(t−i)Si, and B(t) =

∑t

i=1 e
−λ(t−i). Now relate MV (t) to A(t) and

B(t), and show how to efficiently update A(t) and B(t).)

Moving averages are methods for attempting to “smooth” out the noise (random fluctuations), and
extracting the true trend. Many people argue that there is predictive power in moving averages,
however, our position here is a more neutral one of simply providing the reader with a possible
indicator for predictive use.

The Relative Strength Index. The relative strength index RN is the percentage of up moves
over the last N moves. The relative strength index also gives some indication of the trend. When
R ≥ 70% it seems to indicate that the market has been in an up trend. How to use this predictively
may of course depend on the market. Will the market continue to trend up or revert back down?
Similarily, when R ≤ 30% it seems to indicate that the market has been in a down trend.

Oscillators. An oscillator is a form of indicator that is commonly known as a stochastic. We
describe a very simple form of oscillator, κN which is computed over the previous N time periods,

κN =
Current Price− Low

High− Low
.

The high and the low above are computed over the previous N periods. κN measures how significant
the current trend is.
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Exercise 3.18

Assume that N is given. Give linear time algorithms to compute the relative
strength index and the oscillator as functions of t for a given stock price time
series.

3.1.3 Specific Patterns.

Over time, qualitative traders have recognized the presence of certain patterns. Having extablished
the existence of these patterns, one might argue that if the begining of such a pattern is observed,
one should be able to predict the behavior by using the remaining part of the pattern as a guide.

Some common patterns are: the head and shoulders pattern, and its reverse;

the saucer top and botom;

etc.

Exercise 3.19

Given a data base of patterns and a a stock price time series, develop efficient
algorithms to extract the set of paterns from the data base that are K1,K2-active

at time t.

We define the active patterns as follows. View each pattern P as a string P =
p1p2, . . . , p|P |. Also view the stock price time series up to time t, S(t) = S0S1 . . . St

as a string. A pattern P is K1,K2-active at time t if some prefix of length ℓ,
K1 ≤ ℓ ≤ K2, of the corresponding pattern string P matches the corresponding
suffix of length ℓ of the string S(t).

Define the database size D as the total length of all the patterns in the database.
Let Mt be the total length of the patterns that are K1,K2-active at time t, and
let M =

∑

t Mt be the total length of the active patterns for this stock time series
(M is the size of the output).

Suppose that you are allowed to preprocess the database of patterns, and that the
stock price time series and the value of K1,K2 are inputs to the algorithm. With
O(D) preprocessing, your algorithm should run in O((K2 −K1 + 1)NK +M).

(Hint: You may want to preprocess your database into a suffix tree.)

A typical application of such algorithms would be to define the stock price series as
a string over a three letter alphabet: down (-1), no significant move (0), up (+1).
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The pattern strings are also similarily defined. One then takes all the K-active
patterns at a time t. Those patterns whose matching prefix is a proper prefix give
a prediction of the future. These patterns can be “voted together” somehow to
give a prediction of the future prices of the stock. If, for example, the prediction is
sufficiently positive, one might then consider a buy trade.

[Extension, Open Ended] Suppose now that exact matches are not required,
but certain transformations of a pattern, including noise in the data (approximate
matching) should be allowed for. Formalize this problem and try to develop efficient
algorithms or heuristics to solve the problem.

The Japanese Candlestick. An interesting pictorial representation of a short period of the
stock price series is given by the Japanese candlestick. There are two kinds of candlestick, the solid
and the clear.

H

C

O

L

H

L

O

C

Typically the period represented by the candlestick may be one day. The clear candlestick indicates
that the close (C) was above the open (O). The height of the bar indicates the magnitude of the
difference |C − O|. The high (H) is represented by upper tip of the top line and the low (L) by
the lower end of the bottom line. All height differences are proportional to their true values. An
example of a market behavior and the corresponding candlestick are given below.

Note that a given market behavior can easily be converted to a candlestick, but the candlestick
cannot uniquely be converted into a market behavior. However it gives a good idea, for example if
the close is below the open, it probably means that the low is after the high, as this picture would
result in smaller overall price movements.

Exercise 3.20

Give the market behaviors that would correspond to the following candlestick se-
quences,
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(a) (b) (c)

Recap. The important point we wish to emphasize is the we have presented a set of indicators
which are very good at giving us a picture of how the market has been behaving in the past (for
example has it been recently trending up, down or neither). The real goal, however would be to
predict how the market will behave in the future,

PREDICTOR Prediction (eg. up or down)Indicators

Prediction, however is not the content of our discussion. You may, of course at your own risk, take
for granted that the market will behave in the future, as it did in the past. On a lucky day you may
make some money. Some believe that it should be possible to predict based on such indicators.
Some believe you are better off trying to predict the prices tomorrow based on the length of mini-
skirts being sported by women today – these people essentially believe that the only way to go
is to do due diligence research on a company, its management, its products, its competition, etc,
and obtain a better estimate of its EPS than the market has. We wash ourselves of these tasks
of prediction because there are plenty of other computational tasks that are eagerly awaiting our
attention.

Data Snooping (Overfitting) Before we go on, we will address one important issue, namely
that of data snooping. Specifically, how to evaluate a predictor.

Suppose that John TinyTrader comes to you with a predictor and shows you that over the
last 10 months, it predicted the market movement (up or down) correctly. This person then offers
you this system for a price. Do you want it? The problem you face is one of trying to evaluate
a predictor without knowing the process that created the predictor. The warning we give to you
is that this is an extremely dangerous task. Your evaluation of the predictor depends heavily on
the process that created the predictor. In the absence of any knowledge regarding the process that
created the predictor, a prudent way to proceed would be to assume the worst. To illustrate the
dilemma, consider the following three distinct processes that could have resulted in John TinyTrader
approaching you:

1. John TinyTrader is the only trader in the market. One day he dreams up a system, and
immediately gives you the system. You test it on the next 10 months. It works! Mr.
TinyTrader now approaches you, and asks how well did my system do, and are you willing to
pay for it?
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2. There are a large number of TinyTraders on the market, John, Jack, Ann, . . . . For concrete-
ness suppose that there are about 1024 such TinyTraders, and they all have a different set
of predictions for the next 10 months (if any two have the same sets of predictions, we can
ignore one of them). Clearly no one will approach you if they made mistakes. John happens
to be the TinyTrader who gets it all right. Mr. TinyTrader now approaches you.

3. John TinyTrader is the only trader in the market. One day he dreams up a system and tests
it on the next 10 months. It failed to predict the 8th month correctly. John continues testing
his system, and lo and behold, it correctly predicts months 9-18 correctly. Mr. TinyTrader
now approaches you with his data on the most recent ten months.

Under which process of creating the trading system would you pay the most. If your intuition
said system 1 appears worth the most, followed by 3, then 2, then your intuition is not bad. If we
rephrase each of these creation processes, perhaps the choice will become clearer:

1. I have a system which I use in the market for the next 10 months. It makes money, this is
real money!

2. I have 1024 different systems, I need to pick one. So I look at the performance over 10
months, and luckily for me, one of them did perfectly. Was I really lucky? No! One system
is guaranteed to perform well, as there are only 1024 possible outcomes over the next 10
months, and so one of my systems must be perfect. What can I conclude about this system?
not much.

3. I have a system. I will continue testing until it performs perfectly for 10 consecutive months.
Then I will approach you with my system. You should convince your self that a random
system will eventually perform perfectly for 10 consecutive months. Don’t be fooled by the
argument

“. . . but over 19 months, the system predicted 18 months correct.”

It could have just gotten lucky. The fact is this system is guaranteed to be presented to you
eventually, and it could be no better than random.

The underlying difference between system 1 and the other two is the notion of choice. In a (not so
vague way) systems 2 and 3 are the result of someone being able to choose a system from among a set
to present. Naturally TinyTrader will select the best. Such issues of how the availability of choices
affects your belief in the quality of the system is a topic beyond the scope of our discussion, and
falls in the arena of Learning, specifically the sub field of generalization – how does the performance
of the system you have seen so far generalize to the future. The generalization ability is intimately
related to the degree of choice one has in choosing which system to show.

To drive the point home, consider a uniform random variable over the interval [0, 1]. If you
randomly pick one and show it to me, it will have an expected value of 1

2 which one might argue is a
fair representation of the distribution. If, however, you pick 10 such random numbers independently
from the same distribution, and then choose to show me the largest of these, this is no longer a fair
representation of the distribution. In fact the number you show me will on the average be much
larger than 1

2 . The next exercise will convince you of this fact.
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Exercise 3.21

Show that the expected value of the maximum of n independent samples of a
uniform random variable over [0, 1] is n/(n+ 1).

Exercise 3.22

[The Postal Scam.] You are a gambling man and every week you place a small
bet on the Monday night (American) football game. One Firday you got a postcard
with only the following on it

Ravens Cardinals

You watch the game on Monday and the Cardinals win. For the next 4 consecutive
Fridays, you get similar postcards with the following

Bills Falcons

Panthers Bengals

Bears Browns

Broncos Cowboys

On each corresponding Monday, you watch the game and to your surprise, the
sequence of winners is Falcons, Panthers, Bears and Cowboys.

You eagerly await the next postcard on the next Friday, which to your surprise
arrives, with the following on it

Colts Packers

You are confused; you turn over the postcard and find a message. Call 1-900-XXX-
XXXX to find out which team is underlined. When you call, they ask you for $10
for the answer. You need to make a quick decision. Do you bite (assuming that
you can place any sized bet on the Colts-Packers game in Las Vegas).

More specifically, what is the maximum you would be willing to pay for this infor-
mation. You may make some reasonable assumptions on the price of a postcard
stamp.

Does your answer to the above problem change if there is a bet-limit of $100 that
you can make on the game in Las Vegas?

The moral is that while we do not engage in the task of prediction, we warn that to evaluate a
predictor carefully, it is imperative that one knows the process that created the predictor. Trying
only to evaluate it based on the resulting performance is flawed. In a conservative world, one should
assume the worst for the process that created the predictor.
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