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Computational Finance – The Monte Carlo
Method for Pricing

Before even begining, we will mention that Monte Carlo methods in finance are a huge
area of research and we only touch on this topic to give a taste of some techniques available.
Naturally many more details may be obtained from the vast literature, and we suggest [?]
as a good place to start.

1 Some Elements from Probability Theory

Monte Carlo is a probabilistic technique and so we summarize some basic facts from prob-
ability theory which are useful. For a random variable X ∈ R

n, we denote its probabiliy
density function pX(x). For a subset S ⊆ R

n,

P [X ∈ S] =

∫

S

dx pX(x).

Two random variables X and Y are independent if for any subsets S1 ⊆ R
n, S1 ⊆ R

n

P [X ∈ S1,Y ∈ S2] = P [X ∈ S1] · P [Y ∈ S2].

Let f : Rn → R. Then f(X) is itself a random variable with its own probability distribution.
The expectation E[f(X)] is given by

E[f(X)] =

∫

dx pX(x)f(x).

We will focus on a 1-dimensional random variable X with density pX(x). The mean is given
by setting f(X) = X,

E[X] =

∫

dx pX(x)x.

The variance is given by

V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2,

where

E[X2] =

∫

dx pX(x)x
2.

In the multi-dimensional case we define the ith component of the mean vector µ by selecting
f(X) = Xi, the ith component of X.

µi = E[Xi] =

∫

dx pX(x)xi.
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1.1 Sums of Random Variables 2

Similarily, we define the covariance matrix Σ where

Σij = Cov[Xi, Xj ] = E[XiXj]− E[Xi]E[Xi].

Note that Σii = V ar[Xi]. One of the most important distributions in computational finance
is the Normal distribution. X ∼ N(µ,Σ) is a normally distributed random vector with mean
µ and covariance matrix Σ if

pX(x;µ,Σ) =
1

(2π)n/2|Σ|1/2 e
− 1

2
(x−µ)TΣ−1(x−µ)

It is not hard to show that E[X] = µ and that Cov[Xi, Xj ] = Σij.

Exercise 1.1

For a Normal random vector as described above, show that E[X] = µ and
that Cov[Xi, Xj ] = Σij .

1.1 Sums of Random Variables

Suppose that X1, . . . , Xn are 1-dimensional random variables, and let X =
∑n

i=1 Xi be the
random variable equal to the sum. Then

E[X] =
n
∑

i=1

E[Xi].

If two random variables X1, X2 are independent, then Cov[X1, X2] = 0. In general if
Cov[X1, X2] = 0 (which does not imply independence), the random variables are uncor-
related. Suppose that X1, . . . , Xn are independent random variables, then

E

[

n
∏

i=1

fi(Xi)

]

= E[f1(X1)f2(X2) · · · fn(Xn)] =
n
∏

i=1

E[fi(Xi)],

i.e. the expectation of products of functions of the random variables factorizes to a product
of expectations. In particular, for independent random variables,

E[X1X2] = E[X1]E[X2].

We can compute the variance of a sum as

V ar[X] =
n
∑

i=1

V ar[Xi] +
∑

i 6=j

Cov[Xi, Xj ].
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For independent random variables, the covarince term is zero among all pairs, and so

V ar[X] =
n
∑

i=1

V ar[Xi] (independent random variables).

The standard deviation σX =
√

V ar[X] is typically a good measure of the dispersion of X.
For example, for the normal distribution, with probability greater than 0.997, the random
variable X lies within 3σ of the mean. If X is a random variable then Y = aX + b, a linear
transformation of X is also a random variable. Then,

E[Y ] = E[aX + b],

= aE[X] + b,

V ar[Y ] = V ar[aX + b],

= a2V ar[X].

We can perform a similar calculation for a linear transformation of a random vector X. Let
Y = AX + b, where A is a matrix and b is a vector. Let ΣX and ΣY be the covariance
matrix for X and Y respectively. Then,

E[Y] = E[AX+ b],

= AE[X] + b,

ΣY = Cov[AX+ b],

= AΣXA
T.

If X is a normally distributed random vector, then any linear transformation Y = AX + b

is also a normally distributed random vector, with the appropriately defined mean and
covariance matrix. Note that if a random variable is bounded, so that X ∈ [a, b], then
V ar(X) ≤ (b− a)2.

Exercise 1.2

Show that if X ∈ [a, b] then V ar(X) ≤ (b− a)2.

1.2 Probability Bounds

Various powerful inequality bounds exist which relate the probability of a random variable
taking on certain values to quantities like its expectaiton. These are typically called tail
inequalities.
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Markov’s Inequality

P [|X| > t] <
E[|X|]

t
.

Chebyshev’s Inequality

P [|X − E[X]| > kσX ] ≤
1

k2
.

This bound shows that the standard deviation is a good measure of how good a random
variable is at approximating the mean. Typically, in statistics, one uses 2σ as an error bar
when using the realization of a random variable to approximate its mean.

Exercise 1.3

Prove Markov’s inequality and use Markov’s inequality to prove Chebyshev’s
inequality.

One application of Chebyshev’s inequality is the weak law of large numbers. LetX1, X2, . . . , Xn

be independent and identically distributed random variables with mean µ and variance σ2.
Let Sn = 1

n

∑n
i=1 Xi. Then

E[Sn] = E[
1

n

n
∑

i=1

Xi],

=
1

n

n
∑

i=1

E[Xi],

= µ,

and

V ar[Sn] = V ar[
1

n

n
∑

i=1

Xi],

=
1

n2

n
∑

i=1

V ar[Xi],

=
σ2

n
.

From Chebyshev’s inequality, we then have that

P [|Sn − µ| > kσ] ≤ 1

nk2
.
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2 Derivative Pricing, Expectations and Integrals 5

We see that the right hand side goes to zero as n → ∞, and so a sample average converges
to the mean as the number of samples increases, in a probabilistic sense. In the general case,
one cannot improve on this bound. In the case when the Xi are bounded, there are many
more precise tighter bounds which can be obtained. These types of bounds are typically
called tail inequalities, for example the Bernstein inequalities (special cases of which are
the Hoeffding inequality, the Azuma inequality, . . . ). The version presented here does not
make use of the variance. Bennett’s inequality can be used to give a tighter bound if the
variance or a good bound on the variance is known (in addition to the random variable being
bounded).

Hoeffdings Inequality LetX1, . . . , Xn be independent random variables which are bounded,
so Xi ∈ [ai, bi], then

P [|Sn − µ| > t] ≤ 2 exp

(

− 2n2t2
∑n

i=1(bi − ai)2

)

.

For the special case when all the Xi are bounded by the same bounds, Xi ∈ [a, b], letting
B = b− a, we have that

P [|Sn − µ| > t] ≤ 2 exp

(

−2nt2

B2

)

.

For any fixed t, the right hand side exponentially decays to zero with respect to n. In fact
for t = ω( 1√

n
), the right hand side tends to 0 with n → ∞ which indicates that the deviation

of Sn from µ is of the order of 1/
√
n with high probability.

2 Derivative Pricing, Expectations and Integrals

In the previous discussions, we have seen that the price of a derivative f , for simplicity a
state dependent derivative, is given by the expectation of discounted future cash flows in the
risk neutral world. In particular, the risk neutral world dynamics typically specifies how to
generate a stock price path according to the risk neutral probability,

S(t+∆t) = M(S(t),∆t,η),

where η is a random variable and M(·) is some function. For example, for the geometric
Brownian motion risk neutral world,

M(S(t),∆t, η) = S(t)e(r−
1

2
σ2

R)∆t+σR

√
∆tη,

where η ∼ N(0, 1). The price of the derivative is given by

Price(f) = Epaths p
[PV (cash flows along path p)].
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3 Monte Carlo For Evaluating Integrals 6

A path p is specified by the stock price values along the path, in particular, S0, S1, . . . , Sn

where Si = S(i∆t), for i = 0, 1, 2, . . .. The risk neutral dynimacs gives a probabilistic pre-
scritpion for generating these paths, which implicitly defines the joint probability distribution
P (S1, S2, . . . , Sn) of the stock prices along the path. The cash flow at time i∆t when the
stock price is Si is specified by f(Si, i∆t), and so its present value is e−ir∆tf(Si, i∆t). Thus
the present value of all cash flows along the path p = S0, S1, . . . , Sn is

C(S1, . . . , Sn) =
n
∑

i=1

e−ir∆tf(Si, i∆t).

We thus have that

Price(f) =

∫

dS1dS2 · · · dSn P (S1, S2, . . . , Sn)C(S1, . . . , Sn),

where C(S1, . . . , Sn) is the discounted cash flow function for the path S1, . . . , Sn and P (S1, S2, . . . , Sn)
is the risk neutral probability of the path S1, . . . , Sn. The main thing to notice here is that
the price of the derivative is the integral of some function in some very high dimensional
space n, where typical values of n may be of the order of 10, 000 (for example using an hour
time step to simulate a 1 year (250 days) option already has n > 5, 000, and a 1 minute time
step is more desirable).

The point of this discussion was to show that computing the price of an option is essentialy
an integral. We now abstract ourselves away from the pricing framework, and consider Monte
Carlo for computing integrals.

3 Monte Carlo For Evaluating Integrals

We consider a d-dimensional integral in one of two forms,

I =

∫

[0,1]d
dx p(x)f(x), I =

∫

[0,1]d
dx g(x),

where p(x) is a probability density on [0, 1]d which is the domain of the integration. Notice
that through a change of variables, we can without much loss of generality assume that the
domain of integration is [0, 1]d, the d-dimensional hypercube. Clearly these two forms of
integral are equivalent. Indeed, the first is just a special case of the second for the choice
g(x) = p(x)f(x), and the second is a special case of the first for the choice p(x) = 1, the
uniform distribution on the unit hypercube. Without loss of generality, we can assume that
f(0) = g(0) = 0.

Typically one makes some assumption on the function being integrated in order to en-
sure that any numerical technique for computing the integral has some good convergence
properties. A reasonable assumption is that the function is bounded, so for example

max
x∈[0,1]d

|g(x)| ≤ B.
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3.1 Brute Force Numerical Integration 7

A slightly stronger assumtion is that g(x) has a gradient with bounded norm, so that

max
x∈[0,1]d

|| ∇g(x) || ≤ B.

This is a stronger assumption, for it immediately implies that the function itself is bounded
by using Taylors theorem:

g(x) = g(0) +∇g(x∗) · x,
for some x∗ = λx for 0 ≤ λ ≤ 1. Therefore

|g(x)| = || ∇g(x∗) · x ||,
≤ ||∇g(x∗) ||||x ||,
≤ B

√
d,

because ||x∗ || ≤
√
d for x ∈ [0, 1]d. In fact, let x,x′ be any two points in [0, 1]d, then

|g(x)− g(x′)| ≤ B||x− x′ ||.

3.1 Brute Force Numerical Integration

First we consider a simple brute force numerical approach to integration which serves as
a benchmark to illustrate why multidimensional integration is a very hard problem. In
particular, we consider the standard multi-dimensional generalization of the Riemann sum
approximation to an integral. In particular, partition each dimension of the unit hypercube
into intervals of length ǫ. This partitions the unit hypercube into ǫ-hypercubes each of
volume ǫd. The distance between any two points in the same ǫ-hypercube is at most ǫ

√
d.

The number of such hypercubes is

nǫ =
1

ǫd
.

Let the hypercubes be numbered V1, V2, . . . , Vnǫ , and let x1,x2, . . . ,xnǫ each be a point in
the corresponding ǫ-hypercube, so xi ∈ Vi. The Riemann sum approximation to the integral
I =

∫

[0,1]d
dx g(x) is

Î = ǫd
nǫ
∑

i=1

g(xi).

One of the measures of a performance of a numerical integration routine is the number of
times it has to evaluate the function (the sample complexity). This algorithm clearly has
a sample complexity of nǫ =

1
ǫd
. Another measure of performance is the error between the
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3.1 Brute Force Numerical Integration 8

estimate and the true value of the integral, E = |I − Î|. Indeed, we have that

I =

∫

[0,1]d
dx g(x),

=
nǫ
∑

i=1

∫

Vi

dx g(x),

=
nǫ
∑

i=1

∫

Vi

dx (g(x)− g(xi) + g(xi)),

= Î +
nǫ
∑

i=1

∫

Vi

dx (g(x)− g(xi)).

So we see that

E =

∣

∣

∣

∣

∣

nǫ
∑

i=1

∫

Vi

dx (g(x)− g(xi))

∣

∣

∣

∣

∣

,

≤
nǫ
∑

i=1

∫

Vi

dx |g(x)− g(xi)| ,

≤ B
nǫ
∑

i=1

∫

Vi

dx |x− xi| ,

≤ B
√
dǫ

nǫ
∑

i=1

∫

Vi

dx 1,

= B
√
dǫ

nǫ
∑

i=1

ǫd,

= B
√
dǫ.

Thus, the error in the estimate is decreasing linearly in the side length ǫ which appears to
be a good thing because it means that by taking ǫ sufficiently small, which ammounts to
making nǫ sufficiently large, we can obtain an arbitrarily accurate integral. However, there is
a subtle problem hidden here, which appears when we view compute the sample complexity
required to compute a desired error E . Suppose that we have a target error e for the integral
estimate which we would like to guarantee. If B

√
dǫ ≤ e, then certainly E ≤ e. Since

nǫ =
1
ǫd
, we find that to guarantee an error e it suffices that

nǫ =

(

B
√
d

E

)d

.

Notice that the sample complexity based on this bound is growing exponentially in d. The
severity of this problem is illustrated in the following exercise.
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3.2 Monte Carlo for Integral Computation 9

Exercise 3.1

Suppose that we are doing a 100 dimensional integral, d = 100, and that
B = 1 and that we wish to guarantee an error of 0.01. What is the sample
complexity implied by the bound.

A sample complexity which is exponential in d is not practically feasible for large d and as
we already discussed, in the derivative pricing setting, we are interested in very high dimen-
sional integrals. Unfortunately, this is the best that one can do in order to deterministically

guarantee the error, and for this reason it is called the curse of dimensionality. However,
if we only require of an algorithm that most of the time it be very accurate, then we can
actually escape this curse of dimensionality, which is where Monte Carlo comes in.

3.2 Monte Carlo for Integral Computation

We will consider the form of the integral I =
∫

[0,1]d
dx p(x)f(x) because it will turn out that

p(x) can actually play a role in making the extimate of the integral more accurate. The
prescription for computing the integral Î is given in the following very simple algorithm.
The input to the algorithm is n, the number of Monte Carlo samples to use. In describing
the algorithm, we assume that an oracle exists to compute f(x) in constant time, and an
oracle exists to generate iid samples x1, . . . ,xn with each xi ∼ p(x)

1: Assume that n is given.
2: Generate x1,x2, . . . ,xn iid according to p(x).
3: return Î = 1

n

∑n
i=1 f(xi).

In a nutshell,

Î =
1

n

n
∑

i=1

f(xi),

where x1, . . . ,xn are iid random variates generated according to p(x).
The sample complexity of this algorithm is n. There is another complexity in this algo-

rithm which is the requirement to generate n random variates iid according to p(x). This
is a non-trivial task, even for p(x) being the uniform distribution. For the uniform distribu-
tion, one has to generate nd uniform random variates. Luckily, random variate generation
is a well studied topic in its own right and so there are many good pseudo-random number
generators for a variety of distributions. These random number generators, together with
variable transformations is typically enough to generate random variates for our purposes.

Applying The Monte Carlo Algorithm to Derivative Pricing. Remember that in
the derivative pricing setting, we have

Price(f) =

∫

dS1dS2 · · · dSn P (S1, S2, . . . , Sn)C(S1, . . . , Sn),
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3.3 Analysis of the Monte Carlo Algorithm 10

where S1, S2, . . . , Sn is a sample path. We assume that the cashflow function for a sample
path, C(S1, . . . , Sn) can be computed in typically in O(n) time. How do we generate a
sample x = (S1, S2, . . . , Sn) from the joint distribution P (S1, S2, . . . , Sn). Well, this is just
a sample path, and we assume that we know the risk neutral dynamics, so, for example, for
the geometric Brownian motion,

S((i+ 1)∆t) = S(i∆t)eηi ,

where ηi ∼ N((r − 1
2
σ2
R)∆T, σ2

R∆t). Starting from S0 we can generate a sample path pro-
viding we can generate iid random variates ηi from a normal distribution, we can then
generate a sample path. Generating a sample path is exactly equivalent to generating
x = (S1, S2, . . . , Sn) from the joint distribution p(x) = P (S1, S2, . . . , Sn). We give the full
algorithm below.

1: Let N be the number of Monte Carlo samples and assume that n,∆t are given (the path
discretization parameters). Suppose that S0 the initial stock price is given.

2: for i = 1 to N do
3: Generate a sample path xi = (S1, S2, . . . , Sn) as follows,
4: for j = 1 to n do
5: generate an independent normal random variate η ∼ N(0, 1).

6: set Sj = Sj−1e
(r− 1

2
σ2

R)∆T+σR

√
∆tη.

7: end for
8: Compute the cash flow along the sample path xi, fi = C(S1, . . . , Sn).
9: end for

10: return Price = 1
N

∑N
i=1 fi.

This prescription requires us to be able to generate standard normal random variates, and
we will see how to do this later. In a nutshell,

Price(f) =
1

n

∑

iid paths (S1,...,Sn)

C(S1, . . . , Sn),

where C(S1, . . . , Sn) is the discounted cashflow function along a particlar path.

3.3 Analysis of the Monte Carlo Algorithm

Remember that

Î =
1

n

n
∑

i=1

f(xi).
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3.3 Analysis of the Monte Carlo Algorithm 11

The first we will show is that Î is an unbiased estimator of I.Indeed,

E[Î] = E

[

1

n

n
∑

i=1

f(xi)

]

,

=
1

n

n
∑

i=1

E[f(xi)],

= E[f(x)],

=

∫

[0,1]d
dx p(x)f(x),

= I.

We have used the fact that the xi are iid which implies that the f(xi) are also iid ran-
dom variates, and so E[f(xi)] = E[f(x)] for all i. Unlike with the brute force numerical
integration, for Monte Carlo, Î is a random quantity, and so no guarantees can be made

about it. However, σ =

√

V ar[Î] gives an estimate of the typical deviation between Î and

E[Î] = I, which is therefore a measure of the typical error that one expects in estimating I
by Î. Indeed,

V ar[Î] = V ar

[

1

n

n
∑

i=1

f(xi)

]

,

=
1

n2

n
∑

i=1

V ar[f(xi)],

=
1

n
V ar[f(x)].

If we now assume that f is bounded on [0, 1]d so f(x) ∈ [a, b] with B = b − a (a weaker
assumption than bounded derivative), then V ar[f(x)] ≤ B2, and so

σ(f) ≤ B√
n
.

Thus, the “probabilistic error bar” in the estimate is O(n−1/2), independent of the dimension

d. This is quite a huge breakthrough. By giving up the deterministic guarantee on the error,
we can avoid the curse of dimensionality. A more precise statement of this fact is obtained
by using the Hoeffding inequality. Using the Hoeffding bound,

P [|Î − I| > A√
n
] ≤ e−

2A2

B2 .

The right hand side probability bound can be made arbitrarily small by selecting A large
enough. Fixing A to some such large value, we then have that with probability at least

1− e−
2A2

B2 , |Î − I| ≤ A√
n
, or that with very high probability the error in the integral estimate

is |Î − I| = O( 1√
n
).
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3.4 A Hybrid Monte Carlo Algorithm 12

3.4 A Hybrid Monte Carlo Algorithm

We can slightly improve the efficiency of the Monte Carlo by combining it with the numerical
brute force approach as follows. The basic idea is that if we are going to use n = kd monte-
carlo samples, then instead of randomly distributing each of them in the hypercube, we
construct the ǫ-hypercubes as with the numerical brute force approach, with ǫ = 1

k
and

distribute one point randomly in each of the n ǫ-hypercubes.
We consider the integral

I =

∫

[0,1]d
dx f(x),

which corresponds to p(x) being the uniform distribution. We will give the general algorithm
for general p(x), but as we will see, the most gain occurs for the uniform distribution. Let
Vi be the ith ǫ-hypercube, and let pi be the probability of a point being generated in Vi,

pi =

∫

Vi

dx p(x),

= ǫd.

We now generate the point xi in Vi according to the density 1
pi
p(x). The estimate Î is given

by

Î =
n
∑

i=1

pif(xi),

= ǫd
n
∑

i=1

f(xi),

We compute the properties of this estimate as before, assuming that f has a bounded
derivative, || ∇f || ≤ B.

E[Î] = E

[

n
∑

i=1

pif(xi)

]

,

=
n
∑

i=1

piE[f(xi)],

=
n
∑

i=1

pi

∫

Vi

dx
p(x)

pi
f(x),

=
n
∑

i=1

∫

Vi

dx p(x)f(x),

=

∫

[0,1]d
dx p(x)f(x),

= I.
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3.4 A Hybrid Monte Carlo Algorithm 13

V ar[Î] = V ar

[

n
∑

i=1

pif(xi)

]

,

=
n
∑

i=1

p2iV ar [f(xi)] ,

≤
n
∑

i=1

p2iB
2dǫ2,

= B2dǫ2
n
∑

i=1

p2i ,

where we have used that f(xi) is bound in a range of B
√
dǫ as xi varies over Vi. The

summation
∑n

i=1 p
2
i ≥ 1

n
, with equality attained for the uniform distribution, which is why

we consider the uniform distribution. For the uniform distribution, we have

V ar[Î] ≤ B2
√
d

n1+ 2

d

,

which in terms of the dependence on n is an improvement by a factor of 1
n2/d over the standard

Monte Carlo approach. For small d, this can be a significant gain. For example, for d = 1
and using σ as the error measure, we have σ(Î) = O(n−3/2), as opposed to O(n−1/2). One
important requirement to run the hybrid algorithm effectively is to be able to generate a
uniform point xi in Vi. This is accomplished by the following algorithm,

1: For integer k, let n = kd, and ǫ = 1
k
.

2: for i = 0 to n− 1 do
3: Let a1a2 . . . ad be the base k representation of i, so i = a1 + a2k+ a3k

2 + · · ·+ adk
d−1,

where ai ∈ {0, 1, . . . , k − 1}. Let k be the vector containing a1, . . . , ad
4: Generate d uniform random variables, u1, . . . , ud ∼ U [0, 1]. Let u be the vector con-

taining u1, . . . , ud.
5: Set xi = ǫ · (k+ u).
6: end for
7: return Î = 1

n

∑n
i=1 f(xi).

In the above algorithm, it is necessary to compute the d-ary representation of a number. We
used this approach because it is convenient to represent. What is actually going on is that we
have d nested loops each from 0 to k−1. However such an algorithm is hard to encode with d
as an input. The k-ary representation is easy to compute efficiently in O(d) time. The basis
of the computation is through the notions of the remainder and the quotient. Specifically,
we can write any integer x = qk + r, where q is the quotient and r the remainder. Then,

q(x; k) =
⌊ x

k

⌋

, r(x; k) = x− q(x)k = x−
⌊ x

k

⌋

k.
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3.4 A Hybrid Monte Carlo Algorithm 14

Then, the following recursion constructs the k-ary representation of an integer x:

a1(x) = r(x; k),

q1(x) = q(x; k),

and for i > 1,

ai(x) = r(qi−1(x); k),

qi(x) = q(qi−1(x); k).

a1, . . . , an are the digits of x in base k.

Exercise 3.2

Implement efficiently the standard Monte Carlo algorithm, and the hybrid
algorithm for p(x) uniform, and test it for d = 1 using the following exam-
ple.

(a) Let I =
∫ 1
0 dx x2, so g(x) = x2. Set n = 100 and compute an

estimate Î1 using the standard Monte Carlom = 5000 times. What is
the sample standard deviation in this estimate? This sample standard
deviation is a good estimate of σ(Î1).

Now repeat this same same experiment to compute the Hybrid monte
Carlo estimate Î2 m times the Hybrid Monte Carlo and compare the
sample standard deviations σ(Î1) and σ(Î2).

(b) Now repeat the previous experiment for n in the range [100, 10, 000]
and give a plot on a log-log scale of σ(Î1(n)) and σ(Î2(n)) as n

increases. Compute the slopes of the resulting curves and explain.

[Answer:

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

log(n)

lo
g
(σ

)

Error bar σ vs n for the Monte Carlo vs. Hybrid Algorithm

 

 

Slope = −0.5

Slope = −1.5

Monte Carlo

Hybrid
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4 Random Variate Generation 15

]

4 Random Variate Generation

A very hard problem brushed under the rug in the Monte Carlo algorithm is the generation
of the random xi. This is in its own right an entire area of research in mathematics, and we
do not propose to give anywhere near a complete characterization of this topic. Our goal is
to give some basic tools which would prepare the reader for performing Monte Carlo, and if
necessary further research through other literature.

The simplest of these problems is to generate a sequence u1, u2, . . . of iid uniform ran-
dom variates, where each ui ∼ U [0, 1] is independent of every other one. Naturally there
is no known algorithm (except possibly for harnessing “trully random” quantum physical
processes) to generate a purely random sequence u1, u2, . . ., so all the research has focussed
on generating pseudo-random sequences, which are deterministic sequences that “look” ran-
dom. The simplest of these is the linear congruential generator (LCG), which is typically
the default random number generator in most math libraries such as rand() in C++. Linear
congruential generators give a sequence of pseudo-random integers starting from a seed z0,
and following the recursion

zi+1 = azi + b(mod m).

a, b,m are parameters and much work goes into determining good values for these parameters.
For example, the standard C++ generator uses m = 232, a = 1103515245 and b = 12345.
Note that any such generators are periodic, with a period of at most m.

Other non-linear aproaches to univariate generation also exist and tend to be slow in
general, though perhaps slightly superior to the LCG. One such method which I recommend
is the Mersenne Twister random number generator, which is available under the FreeBSD
liscence off the www, for example at

http://www-personal.umich.edu/ wagnerr/MersenneTwister.html

The algorithm is very fast, and has superior properties to rand(), including the fact that its
period is 219937 − 1

For our purposes, we will assume that a stream of uniform random variates u1, u2, . . . is
available. We study how to generate random variates from other distributions, given such
a stream of uniform random variates. Suppose we wish to generate X ∼ fX(x) with cdf
FX(x).
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4.1 The Transformation Method

Let X = F−1
X (u) where u ∼ U [0, 1]. We show that X ∼ fX . Indeed,

P [X ≤ x] = P [F−1
X (u) ≤ x],

= P [u ≤ FX(x)],

= FX(x).

We have used the fact that FX is monotonic, and that and that the cdf of the uniform
distribution is given by FU(u) = u for u ∈ [0, 1].

The transformation method is generally efficient if F−1 is known in analytical form. In
general, FX itself is hard to compute (for example for the Normal distribution), so F−1

X is
not easy to compute. Thus the method is not general, however in the cases where it can be
carried out, it is efficient.

Exercise 4.1

Using the transformation method, show how to generate random variates
from the following distributions.

(a) The one sided exponential, fX(x) =

{

λe−λx x ≥ 0,

0 x < 0.

(b) The two sided exponential, fX(x) = λ
2 e

−λ|x|.

(c) The monomial distribution on [0, 1], fX(x) = (p+1)xp for x ∈ [0, 1],
and p > −1.

(d) The monomial distribution on [0, 1], fX(x) = (p + 1)(1 − x)p for
x ∈ [0, 1], and p > −1.

(e) The cauchy distribution, fX(x) = 1
π

1
1+x2 .

4.2 The Acceptance-Rejection Method

In order to implement this technique it is necessary to have a second distribution gY from
which one can generate random variables, and it is necessary that for any x such that
fX(x) > 0, gY (x) > 0. We let A = supx:fX(x)>0

gY (x)
fX(x)

. Then note that A ≥ 1 and ∀x,
fX(x) ≤ AgY (x). Any distribution gY which is non-zero everywhere would do. A particularly
useful such distribution is the Cauchy distribution gY (x) =

1
π

1
1+x2 on the real line, for which

we can generate random variates using the transformation method. On the unit interval,
the polynomial distributions are useful. The situation is illustrated in the figure below,
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The algorithm to generate a random variate according to fX is then given in the following
algorithm.

1: initialize a variable success=0.
2: while success=0 do
3: Generate a random variate x from gY , x ∼ gY .
4: Generate a uniform random variate u ∼ U [0, 1].

5: if x ≤ fX(x)
AgY (x)

then
6: success=1
7: end if
8: end while
9: return x.

In a nut shell, the algorithm generates a random variate x ∼ gY and accepts it with probabilty
fX(x)/AgY (x).

Exercise 4.2

Show that the probability that a random variate is accepted is 1
A .

Exercise 4.3

Show that P [x ≤ h|x is accepted] = FX(h) where FX is the distribution
function for fX .

This exercise shows that the random variates generated have the right
distribution.

The algorithm has been described in the 1-dimensional setting, but it is completely analogous
in the multi-dimensional setting. Thus the algorithm is general, however it is not very
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efficient, having an efficiency 1
A
– for every A random variates generated according to gY , on

average one will be accepted.

Exercise 4.4

Let q(x) be any non-negative valued function not identically zero. Suppose
you wanted to generate a random variate from the density f(x) = kq(x).

(a) What is the value of k.

Suppose you have a bounding density Ag(x) ≥ q(x), which is a bounding
density for q(x). Note that q(x) is not itself a density, however it has
the right shape as f(x). Suppose we use the following rejection sampling
algorithm.

1: initialize a variable success=0.
2: while success=0 do

3: Generate a random variate x from g(x), x ∼ g.
4: Generate a uniform random variate u ∼ U [0, 1].

5: if x ≤ q(x)
Ag(x) then

6: success=1
7: end if

8: end while

9: return x.

(b) Show that the acceptance rate of the above algorithm is 1
kA .

(b) Show that the accepted samples have the density f(x).

This exercise shows that as long as the shape of f(x) is known and one has a bounding
density for the shape function q(x), we can generate from the density f(x) without having
to normalize the function q(x) - i.e. without having to obtain k. We will be able to generate
from f(x), however we will not be able to compute the efficiency without k.

Exercise 4.5

Suppose that we wish to generate a random variable from the distribution
distribution f(x) ∝ e−x4

. What will be the efficiency (acceptance rate) if
we used as the bounding density

(a) The Normal density g(x) = 1
2πe

− 1

2
x2

.

(b) The Exponential density g(x) = 1
2e

−|x|.
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(c) The Cauchy density g(x) = 1
π

1
1+x2 .

Exercise 4.6

[Restriction Sampling and Rejection Sampling] Sometimes one has a density
f(x) defined (say) on the real line and one wishes to generate the random
variable restricted to some region I for example I = [0, 1]. For this exercise
we will consider f(x) = e−x. One natural way to generate such a restricted
x is to generate x ∼ f(x) (assuming we can generate from f(x)) and then
accept if x ∈ I and reject otherwise. The efficiency of this process is
P [x ∈ I] =

∫

I dx f(x). We call this restriction sampling.

1. Show that restriction sampling is equivalent to sampling from the
density

fr(x) =

{

kf(x) x ∈ I,

0 x 6∈ I.

What is k?

2. Show that restriction sampling is equivalent to rejection sampling
where the bounding density g(x) is f(x). What is A?

3. It is often possible to obtain a better efficiency for restriction sam-
pling using a different bounding density than f(x) itself. For our
example of the restricted exponential density, consider the following
two bounding densities on [0, 1] (which are easy to generate from)
and compare the efficiency of rejection sampling using these densities
with the original restriction sampling.

i. The uniform density, g(x) = 1

ii. The linear density, g(x) = 2(1− x).

4.3 Normal Random Variates

From the financial perspective, the multi-dimensional Normal random variate is one of the
most important. The multi-dimensional normal density N(µ,Σ) is the following pdf,

f(x) =
1

(2π)d/2|Σ|1/2 e
− 1

2
(x−µ)TΣ−1(x−µ),
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where µ is the mean of the density, Σ is the covariance matrix and |Σ| is the determinant
of Σ, and d is the dimensionality. The standard Normal distribution is obtained by setting
µ = 0 and Σ = Id×d, where Id×d is the d× d identity matrix. The standard Normal density
has the functional form

f(x) =
1

(2π)d/2
e−

1

2
||x ||2 .

Note that the standard normal density is spherically symmetric. Also note that uncorrelated
normal random variates are independent as the density factors into a product of densities.
We will use a theorem from probability theory which states that a linear combination of
normal random variables is itself normal. Suppose that x ∼ N(0, I) is a standard Normal
random variable and let z = Ax+ µ be a linear transform of x. Then

E[z] = AE[x] + µ = µ.

Exercise 4.7

Show that
E[zzT] = AAT + µµT.

The previous exercise shows that the covariance matrix for z is given by

Σz = AAT.

Given a symmetric positive definite Σ, we can construct the unitary decomposition of Σ,

Σ = UDUT

where the matrix U are the eigenvectors of Σ and D is the diagonal matrix of (positive)
eigenvalues. The matrix U is orthogonal, i.e. UUT = UTU = Id×d. The matrices U and
D are easily available in most mathematical packages, for example in matlab they may be
obtained through the function eig. Setting A = Σ1/2 = UD1/2UT, one can verify that

Σz = Σ.

What this means is that given µ,Σ, we can define A = Σ1/2 and b = µ, and then z =
Ax+ b ∼ N(µ,Σ) if x is a standard Normal. To see this, we know from probability theory
that the linear combination of a set of Normal random variables is Normal, so it suffices to
verify that the mean and covariance matrix are correct. But this is what the entire previous
discussion established. Thus it suffices to be able to generate from a standard Normal
density.
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Exercise 4.8

Show that Σz = Σ.

We thus consider generating random variables from the standard Normal density. There
are many very accurate approximations to the standard Normal cumulative distribution
function,

φ(x) =
1√
2π

∫ x

−∞
ds e−

1

2
s2 .

There are also many approximations in terms of rational functions and Chebyshev approx-
imations to φ−1, and one can use these to generate a standard Normal random variate to
good accuracy using the transformation method.

Perhaps the most famous method for generating normal random variates is the Box-
Muller method which actually does not generate a single standard Normal, but it generates
two independent standard Normal random variates from two uniform variates. Let u1, u2 be
two uniform random variates, and define the transformed random variates x1, x2 by

x1 =
√

−2 ln u1 cos 2πu2,

x2 =
√

−2 ln u1 sin 2πu2.

Then x1, x2 are independent standard Normal random variates.

Exercise 4.9

Show that x1, x2 are independent standard Normals.

[Hint: It is easier to start with two jointly independent Normal random

variates x1, x2 with f(x) = 1
2πe

− 1

2
(x2

1
+x2

2
) and show that u1 =

1
2πarctan

x2

x1

and u2 = e−
1

2
(x2

1
+x2

2
) are uniformly distributed. Polar coordinates may

be useful and the following observation. Since (x1, x2) has a spherically

symmetric distribution, the angle made by the vector

[

x1
x2

]

and the x1-axis

and the radius of the vector x21+x22 must be independent. Further the angle
must be uniformly distributed in [0, 2π]. The angle θ is exactly arctanx2

x1
.

Thus you may observe that u1 is entirely a function of the angle and u2
is a function entirely of the radius which are independent. Now show that
u1, u2 have uniform distributions. Since the transformation is invertible, it
follows that if u1, u2 have independent uniform distributions, then x1, x2
have independent standard Normal distributions. ]
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Thus the transform method can be used to generate a pair of independent standard Normal
random variates. We may now generate the d-dimensional standard Normal density by
generating

⌈

d
2

⌉

pairs of independent Normal variates and selecting any d of these.

5 Variance Reduction in Monte Carlo

A good measure of the error of an estimate is σ(Î) =

√

V ar[Î]. A good bit of work in Monte
Carlo deals with effective techniques to reduce the variance. Of course, as we have already
seen, σ(Î) = O( 1√

n
), where n is the number of samples, so one way to reduce the variance is

to increase n. The question is, what is the best estimate that one can obtain given

i. A fixed budget of computation (fixed n).

ii. A fixed budget of uniform random variates.

5.1 Anti-Thetic Variates

Suppose that we wish to compute the integral I =
∫ 1

0
dx f(x). The goal of variance reduction

is to try to compute as accurate an estimate Î with as few samples as possible.
Lets first consider the following simple case. Suppose that f(x) is a linear function. In

this case I can be computed with just one sample, as the following exercise demonstrates.

Exercise 5.1

Show that if f(x) is linear, then I = f(12).

The same is true of an arbitrary continuous function f(x), namely that I = f(x∗) for some
x∗ ∈ [0, 1]. This is in fact the content of the mean value theorem. Thus one sample x∗

suffices to compute I for any function f(x). The problem is that we do not know x∗. For
a linear f , we know that x∗ = 1

2
. A generalization of this to higher order polynomials is

essentially the theory behind integration by quadrature.
Sticking with the linear function we now consider an approach which has more chance to

generalize. In particular, lets move up to two samples. What can we do with two samples?
It turns out that we can get an exact estimate for I. In particular, let u be the first sample
point, and let 1− u be the second sample point, then for a linear function f(x),

I =
f(u) + f(1− u)

2
,

for any u ∈ [0, 1].
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Exercise 5.2

Show that I = f(u)+f(1−u)
2 .

The nice thing about the previous little result is that we do not need to know exactly where
to sample. It only matters that we use the sample points u and 1 − u for any u. This
is something that can generalize to an arbitrary function, and we know it is exact for the
linear function. The function value f(u) may mis-estimate the integral I, but then f(1− u)
mis-estimates in exactly the opposite direction, exactly compensating for the mis-estimation
of f(u).

If u were a uniform random variate, then 1 − u is called the anti-thetic random variate
because it has two very interesting properties. The first is that 1 − u has exactly the same
distribution as u, namely uniform on [0, 1]. The second is that 1−u is perfectly anti-correlated
with u. In terms of the error in the estimate Î = 1

2
(f(u) + f(1− u)), we have

V ar[1
2
(f(u) + f(1− u))] =

1

4
(V ar[f(u)] + V ar[f(1− u)] + 2Cov[f(u), f(1− u)]),

=
1

2
(V ar[f(u)] + Cov[f(u), f(1− u)]).

Note that we used the fact that since u and 1 − u are both uniform random variables,
f(u) and f(1 − u) are identically distributed (though not independent). Note also that if
Cov[f(u), f(1 − u)] < 0 then this estimate generated from one random variable u has a
lower variance that the estimate generated from two independent random variables u1, u2.
However note also that if Cov[f(u), f(1− u)] > 0, then this estimate is worse.

Exercise 5.3

Show that if f(x) is linear, the Cov[f(u), f(1− u)] = −V ar[f(u)].

Certainly for the linear function, the anti-thetic variate 1−u in combination with the variate
u gives a perfect estimate. What can we say in general, i.e. when is the anti-thetic variate
useful. The relevent feature of the linear function is that it is monotonic, infact perfectly
monotonic. Whenever f is monotonic, then Cov[f(u), f(1−u)] < 0, and n variates together
with the n anti-thetic variates are better than 2n independent variates.

Exercise 5.4

Show that if f(x) is monotonic (increasing or decreasing) and contiuous
then Cov[f(u), f(1− u)] < 0.
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[Hint: Cov[f(u), f(1 − u)] =
∫ 1
0 (f(x) − I)(f(1 − x) − I). By the mean

value theorem to write I = f(x∗) for some x∗ ∈ [0, 1]. Now show that the
integrand is always negative. ]

In fact, the anti-thetic variate does not always help. In particular, when f(x) is symmetric
about 1

2
.

Exercise 5.5

Show that if f(x) = f(1− x) then Cov[f(u), f(1− u)] = V ar(f(u)) and
in this case the anthi-thetic variate does not add any value.

Notice that the anti-thetic variate approach never hurts in the sence of worsening a sample.
In the case of f perfectly symmetric about 1

2
the variance of the anti-thetic estimate is

the same as the variance of the original sample of size n. The only cost is that one has
to do an additional function evaluations. Thus, when the primary cost is random-variate
generation, and function computation is cheap, then the anti-thetic variates never hurt, and
can considerably help. In this sense anti-thetic variates are almost a no-brainer.

Normal Anti-Thetic Variates. In general the anththetic variate for a variate generated
using the transformation method (eg. the Box-Muller method for Normal random variates)
by setting each uniform random variate u used in the generation to 1−u may not work. For
example in the Box-Muller algorithm,

x1 =
√

−2 ln u1 cos 2πu2,

and the anthithetic variate would be

x̄1 =
√

−2 ln(1− u1) cos 2π(1− u2),

=
√

−2 ln(1− u1) cos 2πu2.

It is true that x1 and x̄1 have the same marginal distributions, however they are not perfectly
anti-correlated.

Exercise 5.6

Compute the correlation coefficient between x1 and x̄1.

[Numerical Answer: 0.5822]
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In fact the prescription above gives positive correlation. Fortunately, for normal random
variates, it is easy to generate the antithetic variate. For the normal random vector z, the
anti-thetic vector is −z. It is clear that the two have the same marginal distributions, and
that their correlation is −1.

Pricing Options Using Anti-Thetic Paths In the Monte Carlo framework for pricing
options, we generate a path p over n time steps of length ∆t. In the binomial tree model, to
generate the path, at each step one generates a uniform random variate and compares with
p̃ to determine if the move will be up or down. Thus to generate a path p in the binomial
model, we use a stream of n uniform random variates u1, . . . , un. The anti-thetic path p̄ is
generated in exactly the same way using the stream of anti-thetic uniform random variates,
1−u1, . . . , 1−un. Note taht the anti-thetic path is not necessarily the flipped path, in which
every up move is converted to a down move and vice-versa.

In the GBM model, the path p is generated according to the stochastic dynamics S(t +
∆t) = S(t)eη, where η ∼ N((r− 1

2
σ2
R)∆t, σ2

R∆t). The Normal variate η can be generated as
follows,

η = (r − 1
2
σ2
R)∆t+ σR

√
∆tz,

where z is a standard Normal random variate. Thus the path p is generated using a stream
of Normal variates η1, . . . , ηn, which in turn uses the stream of standard Normal random
variates z1, . . . , zn. The anti-thetic path p̄ is generated using the anti-thetic stream of vari-
ates η̄1, . . . , η̄1, which is generated using the anti-thetic standard normal random variates
−z1, . . . ,−zn,

ηi = (r − 1
2
σ2
R)∆t+ σR

√
∆tzi,

η̄i = (r − 1
2
σ2
R)∆t− σR

√
∆tzi.

A sample of the path p and its anti-thetic path p̄ are shown in the figure below. Notice
that the anti-thetic path is not simply the flipped version of the original path, with every
up move replaced by a down move and vice-versa. If p̃ = 1

2
or if r = 1

2
σ2
R, then it is the case

that the anti-thetic path is a flipped version of the original path.
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5.2 Common Random Variates

Common random variates are useful when trying to estimate the difference between two
expected values. This arises often in computational finance when one wishes to compute
the sensitivity of the price of a derivative to some parameter (these sensitivities are often
reffered to as the Greeks because they are usually denoted by Greek letters.) Let C be the
price of the option. Then we know that C is a function of the risk neutral measure (r, σR

or p̃, λ±), and the initial stock price S0, in addition to the parameters of the derivative (for
example time to maturity, T , the strike price K, etc.). Actually it is the expectation,

C(r, σR, S0, T,K) = E[f(z; r, σR, S0, T,K)],

where f is the cash flow function for a path which is determined by the standard Normal
random vector z, given the parameters (in the GBM model). If we were in the binomial
model, the expectation would be w.r.t. a uniform random vector u which determines the
path. Note that p̃ depends on r and λ±. The typically used Greeks are the Delta ∆, the
Gamma Γ, the Vega ν, the Theta Θ, the Rho ρ,

∆ =
∂C

∂S0

,

Γ =
∂2C

∂S2
0

,

ν =
∂C

∂σR

,

Θ = −∂C

∂T
,

ρ =
∂C

∂r
,

One may estimate the sensitivities numerically using a finite differnence, for example

∆ ≈ 1

2h
(C(r, σR, S0 + h, T,K)− C(r, σR, S0 − h, T,K)),

=
1

2h
(E[f(z; σR, S0 + h, T,K)]− E[f(z; σR, S0 − h, T,K)])

which is the difference of the expectation of two different functions depending on the random
variable z

Let f and g be two functions of a random variable u. Suppose that we wish to estimate
the difference

E[f(u)]− E[g(u)].

Suppose that we generate two random variates u1, u2 and compute the quantity f(u1)−g(u2),
where u1, u2 have the same marginal distributions as u. We have that

V ar[f(u1)− g(u2)] = V ar[f(u1)] + V ar[g(u2)]− 2Cov[f(u1), g(u2)].
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If u1 and u2 are independent, then Cov[f(u1), g(u2)] = 0. However, if Cov[f(u1), g(u2)] > 0
then we may gain through dependence. In particular, one might home that if u1 and u2 have
positive correlation the f(u1) and f(u2) will also have positive correlation. In particular,
the extreme case is when u1 = u2 and the correlation is 1. In this case, u1 and u2 are called
common variates.

As with anti-thetic variates, it is not always the case that positive correlation in the u’s
leads to positive correlation in f and g. If f and g are both monotonic in the same direction,
then this will indeed be the case. however if they are monotonic in different directions, for
example, then this will not be the case. In particular, take g = −f . In this case with
common variates leads to a doubling of the variance compared to the case when the variates
are independent.

Exercise 5.7

Let f(u) and g(u) be two continuous functions of a random variate
with measure dµ(u).

(a) Show that if f and g are both monotonic in the same direction, then
Cov[f(u), g(u)] > 0 for any random variable u.

[Hint: Use the fact that for some x, y E[f ] = f(x) and E[g] = g(y)

Cov[f(u), g(u)] =

∫

dµ(u) (f(u)− E[f ])(g(u)− E(g)),

=

∫

dµ(u) (f(u)− f(x))(g(u)− g(y)),

=

∫

dµ(u) (f(u)− f(y) + f(y)− f(x))(g(u)− g(y)),

=

∫

dµ(u) (f(u)− f(y))(g(u)− g(y)),

and now argue that the integrand is always positive. ]

(b) Show that if f and g are both monotonic in opposite directions, then
Cov[f(u), g(u)] < 0 for any random variable u.

In particular, show that if g = −f , then Cov[f(u), g(u)] = −V ar[f(u)]
for any random variable u

In applying the common variate approach to computing an option sensitivity one should use
the same stream of random variates to compute the expected price for one setting of the
parameters and the perturbed set of parameters and then take the difference.
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5.3 Control Variates

The anti-thetic and common variates techniques can be applied even when not much is known
about the integrand functions. The use of control variates depends on some knowledge of
the integrand.

Suppose that we wish to compute I =
∫ 1

0
dx f(x), as usual. Suppose that there is some

other function whose integral is known, G =
∫ 1

0
dx g(x), where G is known. Suppose that

we now generate a sample x1, . . . , xn and compute two sample estimates

Î =
1

n

n
∑

i=1

f(xi),

Ĝ =
1

n

n
∑

i=1

g(xi).

Since we know G, the question we ask is whether the difference G − Ĝ can convey any
additional information about I, other than that already contained in Î. In particular, suppose
that f(x) and g(x) have a positive correlation, and suppose that G > Ĝ. We can qualitatively
conclude that the g(xi)’s were on average less than their expectation. This means that, since
there is positive correlation between g(x) and f(x), the f(xi)’s should also be on average
less than their expectation, or that we expect that I > Î. The natural thing to do therefore
is to somehow correct for this effect by incrementing Î. We consider a very simple form for
this increment, namely a linear correction,

Î1 = Î + α(Ĝ−G).

The variate Ĝ is called the control variate. Notice first that E[Î1] = E[Î], and so this new
estimate is indeed unbiased because Î is unbiased. For the variance, we have that

V ar[Î1] = V ar[Î] + α2V ar[Ĝ] + 2αCov[Î , Ĝ],

= V ar[Ĝ]

(

α +
Cov[Î , Ĝ]

V ar[Ĝ]

)2

+ V ar[Î]

(

1− Cov[Î , Ĝ]2

V ar[Î]V ar[Ĝ]

)

,

= V ar[Ĝ]

(

α +
Cov[Î , Ĝ]

V ar[Ĝ]

)2

+ V ar[Î](1− ρ2
ÎĜ
).

It is clear from this expression that the variance is minimum when one choses for alpha the
optimal value

α∗ = −Cov[Î , Ĝ]

V ar[Ĝ]
.

In this case, the variance is reduced by a factor 1− ρ2
ÎĜ

< 1. Noting that ρÎĜ = ρfg, we have
that, for the optimal choice of α,

V ar[Î1] = V ar[Î](1− ρ2fg).
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Exercise 5.8

Show that ρÎĜ = ρfg, and that α∗ = −Cov[f,g]
V ar[g]

Notice that if Cov[f, g] > 0 then α∗ < 0 and the correction to Î is in the direction we
qualitatively argued for. There is, however, a problem with the above prescirption. In
order to compute α∗, one needs to know V ar[g] as well as Cov[f, g] which ammounts to the
knowledge of the additional integrals

V ar[g] =

∫ 1

0

dx (g(x)−G)2,

Cov[f, g] =

∫ 1

0

dx (f(x)− I)(g(x)−G).

Certainly, since I is not known, we cannot expect Cov[f, g] to be known, and one probably
does not even know V ar[g]. This raises a problem with the approach, in principle, but in
practice, one may overcome this problem by using some pilot estimates for Cov[f, g] and
V ar[g]. Specifically, suppose that n samples x1, . . . , xn are available. One selects the first
k samples for the pilot estimate, and over these k samples, one computes sample estimates
ˆV ar[g] and ˆCov[f, g]. Using these estimates one computes an estimate α̂∗. The remaining

n− k are used to compute Î1.
One might try to use all the samples to compute Î1 using the estimate α̂∗, but since the

estimate α̂∗ was developed on part of the data, this results in a biased estimate. The bias
becomes negligible as n becomes large.

Choosing an Optimal Pilot Sample Size. The analysis is difficult because α is not
even an unbiased estimate of α∗. However, we will use a heuristic derivation, making any
necessary approximations which are reasonable. Notice that α̂∗ is the regression coefficient
of f(xi) onto g(xi). For simple linear regression with normal, independent f(xi), we know
that the distribution of α̂∗ will also be Normal. We have independence, but we do not have
Normality. However, we will use this approximation. In this case, the variance of α̂∗ is
known (for example, see [?]). Thus, we have the approximation

V ar[α̂∗] ≈ V ar[f ]

s2g
,
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where s2g =
∑k

i=1(g(xi)−mg)
2 and mg =

1
k

∑k
i=1 g(xi). Thus,

1
k
s2g is the sample variance of

the g(xi)’s. Thus, V ar[α̂∗] ≈ V ar[f ]
kV ar[g]

Since E[α̂∗] ≈ −Cov[f,g]
V ar[ĝ]

, we see that

E

[

(

α̂∗ +
Cov[f, g]

V ar[ĝ]

)2
]

≈ V ar[α̂∗] ≈ V ar[f ]

kV ar[g]
.

Thus we can approximate E[V ar[Î1]] taking into account the fact that the sample on which
α̂∗ and Î , Ĝ are independent by,

E[V ar[Î1]] ≈ E[V ar[Ĝ]]V ar[α̂∗] + E[V ar[Î](1− ρ2fg)],

≈ V ar[g]

n− k

V ar[f ]

kV ar[g]
+

V ar[f ]

n− k
(1− ρ2fg),

=
V ar[f ]

n− k

(

1

k
+ 1− ρ2fg

)

.

We can try to minimize this function of k which we can approximately do by setting its
derivative with respect to k to zero. This results in a quadratic equation whose positive
solution is

k∗ =

√

1 + (1− ρ2fg)n− 1

1− ρ2fg
≈
√

n

1− ρ2fg
.

We thus see that the optimal pilot sample size is increasing proportional to
√
n, and inversely

with
√

1− ρ2fg. This makes sense in the sense that the larger is ρ2fg, the more dividend it

pays to have a better estimate of α∗ and so you should use more samples to do so. The fact
that the dependence on these two parameters is square root is an interesting consequence of
this heuristic analysis.

The practical prescription is therefore to sample the pilot set maintaining an estimate
of ρ2fg and the moment k >

√

n
1−ρ2fg

, stop sampling and use the estimate α̂∗ from this pilot

sample.

Exercise 5.9

Show that (as claimed above), k∗ =

√

1+(1−ρ2fg)n−1

1−ρ2fg
≈
√

n
1−ρ2fg

.
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5.4 Application to Derivatives Pricing

In pricing one derivative using Monte Carlo, the samples are the paths generated according
to the risk neutral measure. In many cases one can compute analytically the price of certain
derivatives. These derivatives may then be used as control variates to price a derivative for
which one does not have an analytic price.

Example Control Variates We list a number of example control variates.

1. The stock price itself at any point in the path. Since the stock price is a martingale
under the risk neutral measure, we have that E[S(t)] = S0 for any time step in a path.
In particular a useful control variate is S(T ).

2. The European Call option. We know that price of this option analytically:

Thus The European call option with a variety of strikes and times to maturity can be
used as control variates.

3. Barrier options which can also be priced analytically come in a variety of forms. These
can be priced analytically. However the analytic price typically assumes a continuous
Brownian motion, and so there will be a bias in the price, so one has to be careful to
use a small enough time-step so that the bias is negligible.

4. The Asian options whos strikes or payoffs are based on the geometric mean of the stock
price. One can show that the geometric mean of a set of log-normal random variables
is itself log normal, and can use this to price such options in much the same way as
the European call option.

5.4.1 Multiple Control Variates

There is no reason that the prior analysis could not be generalized to the situation where
we have multiple functions g1, g2, . . . , gd whose integrals (expectations) are known. Let G be
the known vector of integrals and let Ĝ be the estimated vector from the samples x1, . . . , xn.
Then we have the linear correction based on these control variates given by

Î1 = Î +αT(G− Ĝ).

5.5 Importance Sampling

Again lets come back to our usual integral I =
∫ 1

0
dx f(x), which we estimate using the

sample x1, . . . , xn, each drawn i.i.d from U [0, 1]. We have assumed that the xi’s have been
given to us sampled from the uniform distribution. What if we did not have control over the
sampling distribution. Suppose instead that xi ∼ p(x), where p(x) is some other density on
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[0, 1]. if we simply computed Ĵ =
∑n

i=1 f(xi) we not be getting an estimate of I. Instead we
have that

E[Ĵ ] =

∫ 1

0

dx p(x)f(x).

Instead of computing f(xi), suppose instead that we computed g(xi) = f(xi)/p(xi). Thus,
lets construct the estimate

Î =
1

n

n
∑

i=1

g(xi).

Then we have that E[Î] =
∫ 1

0
dx p(x)g(x), but since g(x) = f(x)/p(x), we have that

E[Î] =

∫ 1

0

dx f(x),

as desired. So it turns out that we can construct an estimate of I given samples from any

distribution, as long as we know the distribution and as long as this distribution has support
wherever f has support. We can thus turn this around and ask, is it possible to actually
construct a better sampling distribution, p(x), one that results in an estimate Î with lower
variance than would be obtained from the standard uniform samples? For simplicity, suppose
that f(x) > 0. If not one can always decompose f into its positive (f+ = max(f, 0)) and
negative (f− = −min(f, 0)) parts and compute two integrals

∫

f =
∫

f+ −
∫

f−. To show
that there certainly exist such better distributions, consider the density

p(x) =
f(x)

∫ 1

0
dx f(x)

= κf(x).

i.e., the density which is proportional to f(x) itself. For this density, g(xi) = 1
κ
, and so

Î = 1
κ
=
∫ 1

0
dx f(x) = I with zero variance. Thus sampling according to this new ideal

density results in an exact estimate with even just one point! Unfortunately, as always,
there is a problem. In order to constructe/valuate p(x), we need to know I, and knowing
I defeats the whole purpose, which is to estimate I. Thus we immediately identify two
important properties that any useful p(x) should satisfy:

1. It should be easy to generate samples from p(x).

2. It should be easy to compute p(x) for any x, which is needed in order to obtain g(x).

The idea behind importance sampling is therefore to construct an approximation to this ideal
p(x) which satisfies these two properties. The basic approach is as with control variates, to
generate a pilot estimate to the ideal sampling density p(x) = κf(x).
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5.5.1 The Bin/Histogram Approach in 1 Dimension

Suppose you have n random samples available. We use k of these to construct a pilot
estimate p̂(x) of the ideal sampling density p(x) = κf(x). The estimate will be piecewise

constant, obtained by sampling f(x) at a few random points and then building p̂(x) from
these samples.

Similar to the hybrid Monte Carlo discussed earlier, we bin the interval [0, 1] into k bins
of width 1

k
. Each bin bi is an interval,

bi =

[

i− 1

k
,
i

k

]

.

In each bin, generate a random point xi ∈ bi uniformly distributed in the bin,

xi =
i− 1 + ui

k
,

where ui ∼ U [0, 1] is a uniform random variable. We now have a piecewise constant estimate
to f(x) given by

f̂(x) = f(xi) for xi ∈ bi.

Notice that Îk =
1
k

∑k
i=1 f(xi) is exactly the hybrid Monte Carlo estimate for I on k samples.

Further

∫ 1

0

dx f̂(x) =
k
∑

i=1

∫

bi

dx f̂(x),

=
k
∑

i=1

∫

bi

dx f(xi),

=
1

k

k
∑

i=1

f(xi),

= Îk,

where the penultimate line follows because f(xi) is a constant over the bin bi and the width
of bin bi is

1
k
. Thus, the approximate sampling density is given by

p̂(x) =
f(xi)

Îk
for xi ∈ bi.

If f(x) > 0, then everything is fine, but if f(x) can take on the value 0 on sets with positive
measure, then it is posible that f(xi) may be sero for some i, and all future samples from
this estimated sample density may be skewed. Thus it helps to regularize by pushing it a
little toward the uniform density using a regularization parameter ǫ,

p̂(x) =
f(xi) + ǫ

Îk + ǫ
for xi ∈ bi.
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The figure below illustrates the ideal density and the estimate of the ideal density, with
ǫ = 0. We will take ǫ = 0 in what follows.
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Example of Estimate to Ideal Sampling Density

We first note that p̂(x) can be evaluated easily for any x ∈ (0, 1),

p̂(x) = f(xi∗),

where i∗ = ⌊ kx ⌋ + 1 is the bin x falls into, i.e., x ∈ bi∗ . We now show that it is easy to
generate from p̂(x), which is equivalent to generating a random variate by first picking a bin

bi randomly with probability f(xi)

Î
and then picking a point in the bin uniformly. This can

be achieved with a single uniform random variate as follows. First define the the cumulative
distribution Fi which corresponds to f(xi) as follows. F0 = 0 and

Fi = Fi−1 +
f(xi)

kÎk
, i = 1, . . . k

Note that Fk = 1. Given a uniform random variate u define iu to be the index such that
Fiu < u ≤ Fiu+1. The random variate x is generated as follows

x =
1

k

(

iu +
u− Fiu

Fiu+1 − Fiu

)

.

Exercise 5.10

Show that x as generated above from u is distributed according to the
estimate to the ideal sampling density, x ∼ p̂(x).
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The final algorithm is to sample x1, . . . , xk uniformaly. Using these samples we construct
xk+1, . . . , xn according to p̂(x). The final estimate is

În−k =
1

n− k

n
∑

i=k+1

f(xi)

p̂(xi)
.

Even with as few as 2 bins, one can get a significant improvement in the variance. Note that
the samples yield an unbiased estimate of I, and so we may actually use all the samples in
estimating I. It should be possible to get an even lower variance with a final estimate of the
form

Î = αÎk + (1− α)În−k.

Exercise 5.11

Show that E[Î] = I.

Exercise 5.12

Show that V ar[Î]=

One can choose the value of α and k to minimize the varianve above. We will approach this
question heuristically. What is the optimal value of k? This is a classic case of an optimal
stopping problem, in which we are faced with an exploration-exploitation dilemma. The
larger k is (the more exploration we do) the smaller n− k is and the less we can exploit our
knowledge gained through exploration to sample more efficiently.

5.5.2 Kernel Based Approaches in Multi-Dimensions

Unfortunately the histogram/bin approach suffers from the curse of dimensionality in multi-
dimensions. In d dimensions to have just two bins in each dimension requires 2d samples in
the p̂(x) estimation phase. An alternative is to generate k samples uniformly and somehow
use these samples to estimate a suitable p̂(x). We will focus on the integral

I =

∫

Rd

dx p(x)g(x),

where the integration domain is now over the entire space. This is more convenient and one
can always transform the integral on the unit cube to this form of integral, so there is no
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loss of generality. Let f(x) = p(x)g(x). We will also assume without loss of generality that
f(x) ≥ 0.

Exercise 5.13

Give a way to transform an integral over the unit hyper-cube to an integral
over the entire space.

In general our discussion will be applicable to any kernel function K(x) which typically
satisfies two properties:

1. K(x) > 0 for all x.

2.
∫

Rd dx K(x) = 1.

In our discussion we will choose the Gaussian kernel,

K(x) =
1

(2π)d/2
e−

1

2
x
T
x.

Suppose that k points x1, . . . ,xk have been sampled i.i.d from p(x). We estimate the function
f̂(x) using a radial basis function type of estimate,

f̂(x) =
k
∑

i=1

wiK

(

x− xi

γ

)

,

=
1

(2π)d/2

k
∑

i=1

wie
− 1

2γ2
(x−xi)

2

,

where γ is a “smoothing” parameter and the wi are to be estimated. Ideally, we would like
f̂(xi) = f(xi). Define the matrix G by its entries Gij given by

Gij = K

(

xi − xj

γ

)

.

Then, ideally we would like to have that

f(xi) =
k
∑

j=1

Gijwj,

which is a linear system in {wj} which may be solved as long as G is invertible. Let w be a
vector containing the wj’s, and f be a vector containing the function values f(x1), . . . , f(xk).
Then we wish to have f = Gw, which for invertible G gives

w = G−1f .
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The resulting estimate f̂(x) is given by

f̂(x) =
k
∑

i=1

k
∑

j=1

K

(

x− xi

γ

)

G−1
ij f(xj).

Unfortunately, there is no guarantee that this estimate is always positive, or that the weights
wi are positive. In general, we can obtain the weights by solving a linear program. We
determine the wi’s as the solution to the optimization problem

min
w

max
i

|f(xi)− f̂(xi)|,
w ≥ 0.

This optimization problem may be solved efficiently by posing it as a linear program, and
most mathematics packages (such as Matlab) have standard routines for solving linear pro-
grams.

Exercise 5.14

Show that the weights wi may be obtained by solving the following linear
program.

Assuming that we have the weights w ≥ 0, we get the estimate Îk using the fact that
∫

Rd dx K(x) = 1,

Îk = γd

k
∑

i=1

wi,

and so we estimate the ideal sampling density by

p̂(x) =
f̂(x)

Îk
,

=
1

γd
∑k

i=1 wi

k
∑

i=1

wiK

(

x− xi

γ

)

.

Note that it is easy to generate from p̂(x) as follows. First generate a center i with probability
wi/

∑

i wi using a uniform random variate, and then generate a point x ∼ N(xi, γ
2).

Exercise 5.15

Show that the prescription above for generating a random variate x ∼ p̂(x)
is correct.
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We now sample n− k points xk+1, . . . ,xn i.i.d according to p̂(x). These points are used to
compute the final estimate În−k,

În−k =
1

n− k

n
∑

i=k+1

f(xi)

p̂(xi)
,

=
1

n− k

n
∑

i=k+1

p(xi)g(xi)

p̂(xi)
.

Exercise 5.16

Show that E[În−k] = I.

Exercise 5.17

What is the computational complexity of computing În−k, starting with
the estimation of p̂(x) and generating samples from it and computing the
final estimate În−k.

Optimal Choice of γ. There is some work in choosing the optimal value of γ which
depends on some of the properties of f(x).

5.6 Low Discrepancy Sequences

We now describe quasi-Monte Carlo, which is based on the notion of replacing the iid random
samples with samples from a low discrepancy sequence. The idea is based on delivering a
sequence of points which has a sample distribution function close to the distribution function
from which we are trying to generate, but in a deterministic way. Suppose we wish to generate
from the uniform distribution on the unit hyper-cube in d-dimensions. Then one way to
generate a sample of points with approximately the uniform distribution is to generate the
points uniformly at random. Suppose that we generate n points, and compute the sample
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distribution function Fn and compare with the distribution function of the uniform, F . One
of the properties of a trully random sample is that

supx|Fn(x)− F (x)| = O(n− 1

2 ).

This error measure is called the discrepancy. There are deterministic sequences that one
can generate for which the discrepancy between the sample distribution function and the
true distribution function is O(logd n−1), which is an asymptotically better discrepancy in
any dimension. We will describe the simplest such low-discrepancy sequence, the Halton
sequence. There are others with better properties, for example the Sobol sequence, which
the reader may read more about in the references.

5.6.1 The Halton Sequence.

The Halton sequence H1, H2, . . . is relatively simple to generate. Actually one parameter to
be specified in the Halton sequence Hn is the prime base p. In this case we define the base-p
representation of n as

n = d0 + d1p+ d2p
2 + · · · ,

=
∞
∑

i=0

dip
i

Note that the non-zero digits d0, d1, . . . of this base-p representation of n can be computed in
O(logp n) time. The Halton number Hn(p) is then obtained by reflecting this representation
and adding the decimal point at the begining,

Hn(p) = 0.d0d1d2 · · · ,

=
∞
∑

i=0

dip
−(i+1).

In generating multi-dimensional Halton variates, one should use a different prime number
for each dimension.
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