
1 Measures of Performance 1

Computational Finance – Optimal Trading

1 Measures of Performance

Imagine investing $1 in a trading strategy, and monitoring the status of your investment at
regularly spaced times t1, t2, . . . tn. For convenience we set t0 = 0 and assume that the spacing
between the times is τ , so that ti = iτ . For daily trading strategies, τ = 1 day = 1

250
years

where there are approximately 250 trading days in a year. Let Vi be the value of your
investment at time ti (V0 = 1). The sequence of Vi is known as the profit and loss curve
(P&L curve) of the trading strategy.

The return sequence is given by ri = log(Vi/Vi−1) ≈ (Vi − Vi−1)/Vi−1 which is the per-
centage return. The cumulative return curve is given by Ri =

∑i

τ=1 rτ . An example P&L
curve and its corresponding cumulative return curve are shown below.
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The mean τ -period return, µτ is the average of the returns, µτ = 1
n

∑n

i=1 ri. It is conventional
to compute the mean annualized return which scales up this average return to 1 year, so
that we define the average annualized return as

µ =
µτ

τ
=

1

nτ

n
∑

i=1

ri =
1

T

n
∑

i=1

ri,

where T = nτ is the entire period of observation. Similarly, we can compute the variance of
the returns, σ2

τ = 1
n

∑n

i=1(ri − µτ )
2. Assuming that each time period is independent, we can

compute the annualized variance by scaling up the τ -period variance to 1 year,

σ2 =
σ2
τ

τ
=

1

nτ

n
∑

i=1

(ri − µτ )
2 =

1

T

n
∑

i=1

(ri − µτ )
2.
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1 Measures of Performance 2

The annualized volatility is σ. The Sharpe ratio is a risk adjusted measure of performance
defined by the ratio of the annualized return and the annualized volatility,

Sharpe =
µ

σ
=

µτ

στ

√
τ
.

It is often the case that these measures will be defined not with respect to the raw returns,
but the excess returns, where the excess is with respect to the risk free rate, rfi. Thus we
define the excess returns by r̄i = ri − rfi.

Exercise 1.1

Give linear time algorithms for computing the annualized average return,
the anualized volatility and the Sharpe ratio.

The Sharpe ratio is an example of a risk adjusted measure of return because it scales the
return by a normalizing factor which is how variable the return is, which is a measure of the
risk in the trading strategy. For two trading strategies with the same return, the one with
lower volatility (or risk) will have a higher Sharpe ratio. Generally, 3 years is an acceptable
track record for a trading strategy, and a Sharpe ratio of 2 or higher over a period of more
than 3 years is considered very good in the industry.

There are two properties of the Sharpe ratio that make it a little undesirable. The first
is that it penalizes the downside and upside risk equally. So a trading strategy which makes
only positive but variable returns can have a low Sharpe ratio.

Exercise 1.2

Given any ǫ > 0, construct a return sequence (for appropriately defined τ)
consisting only of positive returns for which the Sharpe ratio is less than ǫ.

One way to alleviate this problem is to only consider the negative returns in defining the
risk. Thus we compute the the root mean square of the negative returns, sometimes called
the downside deviation. The ratio or the average return to the downside deviation, usu-
ally denoted the downside deviation ratio, is another risk adjusted measure of performance
which now does not penalize variability in positive returns. This is not often used in prac-
tice because there is yet another flaw in the Sharpe ratio which also affects the downside
deviation.
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Exercise 1.3

Show that any permutation in the return sequence results in the same
Sharpe ratio.

To illustrate the problem, consider the following two cumulative return curves,

0 50 100 150 200 250
−0.05

−0.04

−0.03

−0.02

−0.01

0
Cumulative Return Curve

Time (days)
0 50 100 150 200 250

−2

−1

0

1

2

3

4
x 10

−3 Cumulative Return Curve

Time (days)

In the first one, all the negative returns occur first. In the second one the negative and
positive returns alternate. These are two clearly different looking cumulative return curves,
yet they will have the same Sharpe ratio.

The maximum drawdown risk measure takes these considerations into account. The max-
imum drawdown (MDD) of a cumulative return curve is the largest possible loss, assuming
you entered and exited the trading strategy at the worst possible time. For the first curve in
the above example, the MDD is 5%, but for the second curve, it is approximately 0. For the
P&L curve shown at the begining of this chapter, the part of the cumulative return curve
realizing the MDD is highlighted in red. Notice that the MDD as a measure of risk does not
penalize positive returns, no matter how variable they are, and further, the MDD is sensitive
to permutations of the return sequence.

Formally, the maximum drawdown can be defined by viewing the return sequence as a
string of numbers. Then, the MDD is the minimum possible substring sum,

MDD = min
i≤j

{

j
∑

k=i

rk

}

.

Thus, a straightforward algorithm to compute the MDD is to consider all possible substrings,
and compute the substring sum, taking the minimum.
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Exercise 1.4

Show that this algorithm is cubic.

If the minimum of the cumulative return curve occurs after the maximum, then the MDD
is the maximum minus the minimum. Otherwise this is not the case, and in general, there
is no relationship between the maximum, the minimum and the MDD. A cubic algorithm is
not acceptable in practice, and in this case it turns out that one can compute the MDD in
linear time.

Exercise 1.5

Let Ri denote the cumulative return curve of a trading strategy. Define
the drawdown at time i by

DDi = max
1≤k≤i

Rk −Ri,

which is the previous maximum minus the current value.

(a) Show that MDD = maxiDDi.

(b) Give a linear time algorithm to compute the MDD given as input the
return sequence r1, . . . , rn. The algorithm should have a run time
which is linear in n.

The MDD is itself a very useful measure of risk. In fact, most hedge funds would like to have
small MDD, because large drawdowns lead to fund redemptions. In addition, the Sterling
ratio is a very common risk adjusted return measure obtained by dividing the return by the
MDD,

Sterling =
µ

MDD
.

Typically, the MDD is calculated over a period of 3 years, and the return is also scaled to 3
years. The choice of 3 years is a conventiional practice that has arisen because until recently,
the scaling law for the MDD has not been known, and so the notion of an annualized MDD
was not possible. Recently, [?] the behavior of the MDD with time has been computed,
and so the notion of an annualized MDD does make sense, and can now be used to obtain
standardized risk adjusted measures for funds which have been around for more than 3 years
or less than 3 years.
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2 Optimal Trading Strategies

A trader has in mind the task of developing a trading system that optimizes some profit
criterion, the simplest being the total return. A more conservative approach is to optimize a
risk adjusted return. In an enviroment where markets exhibit frequent crashes and portfolios
encounter sustained periods of losses, it should be no surprise that the Sterling ratio and the
Sharpe ratio have emerged as the leading performance measures used in the industry.

Given a set of instruments, a trading strategy is a switching function that transfers the
wealth from one instrument to another. In this paper, we consider the problem of finding
optimal trading strategies, i.e., trading strategies that maximize a given performance metric,
on historical data. We focus on the total return as the measure of performance, but one can
also construct optimal strategies efficiently for variants of the Sharpe and Sterling ratio [?].
Finding the optimal trading strategy for non-zero transactions cost is a path dependent
optimization problem even when the price time series is known. A brute force approach
to solving this problem would search through the space of all possible trading strategies,
keeping only the one satisfying the optimality criterion. Since the number of possible trading
strategies grows exponentially with time, the brute force approach leads to an exponential
time algorithm1, which for all practical purposes is infeasible – even given the pace at which
computing power grows.

(i) Knowing what the optimal trades are, one can take an inductive approach to real
trading: on historical data, one can construct the optimal trades; one can then correlate
various market and/or technical indicators with the optimal trades. These indicators
can then be used to identify future trading opportunities. In a sense, one can try
to learn to predict good trading opportunities based on indicators by emulating the
optimal trading strategy. A host of such activity within the inductive framework, goes
under the name of financial engineering.

(ii) The optimal trading performance under certain trading constraints can be used as a
benchmark for real trading systems. For example, how good is a trading system that
makes ten trades with a Sterling ratio of 4 over a given time period? One natural
comparison is to benchmark this trading strategy against a Sterling-optimal trading
strategy that makes at most ten trades over the same time period.

(iii) Optimal trading strategies (with or without constraints) can be used to quantitatively
rank various markets (and time scales) with respect to their profitability according to a
given criterion. So for example, one could determine the optimal time scale on which to
trade a particular market, or given a set of markets, which is the most profit-friendly.

1The asymptotic running time of an algorithm is measured in terms of the input size n. If the input
is a time sequence of n price data points, then polynomial time algorithms have run time that is bounded
by some polynomial in n. Exponential time algorithms have running time greater than some exponentially
growing function in n [?].
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2.1 Trading Model 6

(iv) Given a stochastic model for the behavior of a pair of instruments, one can use the
efficient algorithms presented here to construct ex-ante optimal strategies using simula-
tion. To be more specific, note that the optimal strategy constructed by our algorithms
requires full knowledge of the future price paths. The stochastic model can be used to
generate sample paths for the instruments. These sample paths can be used to com-
pute the optimal trading strategy given the current history and information set. One
then has a sample set of future paths and corresponding optimal trading strategies on
which to base the current action. Note that such a stochastic model for future prices
would have to take into account correlations (including auto-correlations) among the
instruments.

It is beyond the scope of the current discussion to develop these applications. Our main goal
here is to present the algorithms for obtaining optimal trading strategies, given a price time
series.

2.1 Trading Model

We now make the preceeding discussion more precise. We consider optimal trading strategies
on two instruments, for concreteness, a stock S and a bond B with price histories {S0, . . . , Sn}
and {B0, . . . , Bn} over n consecutive time periods, {[t0, t1], [t1, t2], . . . , [tn−1, tn]}. The prices
Bi, Si correspond to the times ti, i ∈ {0, . . . , n}. We can assume that t0 = 0. Thus, for
example, over time period [ti−1, ti], the price of stock moved from Si−1 to Si.

We denote the return sequence for the two instruments by {s1, . . . , sn} and {b1, . . . , bn}
respectively: si = log Si

Si−1

, and correspondingly, bi = log Bi

Bi−1

. We assume that one of the

instruments is the benchmark instrument, and that all the equity is held in the benchmark
instrument at the begining and end of trading. The bond is usually considered the benchmark
instrument, and for illustration, we will follow this convention. The trivial trading strategy
is to simply hold onto bond for the entire duration of the trading period. It is useful to define
the excess return sequence for the stock, ŝi = si − bi. When the benchmark instrument is
the bond, the excess return as we defined it is the conventionally used one. However, one
may want to measure performances of a trading strategy with respect to the S&P 500 as
benchmark instrument, in which case the excess return would be determined relative to the
S&P 500 return sequence. The excess return sequence for the bond is just the sequence of
zeros, b̂i = 0. Conventionally, the performance of a strategy is measured relative to some
trivial strategy, so the excess return sequence will be the basis of most of our performance
measures. We make the following assumptions regarding the trading:

A1 [All or Nothing] : The position at all times is either entirely bond or entirely stock.

A2 [No Market Impact] : Trades can be placed without affecting the quoted price.

A3 [Fractional Market] : Arbitrary fractions of stock or bond can be bought or sold.

A4 [Long Strategies] : One can only hold long positions in stock or bond.

©Malik Magdon-Ismail, RPI, October 10, 2022



2.1 Trading Model 7

Assumption A1 is in fact not the case in many trading funds, for it does not allow legging
into a trade, or holding positions in both instruments simultaneously. While this is technicaly
a restriction, for many optimality criteria (for example return optimal strategies), one can
show that there always exists an all-or-nothing optimal strategy. Thus, we maintain this
simplifying assumption for our discussion. Further, such assumptions are typically made in
the literature on optimal trading (see for example [?]). Assumptions A2–A4 are rather mild
and quite accurate in most liquid markets, for example foreign exchange. Assumption A3

is needed for A1, since if all the money should be transfered to a stock position, this may
necessitate the purchase of a fractional number of shares. Note that if T [i− 1] 6= T [i], then
at the begining of time period [ti−1], the position was transfered from one instrument to
another. Such a transfer will incur an instantaneous per unit transaction cost equal to the
bid-ask spread of the instrument being transfered into. We assume that the bid-ask spread
is some fraction (fb for bond and fs for stock) of the bid price.

With these constraints in mind, we define a trading strategy T as a boolean n + 1-
dimensional vector indicating where the money is at time ti:

T [i] =

{

1 if money is in stock at time ti,

0 if money is in bond at time ti.

Exercise 2.1

How many possible trading strategies are there?

We assume that T [0] = T [n] = 0, i.e., all the money begins and ends in bond. If T [i] = 0 and
T [i+ 1] = 1 then infinitessimally after time ti, the money is moved from bond to stock. We
say that a trade is entered at time ti. A trade is exited at time ti if T [i] = 1 and T [i+1] = 0.
The number of trades made by a trading strategy is equal to the number of trades that
are entered. The return (or excess return) of the trading strategy over time period [ti, ti+1]
depends on the values of T [i] and T [i + 1]. We let rT [i] for i ∈ {1, 2, . . . , n} be the vector
which contains the returns of the trading strategy over the time period [ti−1, ti]. Then,

rT [i] =



















bi if T [i− 1] = 0, T [i] = 0;

bi − fb if T [i− 1] = 1, T [i] = 0;

si if T [i− 1] = 1, T [i] = 1;

si − fs if T [i− 1] = 0, T [i] = 1.

(1)

where fb is the transactions cost incurred in terms of return for switching positions from
stock to bond, and fs is the transactions cost incurred for switching positions from bond to
stock. We assume that these transactions costs are constants. In words, the return over time
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period [ti−1, ti] is the return for the instrument you end the period in minus a transactions
cost if you started the period in the other instrument.

Exercise 2.2

The equity curve for a trading strategy T is the vector ET , where ET [i]
is the value at time ti, with ET [0] = 1. The return sequence rT is then

rT [i] = log ET [i]
ET [i−1] , for i ≥ 1. Suppose that the bid-ask spread for bond is

a fraction f̂b of the bid price, and for the stock is a fraction f̂s of the bid
price.

Show that fs = log(1 + f̂s) and fb = log(1 + f̂b).

Note that when the bid ask spread is a constant, not a fraction of the bid price, then it is
more convenient to work in the value (as opposed to the returns) space. The total return
for a strategy is

µ(T ) =
n

∑

i=1

rT [i].

We will typically suppress the dependence on T when it is clear what trading strategy we
are refering to. We will focus on maximizing the total return, and refer the reader to the
literature for the more complex problems of maximizing the Sharpe and Sterling ratios [?].

Exercise 2.3

Consider the 6 times [0, 1, 2, 3, 4, 5], over which the return sequence for
bond was [1, 1, 1, 1, 1] and the return sequence for stock was [1,−2, 3, 2, 1].
Assume that fs = fb = 1 and compute the total return µ for the trading
strategy T = [0, 0, 1, 0, 1, 1].

We now consider efficient algorithms for computing total return optimal trading strategies,
with and without constraints on the number of trades 2. In particular, it is possible to
construct return optimal trading strategies in linear time:

i. Unconstrained Trading. A trading strategy T ∗ can be computed in O(n) such that
for any other strategy T , µ(T ∗) ≥ µ(T ).

2We will use standard O() notation in stating our results: let n be the length of the returns sequences;
we say that the run time of an algorithm is O(f(n)) if, for some constant C, the runtime is ≤ Cf(n) for any
possible return sequences. If f(n) is linear (quadratic), we say that the runtime is linear (quadratic).
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ii. Constrained Trading. A trading strategy T ∗
K making at most K trades can be com-

puted in O(K · n) time such that for any other strategy TK making at most K trades,
µ(T ∗

K) ≥ µ(TK).

Exercise 2.4

For return optimal trading strategies, show that the all-or-nothing assump-
tion can be made without loss of generality. In particular, show that there
always exists a return optimal strategy which is all-or-nothing.

[Hint: You may want to use induction on the number of time steps n.]

In order to compute the return optimal strategies, we will use a dynamic programming
approach to solve a more general problem. Specifically, we will construct the return optimal
strategies for every prefix of the returns sequence. First we consider the case when there
is no restriction on the number of trades, and then the case when the number of trades is
constrained to be at most K.

2.2 Overview of the Algorithm

The basic idea of the algorithm is to consider the optimal strategy to time ti. This strategy
must end in either stock or bond. Suppose that it ends in stock, then it must arrive at the
final position in stock at ti by either passing through stock or bond at time ti−1. Thus, the
optimal strategy which ends in stock at time ti must be either the optimal strategy which
passes through stock at time ti−1 followed by holding the stock for one more time period, or
the optimal strategy which passes through bond at time ti−1 and then makes a trade into
the stock for the next time period. Whichever is better among these two options yields the
optimal strategy to time period ti that ends in stock. A similar argument applies to the
optimal strategy to time ti that ends in bond. Thus, having computed the optimal strategies
which end in stock and bond to time ti−1, we can compute the optimal strategies which end
in stock and bond to time ti. This induction can be propagated to obtain the final result.

We will illustrate this idea with the example in Exercise 2.1. First we consider the optimal
strategies up to time 1, ending in stock and bond. In fact there is only one such strategy
which ends in bond (namely to hold bond) and one such strategy to end in stock (namely
to switch to stock), hence these are the optimal ones. We can compute the returns of these
two strategies, summarized in the following picture,
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0 1 2 3 4 5

Bond

Stock

µ = 1

[0, 1]

[0, 0]

µ = 0

We now consider the optimal strategies to time 2, ending in stock. There are two options,
either you came from bond or from stock, in either case, gettinig to the previous point
optimally,

0 1 2 3 4 5

Bond

Stock
[0, 1, 1], µ = −2[0, 1]

[0, 0]

µ = 0

µ = 1

[0, 0, 1], µ = −2

Since both of these options have the same return, we may pick either as the optimal strategy
to time 2 ending in stock. Similarily, we can consider the two options for the optimal strategy
to time 2 ending in bond,

0 1 2 3 4 5

Bond

Stock
[0, 1, 0], µ = 0

µ = 0
[0, 1, 1]
µ = −2

[0, 0]
µ = 1

[0, 0, 0], µ = 2

[0, 1]

Since the option passing through bond at time 1 has higher return, this is the optimal
strategy to time 2 ending in bond,
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Stock

0 1 2 3 4 5

Bond

µ = 0
[0, 1, 1]
µ = −2

[0, 0]
µ = 1

[0, 0, 0]
µ = 2

[0, 1]

Continuing, we consider the two options for the optimal strategy to time 3, ending in stock,

0 1 2 3 4 5

Bond

Stock

[0, 0, 0, 1], µ = 4

µ = 0

[0, 0]
µ = 1

[0, 0, 0]
µ = 2

[0, 1, 1]
µ = −2

[0, 1, 1, 1], µ = 1[0, 1]

Since the option coming through the optimal strategy to time 2 ending in bond has higher
return we have the optimal strategy ending in stock at time 3 is,

0 1 2 3 4 5

Bond

Stock

µ = −2µ = 0

[0, 0]
µ = 1

[0, 0, 0]
µ = 2

[0, 0, 0, 1]
µ = 4[0, 1, 1][0, 1]

Exercise 2.5

Continue the analysis of the example to obtain the optimal strategies ending
in stock and bond at time 5, pictorially representing the solutions as above.
Give a return optimal strategy ending in bond, and what is its return?

[Answer:
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0 1 2 3 4 5

Bond

Stock

µ = −2µ = 0

[0, 0]
µ = 1

[0, 0, 0]
µ = 2

[0, 0, 0, 1]
µ = 4

[0, 0, 0, 0]
µ = 3

[0, 0, 0, 0, 0]
µ = 4

[0, 0, 0, 1, 1]
µ = 6

[0, 0, 0, 1, 1, 1]
µ = 7

[0, 0, 0, 1, 1, 0]
µ = 6

[0, 1, 1][0, 1]

]

When there are constraints on the number of trades, we only need to slightly modify the
above argument. We would like to compute the optimal strategy which ends (say) in stock
and makes at most K trades. Any such strategy has to be one of two possibilities: it makes
at most K trades ending in stock at time ti−1, or it makes at most K − 1 trades, ending
in bond at time ti−1. If it ended in bond, it can only make at most K − 1 trades because
one additional trade will be required to convert from bond at ti−1 to stock at ti. Thus the
inductive construction will start with K = 0 which is to hold bond. Assuming we have
computed all the optimal strategies for K = k to all times {ti}, we can then compute all the
optimal strategies for K = k + 1 to all times.

2.3 Unconstrained Return-Optimal Trading Strategies

First we give the main definitions that we will need in the dynamic programming algorithm
to compute the optimal strategy. Consider a return-optimal strategy for the first m + 1
times {t0, . . . , tm}. Define S(m, 0) (resp. S(m, 1)) to be a return-optimal strategy ending
in bond (resp. stock) at time tm. Up to time t1, there is only one strategy ending in bond,
and one strategy ending in stock, so S(1, 0) = [0, 0] and S(1, 1) = [0, 1] For ℓ ∈ {0, 1}, let
µ(m, ℓ) denote the return of S(m, ℓ), i.e., µ(m, ℓ) = µ(S(m, ℓ)). Let Prev(m, ℓ) denote the
penultimate position of the optimal strategy S(m, ℓ) at time tm−1. Note that Prev(1, 1) =
Prev(1, 0) = 0, since both optimal strategies to time t1 started in bond.

We are after S(n, 0), the optimal strategy to time tn ending in bond. Denote this strategy
by T ∗. If we know Prev(m, ℓ) for m ≥ 1 and ℓ ∈ {0, 1}, then we can construct S(n, 0)
in linear time as follows. First, we have the obvious fact that T ∗[n] = S(n, 0)[n] = 0. The
previous position is given by Prev(n, 0). Suppose Prev(n, 0) = T ∗[n] = 0, i.e., the previous
position was 0. Then the position previous to that is exactly the previous position for the
strategy S(n− 1, 0) which is Prev(n− 1, 0). If on the other hand, Prev(n, 0) = T ∗[n] = 0,
i.e., the previous position was 1. Then the position previous to that is exactly the previous
position for the strategy S(n − 1, 1) which is Prev(n − 1, 1). More generally, suppose the
optimal strategy at time m is T ∗[m]. Then the previous position is exactly Prev(m, T ∗[m]).
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We thus have the following backward recursion for T ∗

T ∗[n] = 0,

T ∗[m− 1] = Prev(m, T ∗[m]), for 1 ≤ m ≤ n.

Thus, a single backward scan is all that is required to compute all the elements in T ∗. This
backward scan is typically called the backtracking step in a dynamic programming algorithm
which is typically the step that is used in constructing the solution in a dynamic programming
approach. Note that storing the entire Prev array requires memory that is linear in n. The
remainder of the discussion focusses on the computation of the array Prev(m, ℓ) for m ≥ 1
and ℓ ∈ {0, 1}.

The optimal strategy S(m, ℓ) must pass through either bond or stock at time tm−1. Thus,
S(m, ℓ) must be the extension of one of the optimal strategies {S(m− 1, 0),S(m− 1, 1)} by
adding the position ℓ at time period tm. More specifically,

S(m, ℓ) =

{

[S(m− 1, 0), ℓ] or,

[S(m− 1, 1), ℓ].

In particular, S(m, ℓ) will be the extension that yields the greatest total return. Thus,

µ(m, ℓ) = max{µ([S(m− 1, 0), ℓ]), µ([S(m− 1, 1), ℓ])}.

Using (1), we have that

µ([S(m− 1, 0), ℓ]) =

{

µ(m− 1, 0) + bm ℓ = 0,

µ(m− 1, 0) + sm − fs ℓ = 1;

µ([S(m− 1, 1), ℓ]) =

{

µ(m− 1, 1) + bm − fb ℓ = 0,

µ(m− 1, 1) + sm ℓ = 1.

Using these expressions, we can compute µ(m, ℓ) for m ≥ 1 and ℓ ∈ {0, 1} using the following
recursion,

µ(m, ℓ) =

{

max{µ(m− 1, 0) + bm, µ(m− 1, 1) + bm − fb} ℓ = 0,

max{µ(m− 1, 0) + sm − fs, µ(m− 1, 1) + sm} ℓ = 1.

Simultaneously, as we compute µ(m, ℓ), we can also compute Prev(m, ℓ) as follows,

Prev(m, 0) =

{

0 if µ(m− 1, 0) + bm ≥ µ(m− 1, 1) + bm − fb,

1 otherwise;

Prev(m, 1) =

{

0 if µ(m− 1, 0) + sm − fs ≥ µ(m− 1, 1) + sm,

1 otherwise.
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It should be evident that if we already know µ(m−1, 0) and µ(m−1, 1), then we can compute
µ(m, ℓ) and Prev(m, ℓ) for ℓ ∈ {0, 1} in constant time. Further, we have that µ(1, 0) = b1
and µ(1, 1) = s1 − fs, and so, by a straight forward induction, we can compute µ(m, ℓ) and
Prev(m, ℓ) in linear time.

Exercise 2.6

Implement this dynamics programming algorithm as a function which takes
as input two return series and the corresponding transactions costs, and out-
puts an optimal strategy, together with the return of the optimal strategy.

Is it possible to have more than one optimal strategy? If so, what can you
say about the returns of the optimal strategies?

The generalization of this algorithm to N > 2 instruments is straightforward by suitably
generalizing a trading strategy. S(m, ℓ) retains its definition, except now ℓ ∈ {0, . . . , N −1}.
To compute µ(m, ℓ) will need to take a maximum over N terms depending on µ(m− 1, ℓ′),
and so the algirithm will have runtime O(Nn).

One of the assumptions we maintained was the all or nothing assumption. The next
exercise shows that we did not lose any generality in doing so.

Exercise 2.7

Show that there always exists an all or nothing trading strategy which is
return optimal. in particular, show that for any trading strategy which
makes K trades, there is a trading strategy which makes at most K trades
with at least as much return. (This also shows that the all or nothing
assumption is also not a serious restriction to constrained return optimal
trading.)

[Hint: You may want to use induction on n.]

One concern with the unconstrained optimal strategy is that it may make too many trades.
It is thus useful to compute the optimal strategy that makes at most a given number of
trades. We discuss this next.

2.4 Constrained Return-Optimal Strategies

We now suppose that the number of trades is constrained to be at most K. The general
approach is similar to the unconstrained case. It is more convenient to consider the number
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of position switches a strategy makes, which we define as the number of times the position
switches. For a valid trading strategy, the number of trades entered equals the number of
trades exited, so k = 2K. Analogous to S(m, ℓ) in the previous section, we define S(m, k, ℓ)
to be the optimal trading strategy to time tm that makes at most k position switches ending
with position ℓ. Let µ(m, k, ℓ) be the return of strategy S(m, k, ℓ), and let Prev(m, k, l)
store the pair (k′, ℓ′), where ℓ′ is the penultimate position of S(m, k, ℓ) at tm−1 that leads to
the end position ℓ, and k′ is the number of position switches made by the optimal strategy
to time period tm−1 that was extended to S(m, k, ℓ).

Exercise 2.8

How many possible trading strategies are there with k position switches?

The algorithm once again follows from the observation that the the optimal strategy S(m, k, ℓ)
must pass through either bond or stock at tm−1. A complication is that if the penultimate
position is bond and ℓ = 0, then at most k position switches can be used to get to thhe
penultimate position, however, if ℓ = 1, then only at most k − 1 position switches may
be used. Similar reasoning applies if the penultimate position is stock. We thus get the
following recursion,

µ(m, k, 0) = max {µ(m− 1, k, 0), µ(m− 1, k − 1, 1)− fb} ,
µ(m, k, 1) = max {µ(m− 1, k − 1, 0) + sm − fs, µ(m− 1, k, 1) + sm} .

This recursion is initialized with µ(m, 0, 0) =
∑m

i=1 bi and µ(m, 0, 1) = −∞ for 1 ≤ m ≤ n.
Once µ(m, k, ℓ) is computed for all m, ℓ, then the above recursion allows us to compute
µ(m, k + 1, ℓ) for all m, ℓ. Thus, the computation of µ(m, k, ℓ) for 1 ≤ m ≤ n, 0 ≤ k ≤ 2K
and ℓ ∈ {0, 1} can be accomplished in O(nK) time. As in the unconstrained case, the
strategy that was extended gives Prev(m, k, ℓ),

Prev(m, k, 0) =

{

(k, 0) if µ(m− 1, k, 0) > µ(m− 1, k − 1, 1)− fb,

(k − 1, 1) otherwise.

Prev(m, k, 1) =

{

(k − 1, 0) if µ(m− 1, k − 1, 0) + sm − fs > µ(m− 1, k, 1) + sm,

(k, 1) otherwise.

Thus, Prev(m, k, ℓ) can be computed as we compute µ(m, k, ℓ) in O(nK) time.
The optimal trading strategy T ∗

K making at most K trades is then given by S(n, 2K, 0),
and the full strategy can be reconstructed in a single backward scan using the following
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backward recursion (we introduce an auxilliary vector κ),

T ∗
K [n] = 0,

κ[n] = 2K

(κ[m− 1], T ∗
K [m− 1]) = Prev(m,κ[m], T ∗

K [m]), for 1 ≤ m ≤ n.

Since the algorithm needs to store Prev(m, k, ℓ) for all m, k, the memory requirement is
O(nK). Once again, it is not hard to generalize this algorithm to work with N instruments,
and the resulting run time will be O(nNK).

Exercise 2.9

Implement the dynamic programming algorithm as a function which takes
as input the return sequences, the transactions costs and the maximum
number of trades and returns the optimal trading strategy together with
its return.

2.5 Other Work on Optimal Trading

The body of literature on optimal trading is so enormous that we only highlight here some
representative papers. The reasearch on optimal trading falls into two broad categories. The
first group is on the more theoretical side where researchers assume that instrument prices
satisfy some particular model, for example the prices are driven by a stochastic process of
known form; the goal is to derive closed-form solutions for the optimal trading strategy,
or a set of equations that the optimal strategy must follow. The main drawbacks of such
theoretical approaches is that their prescriptions can only be useful to the extent that the
assumed models are correct. Our work does not make any assumptions about the price
dynamics to construct ex-post optimal trading strategies.

The second group of research which is more on the practical side is focused on exploring
data driven / learning methods for the prediction of future stock prices moves and trading
opportunities. Intelligent agents are designed by training on past data and their performance
is compared with some benchmark strategies. Our results furnish (i) optimal strategies on
which to train intelligent agents and (ii) benchmarks with which to compare their perfor-
mance.

Theoretical Approaches Boyd et al. in [?] consider the problem of single-period portfolio
optimization. They consider the maximization of the expected return subject to different
types of constraints on the portfolio (margin, diversification, budget constraints and limits
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on variance or shortfall risk). Under certain assumptions on the returns distribution, they
reduce the problem to numerical convex optimization. Similarily, Thompson in [?] considered
the problem of maximizing the (expected) total cumulative return of a trading strategy
under the assumption that the asset price satisfies a stochastic differential equation of the
form dSt = dBt + h(Xt)dt, where Bt is a Brownian motion, h is a known function and Xi

is a Markov Chain independent of the Brownian motion. In this work, he assumes fixed
transaction costs and imposes assumptions A1, A2, A4 on the trading. He also imposes a
stricter version of our assumption A3: at any time, the trader can have only 0 or 1 unit of
stock. He proves that the optimal trading strategy is the solution of a free-boundary problem,
gives explicit solutions for several functions h and provides bounds on the transaction cost
above which it is optimal never to buy the asset at all.

Pliska et al. in [?] and Bielecki et al. in [?] considered the problems of optimal invest-
ment with stochastic interest rates in simple economies of bonds and a single stock. They
characterize the optimal trading strategy in terms of a nonlinear quasi-variational inequality
and develop a numerical approaches to solving these equations.

Some work has been done within risk-return frameworks. Berkelaar and Kouwenberg
in [?] considered asset allocation in a return versus downside-risk framework, with closed-
form solutions for asset prices following geometric Brownian motions and constant interest
rates. Liu in [?] consider the optimal investment policy of a constant absolute risk aversion
(CARA) investor who faces fixed and proportional transaction costs when trading multiple
uncorrelated risky assets.

Zakamouline in [?] studies the optimal portfolio selection problem using Markov chain
approximation for a constant relative risk averse investor who faces fixed and proportional
transaction costs and maximizes expected utility of the investor’s end-of-period wealth. He
identifies three disjoint regions (Buy, Sell and No-Transaction) to describe the optimal strat-
egy.

Choi and Liu in [?] considered trading tasks faced by an autonomous trading agent. An
autonomous trading agent works as follows. First, it observes the state of the environment.
According to the environment state, the agent responds with an action, which in turn influ-
ences the current environment state. In the next time step, the agent receives a feedback
(reward or penalty) from the environment and then perceives the next environment state.
The optimal trading strategy for the agent was constructed in terms of the agent’s expected
utility (expected accumulated reward).

Cuoco et al. in [?] considered Value at Risk as a tool to measure and control the risk
of the trading portfolio. The problem of a dynamically consistent optimal porfolio choice
subject to the Value at Risk limits was formulated and they proved that the risk exposure
of a trader subject to a Value at Risk limit is always lower than that of an unconstrained
trader and that the probability of extreme losses is also decreased.

Mihatsch and Neuneier in [?] considered problem of optimization of a risk-sensitive ex-
pected return of a Markov Decision Problem. Based on an extended set of optimality equa-
tions, risk-sensitive versions of various well-known reinforcement learning algorithms were
formulated and they showed that these algorithms converge with probability one under rea-
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sonable conditions.

Data Driven Approaches Moody and Saffell in [?] presented methods for optimizing
portfolios, asset allocations and trading systems based on a direct reinforcement approach,
which views optimal trading as a stochastic control problem. They developed reccurent
reinforcement learning to optimize risk-adjusted investment returns like the Sterling Ratio
or Sharpe Ratio, while accounting for the effects of transaction costs.

Liu et al. in [?] proposed a learning-based trading strategy for portfolio management,
which aims at maximizing the Sharpe Ratio by actively reallocating wealth among assets.
The trading decision is formulated as a non-linear function of the latest realized asset returns,
and the function cam be approximated by a neural network. In order to train the neural
network, one requires a Sharpe-Optimal trading strategy to provide the supervised learning
method with target values. In this work they used heuristic methods to obtain a locally
Sharp-optimal trading strategy. The transaction cost was not taken into consideration. Our
methods can be considerably useful in the determination of target trading strategies for such
approaches.

3 Optimal Trade Entry - The Deterministic Case

We will now consider another important application of dynamic programming in constructing
the optimal way to enter a trade (short or long). We will focus on selling shares in a stock
(for example) but the same general approach applies equally well to buying.

The general formulation of the problem is that you have a (usually large) number of
shares, K which you would like to sell and the entire trade must be executed over the next
n time steps t = 1, 2, . . . , n. Two things complicate the process. The first is that typically
you would like to sell because you have some market view that the price will be dropping,
and so you would like to sell as fast as possible. The second is that since you are selling
a large amount of stock, you will likely have market impact, which means that as you sell
the stock, the price of the stock will change, and in general you will also affect the future
market view. Typically as you sell larger quantities, you have a larger impact. Since you
are selling, the impact will be negative, i.e., you will lower the future price, and the more
you sell, the more the price will be lowered. This market impact encourages spreading out
your trade. These two competing effects created by the market view and the market impact
leads to significant profit saving if you optimally enter the trade versus not. We formalize
the problem in a general way before considering simplifications which we can efficiently solve
using dynamic programming approaches.

The number of shares to be sold is K over the times t = 1, 2, . . . n. Suppose that we
sell ki shares at time i, so the exit strategy can be represented by the n-dimensional vector
k = [k1, k2, · · · , kn], with

∑

i ki = K.

Exercise 3.1
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3 Optimal Trade Entry - The Deterministic Case 19

Given K and n, how many possible exit strategies are there?

Before any shares are sold, you have some view as to how the market will behave. Specifically,
the no-market impact price pi at time i is known, which can be summarized in the no-market
impact price vector p = [p1, p2, · · · , pn]. If the trade is to sell K shares, then typically the
pi’s are decreasing (one sells if one believes that the market is going down). If you sell
according to the strategy k, the prices will change, in particular drop, both as you sell and
in the future. We will make some simplifying assumptions as to how this happens.

At time i, suppose that the price is pi. If you sell k shares at time i, assume that you will
execute your k shares at an average price of pi − g(k), where g(k) is the execution impact of
selling the k shares. There will also be a future price impact due to this sale. In particular, all
your future realizations of the price will drop by an amount f(k). Since the price is typically
dropping during the execution, the average price for the execution will be higher than the
final price after the execution, thus in a practical setting, one usually has that f(k) ≥ g(k).

At time i for exit strategy k, let qi be the amount by which the price has already dropped,

qi =
i−1
∑

j=1

f(kj).

The average price for the sale of ki shares at time i is then pi − qi − g(ki). Let ci be the
proceeds from this sale. Then,

ci = ki(pi − qi − g(ki)).

We can thus compute the proceeds from the entire sale,

C(k) =
n

∑

i=1

ci,

=
n

∑

i=1

ki(pi − qi − g(ki)),

=
n

∑

i=1

ki(pi − g(ki))−
n

∑

i=1

i−1
∑

j=1

kif(kj).

The functions g, f are specified as vectors: g = [g0, g1, . . . , gK ] and f = [f0, f1, . . . , fK ]. Note
that g0 = f0 = 0. Given p,g, f and K, the task is to maximize C over all strategies k ≥ 0
such that

∑

i ki = K. We can assume that k is a non-negative integer vector, because one
can only execute an integral number of shares at a time.

Exercise 3.2

Suppose that the price vector is a constant vector equal to 100. Assume
that K = 10 and that f(k) = g(k) = 0 if 0 ≤ k ≤ 1 and 1 otherwise.
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(a) Compute C, qi for the strategy k = [4, 3, 2, 1, 0, 0, 0, 0, 0, 0].

(b) What is the optimal exit strategy and corresponding to it, what is C.

We now develop a dynamic programming solution for obtaining the optimal exit strategy.
Suppose that you are at time i and the price has already dropped by an amount q and you
have k shares remaining to sell. Let C∗(k, q, i) denote the maximum possible proceeds from
optimally executing the remainder of the trade (k shares) starting at time i.

We would like to know for starters, what is C∗(K, 0, 1), the maximum possible proceeds
from the sale of the K shares, in addition to the exit strategy to obtain that maximum. We
begin by observing that at time n, there is nothing to be done but sell all the remaining k
shares no matter what the price drop has been, so,

C∗(k, q, n) = k(pn − q − g(k)).

Now consider C∗(k, q, i) for a time i < n. Of the k shares remaining to be sold, there are
only k + 1 possibilities, corresponding to selling 0, 1, . . . , k shares at time i. After selling
0 ≤ ℓ ≤ k shares at time i, the maximum amount of money which can be made is

ℓ(pi − q − g(ℓ)) + C∗(k − ℓ, q + f(ℓ), i+ 1).

To obtain C∗(k, q, i), which is the maximum amount of money that can be made at time i,
we should take the maximum over all possible choices of ℓ to obtain,

C∗(k, q, i) = max
0≤ℓ≤k

{ℓ(pi − q − g(ℓ)) + C∗(k − ℓ, q + f(ℓ), i+ 1)} . (2)

The value of ℓ which attains this maximum will also be useful for us in reconstructing the
optimal strategy through the usual process of backtracking in a dynamic program. Let
ℓ∗(k, q, i) be this value of ℓ,

ℓ∗(k, q, i) = argmax
0≤ℓ≤k

{ℓ(pi − q − g(ℓ)) + C∗(k − ℓ, q + f(ℓ), i+ 1)} . (3)

This backward induction allows us to compute C∗, ℓ∗ at time i for all k, q if we have already
computed C∗, ℓ∗ at time i + 1 for all k, q. Since we know C∗ at time n for all k, q, we
can initiate the process at time n and continue all the way back to time 1, where we need
C∗(K, 0, 1). Note that ℓ∗(k, q, n) = k since there is nothing more to do than sell off all the
remaining shares.

To construct an optimal strategy, we have to use a forward induction with ℓ∗. Clearly
k1 = ℓ∗(K, 0, 1). Let κi be the number of shares remaining to execute at time i, κ1 = K.
Note that the price drop at time 1 is 0, q1 = 0. In general, if there are κi shares to execute
at time i and the price has dropped by qi, then the optimal strategy sells ki = ℓ∗(κi, qi, i)
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shares, and we update κi+1 = κi − ki and qi+1 = qi + f(ki). Summarizing, we have that
κ1 = K, q1 = 0 and for i ≥ 1,

ki = ℓ∗(κi, qi, i),

κi+1 = κi − ki,

qi+1 = qi + f(ki).

This forward induction allows us to compute ki for i ≥ 1.

Exercise 3.3

We will explore the maximum possible market impact that one can have
when executing the trade. The total market impact is q =

∑

i f(ki), the
total amount by which the market was moved. We would like to compute
the maximum possible value of q under the restriction that

∑

i ki = K.
Thus define

q∗(K) = max∑
i ki=K

∑

i

f(ki).

Give a dynamic programming algorithm to compute q∗(K).

[Hint: Show that q∗(K) = max1≤k≤K{f(k)+ q∗(K−k), with q∗(0) = 0.]

3.1 Computational Considerations

It turns out that everything we have said is correct, but for the particular model we are
considering, we can get a very efficient algorithm for computing the optimal strategy by
looking a little more closely at C∗.

Exercise 3.4

Show that
C∗(k, q, i) = C∗(k, 0, i)− kq.

[Hint: You may want to consider proof by induction.]
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Exercise 3.5

Using the previous exercise or otherwise show that ℓ∗(k, q, i) is independent
of q, i.e. ℓ∗(k, q, i) = ℓ∗(k, 0, i).

The previous two exercises show that we can rewrite (2) and (3) because C∗(k, q, i) =
C∗(k, i)− kq, where C∗(k, i) = C∗(k, 0, i):

C∗(k, q, i) = C∗(k, i)− kq,

C∗(k, i) = max
0≤ℓ≤k

{ℓpi − ℓg(ℓ)− (k − ℓ)f(ℓ) + C∗(k − ℓ, i+ 1)} ,

ℓ∗(k, i) = argmax
0≤ℓ≤k

{ℓpi − ℓg(ℓ)− (k − ℓ)f(ℓ) + C∗(k − ℓ, i+ 1)} .

The boundary condition for C∗ is C∗(k, n) = k(pn − g(k)). We reconstruct the optimal
strategy from ℓ∗. In particular, κ1 = K and for i ≥ 1,

ki = ℓ∗(κi, i),

κi+1 = κi − ki,

The algorithm needs to store C∗(k, i) for 1 ≤ k ≤ K and 1 ≤ i ≤ n, which is O(nK)
memory, similarly for ℓ∗. In terms of computation, at each time step i, K numbers need to
be computed, C∗(k, i) for 1 ≤ k ≤ K, and each computation requires taking a maximum
over k ≤ K numbers which is O(K2) computation at each time step, resulting in a total
computation of O(nK2) computation.

Exercise 3.6

Consider the following exit scenario. You wish to sell 10 shares (K=10)
of a stock by time T = 10. Assume the stock price is decreasing linearly,
Pt = 100−αt, where α is a parameter we will play with. Assume that the
impact function is linear, f(x) = βx where β is also a parameter to we will
play with. You can only sell an integral number of shares at a time.

(a) If you were to do brute force search for the optimal exit strategy, how
many possible exit strategies are there?

(b) Implement efficiently the dynamic programming algorithm to compute
the optimal exit and determine the optimal exit strategy together with
the maximum proceeds from the sale when α = {0, 1, 2}, with β = 1.
Repeat with β = 2.

(c) Explain intuitively what is going on.
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3.2 Market Impact, Exectution Impact and the Order Book

The discussion so far has been for arbitrary price and execution impact functions. One choice
is for the price and execution impact functions to be the same, f = g. This is not completely
realistic though reasonable. The price and market impact functions are related through the
order book and its dynamics. In particular, since we have been focussing on the sale of K
shares, we should look at the bid side order book.

Lets postulate a very simple model for the order book dynamics. In particular, suppose
that the zero impact market view p gives the top level of the bid side order book, i.e., the
highest price at which someone is willing to by.

Lets assume that the order book has an equilibrium state which it can restore over the
course of one time step. The order book state is the precise description of the orders which
have been placed on the bid stack, which is a function F that specifies the number of orders
placed at a particular prices at or below the bid price. In parficular, let p be the bid price
(top level of the order book). Let δ be the tick size, the minimum possible difference between
prices (for example δ = 1 cent). The function F (i) (for δ ≥ 0) which specifies the bid stack
state is the number of bid orders with price at p− iδ. Thus,

F (i) = number of bid orders with price p− iδ.

So, for example, F (0) is the number of orders placed at the bid. Typically (in the equilibrium
state) the number of orders placed gets smaller (the bid stack gets thinner) as you move
further away from the bid stack.

The market impact is of placing an order of size k is the determined by removing the
k orders with highest prices and the resulting price is at the top level of the bid stack is
the price after market impact. Thus, for example, if k = F (0), then f(k) = δ. Define the
cumulative sequence G(i) =

∑i

j=0 F (j). Then we obtain the market impact function as

f(k) =











































0 0 ≤ k < G(0),

δ G(0) ≤ k < G(1),

2δ G(1) ≤ k < G(2),
...

iδ G(i− 1) ≤ k < G(i),
...

Note that if k >
∑∞

i=0 F (i), then f(k) = ∞. We can now compute the average execution
price for an order of size k, and hence the execution impact function g(k) using the following
logic. The first F (0) shares will be sold at price p. The next F (1) shares will be sold at price
p− δ. The next F (2) shares will be sold at price p− 2δ, and so on.
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Exercise 3.7

Show that the execution impact function is given by

g(k) =







0 0 ≤ k ≤ G(0),
δ

k

[

∑i−1
i=0 iF (i) + i(k −∑i−1

i=0 F (i))
]

G(i− 1) < k ≤ G(i).

Typically, F (i) is a non-increasing function. Some useful examples are the uniform order
book, where F (i) = β; the linear order book, F (i) = ⌈max(1, β − γi) ⌉; polynomial decay,
F (i) = ⌈max(1, β/(1 + i)ρ) ⌉; exponential decay, F (i) = ⌈max(1, βe−ρi) ⌉;

Exercise 3.8

For the four types of order book state,

F (i) = β,
F (i) = ⌈max(1, β − γi) ⌉,
F (i) =

⌈

max(1, β
(1+i)γ )

⌉

,

F (i) =
⌈

max(1, βe−γi)
⌉

,

compute f(k) and g(k), giving plots. In all cases, F (0) = β.

[Answer: For example, when F (i) = β,

f(k) = δ

⌊

k

β

⌋

,

g(k) = δ

[⌈

k

β

⌉

− 1− β

2k

⌈

k

β

⌉(⌈

k

β

⌉

− 1

)]

.

The other cases are more complicated.
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4 Optimal Trade Entry with Stochastic Inference

So far, everything we have considered is deterministic in the sense that the market view p

is known and deterministic, the impact functions are known and deterministic, and hence
the problem was solved as a deterministic dynamic program. The two main issues are that
the entire setup was deterministic and known. What happens when we try to relax some of
these restrictions. In particular, when the setup is not deterministic, we have to deal with
uncertainties in the outcomes, and so we should maximize the expected wealth returned by
the exit strategy. The exit strategy may also be dynamically changing in the sense that if
for example prices are not independently distributed, after a realization of one price, it may
alter your market view for the remaining prices, and hence alter your exit strategy. When
things are not known, one has to then make inferences based on the incremental realization
of the process of exit. The first things we need to examine are where we need to relax the
assumptions.

First consider the sale of k1 shares at time 1. Certainly, by looking at the order book
we can more or less deterministically compute g(k) if we assume there is no change in
the order book between the time you place your sale and the time it gets executed. So it is
reasonable to assume that the function g(k) is known deterministically. The assumption that
the equilibrium state of the order book is more or less stable (after the order book refills) is
also not such a drastic assumption, and so we can assume that g(k) is a known, deterministic,
time invariant function. A similar argument can be made for the instantaneous price impact
after the sale is made, i.e. the instanteneous price impact will be deterministically f(k). How
this instantaneous price impact will affect the distribution of future prices however may not
be the deterministic model of lowering all of them by the same constant f(k). For example,
if the market view had originally prices rising, then according to the deterministic uniform
impact of lowering all prices in the future, the prices will still be rising. On the other hand,
it is an observed phenomenon in the real markets that a large trade may infact shift the
sentiment of the market from one of rising prices to one of dropping prices, in which case the
impact of the sale is in some sense much more drastic. However, it is reasonable to assume
that how the market is affected is known, though the impact may not be deterministic.

As for the price time series, however, this is clearly not deterministically known. Cer-
tainly we may have distributions for the prices in the future, but this is also a far reaching
assumption. In general, we do not even know the distribution for the prices in the future.
More specifically, we may conjecture that the prices follow some parameterized stochastic
process, and the parameters of this stochastic process are not known. One may have some
prior beliefs about these parameters, but essentially, these parameters must be inferred si-
multaneously with trying to optimally execute the trade.

4.1 A Stochastic Process for Trade Execution

The first thing we will do is see what happens when we introduce a known stochastic process
for the price time series. Thus, instead of specifying the price vector p deterministically
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ahead of time lets specify instead a stochastic process S by which prices are generated
as a trade is executed. We will assume that the execution impact function and the price
impact function are given. In particular, we will assume that the execution impact is a
percentage of the price, g = g(k)p and similarily for the price impact, f = f(k)p, where
0 ≤ f(k), g(k), < 1. This assumption, in addition to be technically more convenient also
guarantees that all prices (execution or final) are positive. Suppose that the price at time t1 is
p1, known deterministically, and suppose that we have an execution strategy k = [k1, . . . , kn].
The stochastic process for trade execution will be based on a Geometric Brownian Motion
for the instrument price. Specifically, the price at the next time step has a log-normally
distributed value around the price at the current time step. Specifically, let’s define the
random vector of future prices p̃ = [p̃1, . . . , p̃n], where p̃1 = p1. The instantaneous price after
execution of ki shares at time i is denoted by q̃i, again a random variable3. Via the market
impact, q̃i = p̃i − f(ki). The proceeds of the sale at time i are c̃i = ki(p̃i − g(ki)). The
final piece of the stochastic process is to specify how the price at the next time step, i+1 is
determined from q̃i, the price after market impact at time i. As already mentioned, we will
use a Geometric Brownian motion, and so we have that

log p̃i+1 = log q̃i + η,

where η is a normal random variable with mean µ and variance σ2. Thus, the entire stochastic
process which ensues during the execution of the exit strategy k is as follows. p̃1 = p1, and
for i ≥ 1,

q̃i = p̃i(1− f(ki)),

c̃i = kip̃i(1− g(ki)),

p̃i+1 = q̃ie
η.

The wealth achieved from the sale is C̃ =
∑

i≥1 c̃i. We will assume that k(1 − g(k)) is an
increasing function of k for k ≤ K, to avoid the complication that it may be better not to
liquidate all shares. Note that we assume that µ and σ2 are known and are constants. The
assumption of known µ, σ2 is a large one. The assumption that they are constant is not so
bad, it basically amounts to the fact that the person selling the K shares has instantaneous
market impact via the order book, but does not change the sentiment in the market place
as to the general trend and volatility. Later we will see what happens if we relax both of
these assumptions. This model, with linear choice for g(ℓ) was studied in [?].

4.1.1 Optimal Trade Exit with Known µ, σ2

The task is to maximize the expected wealth E[C̃] after the sale of the entire k shares.
The expectation is with respect to the stochastic process defined above, and ofcourse the
complication is that the stochastic process itself depends on the exit strategy k.

3We will generally use the tilde to indicate a random variable, and the same variable without a tilde for
a realization.
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Once again, we begin by considering time step n. If there are k shares to be sold and the
price is pn, then the maximum wealth to be gained is

C∗(k, n, pn) = kpn(1− g(k)).

Let’s now consider time n − 1, with k shares to be sold and the price being pn−1. At time
n−1, one can sell 0, 1, 2, . . . , k shares, and sell the remaining at time n. The expected return
after selling ℓ shares at time n− 1 is

ℓpn−1(1− g(ℓ)) + E[C∗(k − ℓ, n, p̃n)].

Since p̃n = pn−1(1− f(ℓ))eη, we have

ℓpn−1(1− g(ℓ)) + E[(k − ℓ)pn−1(1− f(ℓ))(1− g(k − ℓ))eη],

= pn−1(ℓ(1− g(ℓ)) + (k − ℓ)(1− f(ℓ))(1− g(k − ℓ))eµ+
1

2
σ2

).

The important thing to note is that this function is linear and homogeneous in pn−1, and
the coefficient, which depends on the number of shares sold is

ℓ(1− g(ℓ)) + (k − ℓ)(1− f(ℓ))(1− g(k − ℓ))eµ+
1

2
σ2

.

The work in [?] focuses on the case when f(k) = 0 and g(k) = θk, i.e., no price impact and
linear execution impact. Let ℓ∗(k, n − 1) be the value of ℓ ∈ {0, 1, . . . , k} which maximizes
this coefficient, which is independent of pn−1. Then,

ℓ∗(k, n− 1;µ, σ2) = argmax
ℓ∈{0,1,...,k}

{ℓ(1− g(ℓ)) + (k − ℓ)(1− f(ℓ))(1− g(k − ℓ))eµ+
1

2
σ2},

where we have explicitly shown the dependence on µ, σ2. Corresponding to this optimal
value ℓ∗ we have that

C∗(k, n− 1, pn−1) = pn−1w
∗(k;µ, σ2),

where
w∗(k;µ, σ2) = ℓ∗(1− g(ℓ∗)) + (k − ℓ∗)(1− f(ℓ∗))(1− g(k − ℓ∗))eµ+

1

2
σ2

,

and ℓ∗ = ℓ∗(k, n − 1;µ, σ2). Note that the maximization problem to obtain ℓ∗ is an O(k)
operation. So far, we see that C∗(k, i, pi) = piw

∗(k, i) holds for i = n, n− 1, with

w∗(k, n) = k(1− g(k)),

w∗(k, n− 1) = ℓ∗(1− g(ℓ∗)) + (k − ℓ∗)(1− f(ℓ∗))(1− g(k − ℓ∗))eµ+
1

2
σ2

.

Suppose that for t = i+ 1, i+ 2, . . . , n we have that

C∗(k, t, pi) = ptw
∗(k, t).

We now analyze the general case at time i and consider C∗(k, i, pi). We will suppress the
dependence on µ, σ2. Assuming we sell ℓ shares at time i, the expected wealth is

ℓpi(1− g(ℓ)) + E[C∗(k − ℓ, i+ 1, p̃i+1)].
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By the induction hypothesis,

C∗(k − ℓ, i+ 1, p̃i+1) = p̃i+1w
∗(k − ℓ, i+ 1),

= pi(1− f(ℓ))eηw∗(k − ℓ, i+ 1).

We can now compute the expected wealth as

pi(ℓ(1− g(ℓ)) + w∗(k − ℓ, i+ 1)(1− f(ℓ))eµ+
1

2
σ2

),

which is linear in pi for every possible choice of ℓ, in particular the optimal choice of ℓ. The
maximum expected wealth is obtained by maximizing with respect to ℓ,

ℓ∗(k, i) = argmax
ℓ∈{0,1,...,k}

{ℓ(1− g(ℓ)) + w∗(k − ℓ, i+ 1)(1− f(ℓ))eµ+
1

2
σ2

.}

one of the important things to note is that the optimal trading strategy ℓ∗ is independent
of pi, it only depends on k, and hence it is independent of the entire price dynamics. As a
result, the optimal trading strategy can be computed ahead of time. This is not necessarily
the case for other possible stochastic price dynamics. We can write the maximum expected
wealth as

C∗(k, i, pi) = piw
∗(k, i),

where
w∗(k, i) = ℓ∗(1− g(ℓ∗)) + w∗(k − ℓ∗, i+ 1)(1− f(ℓ∗))eµ+

1

2
σ2

,

and ℓ∗ = ℓ∗(k, i;µ, σ2). We are now ready to summarize this entire discussion into the full
dynamic programming algorithm to compute the optimal exit strategy. First, note that the
optimal exit strategy can be computed from ℓ∗i (k) as follows. Let κ1 = K and for i ≥ 1,

ki = ℓ∗(κi, i),

κi+1 = κi − ki,

The optimal exercise functions, ℓ∗(k, i) and the maximum expected wealth functions C∗(k, i, p)
are computed simultaneously by the following backward process. We start at i = n,

ℓ∗(k, n) = k,

w∗(k, n) = k(1− g(k)),

C∗(k, n, p) = p · w∗(k, n).

Now comes the backward induction. Assume that for time i+1 we have computed ℓ∗(k, i+1)
and w∗(k, i + 1) for all k ∈ {0, 1, . . . , K}, where i < n. This is certainly true for i = n − 1.
Then we can compute ℓ∗(k, i) and w∗(k, i) for all k ∈ {0, 1, . . . , K} as follows,

ℓ∗(k, i) = argmax
ℓ∈{0,1,...,k}

{ℓ(1− g(ℓ)) + w∗(k − ℓ, i+ 1)(1− f(ℓ))eµ+
1

2
σ2},

w∗(k, i) = ℓ∗(1− g(ℓ∗)) + w∗(k − ℓ∗, i+ 1)(1− f(ℓ∗))eµ+
1

2
σ2

,

C∗(k, i, p) = p · w∗(k, i),
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where ℓ∗ = ℓ∗(k, i). The first step here, in the computation of ℓ∗(k, i) requires an optimiza-
tion, which has to be performed for each k ∈ {0, 1, . . . , K}. The maximum expected return
is given by C∗(K, 1, p1), and the optimal strategy is computed starting with ℓ∗(K, 1).

Computational Considerations. We see that we have to store ℓ∗(k, i) and w∗(k, i) for
k ∈ {0, 1, . . . , K} and i ∈ {1, . . . , n}, which is an O(nK) memory requirement. At each
time step i, to compute ℓ∗(k, i) we need to take a maximum of O(k) numbers which can be
computed in constant time, which has to be done for the K possible values of k at each time
step, for a total computation of O(nK2). Thus, we see that this more complex case with
stochastic price dynamics can be solved with similar efficiency to the determinsitc case we
considered earlier.

Exercise 4.1

In the discussion, to simplify the problem, we assumed the execution and
price impact were proportional, i.e., the execution price was p(1 − g(k))
and the price after impact was p(1−f(k)). We will investigate what would
happen had we remained with the additive model, p − g(k) and p − f(k)
for the execution price and final price respectively. Define the optimal
execution function

4.1.2 Optimal Trade Exit with Uncertain µ, σ

So far, we have assumed that µ, σ2 are known. Suppose instead that µ, σ2 are not known, but
we have some belief about what they are, i.e., we have some prior distribution for the possible
values of µ, σ. The entire derivation of the previous section follows through unaffected except
for the calculation of E[eη]. This computation must now must now take into account the fact
that µ and σ come from some distribution. Suppose that this distribution is parameterized
by a parameter θ,

p(µ, σ2|θ).
Then,

E[eη] = E[eµ+
1

2
σ2

],

=

∫

dµ dσ2 eµ+
1

2
σ2

p(µ, σ2|θ),

= Q(θ),

where Q(θ) is a function of the parameters which determine the joint distribution of (µ, σ2).
A simple case is when σ, the volatility in the market place is known and µ is not known,

©Malik Magdon-Ismail, RPI, October 10, 2022



4.2 A Stochastic Process for Trade Execution with Changing µ 30

having a Normal distribution with mean θ and variance ρ2, µ ∼ N(θ, ρ2). For this case, Q(θ)
is computed in the following exercise.

Exercise 4.2

Suppose that σ2 is known and µ ∼ N(θ, ρ2). Show that

(a) η ∼ N(θ, ρ2 + σ2).

(b) Using the previous part or otherwise, show that

Q(θ, ρ2, σ2) = eθ+
1

2
(ρ2+σ2).

Analogously to the previous section, The optimal exercise functions, ℓ∗(k, i) and the max-
imum expected wealth functions C∗(k, i, p) are computed simultaneously by the following
backward process. We start at i = n,

ℓ∗(k, n;θ) = k,

w∗(k, n;θ) = k(1− g(k)),

C∗(k, n, p;θ) = p · w∗(k, n).

Now comes the backward induction. Assume that for time i+ 1 we have computed ℓ∗(k, i+
1;θ) and w∗(k, i + 1;θ) for all k ∈ {0, 1, . . . , K}, where i < n. This is certainly true for
i = n−1. Then we can compute ℓ∗(k, i;θ) and w∗(k, i;θ) for all k ∈ {0, 1, . . . , K} as follows,

ℓ∗(k, i;θ) = argmax
ℓ∈{0,1,...,k}

{ℓ(1− g(ℓ)) + w∗(k − ℓ, i+ 1;θ)(1− f(ℓ))Q(θ)},

w∗(k, i;θ) = ℓ∗(1− g(ℓ∗)) + w∗(k − ℓ∗, i+ 1;θ;θ)(1− f(ℓ∗))Q(θ),

C∗(k, i, p;θ) = p · w∗(k, i;θ),

where ℓ∗ = ℓ∗(k, i;θ). The first step here, in the computation of ℓ∗(k, i;θ) requires an
optimization, which has to be performed for each k ∈ {0, 1, . . . , K}. The maximum ex-
pected return is given by C∗(K, 1, p1;θ), and the optimal strategy is computed starting with
ℓ∗(K, 1;θ) as follows: Let κ1 = K and for i ≥ 1,

ki = ℓ∗(κi, i;θ),

κi+1 = κi − ki.

4.2 A Stochastic Process for Trade Execution with Changing µ

We now consider what happens if the market impact is so large that it can change the
market sentiment, i.e., affect the trend. We will assume that volatility remains constant.
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Thus, µi = µi−1 − h(ki), which indicates that the drift shifts down (which is the correct
direction for selling shares), by an amount which depends on the quantity of shares sold. In
most liquid markets, h(k) is close to 0 for small k and only once k gets really large does g(k)
become significant. A simple case is linear response, with h(k) = δk. The full dynamics are
therefore, p̃1 = p1, µ1 = µ, and for i ≥ 1,

q̃i = p̃i(1− f(ki)),

c̃i = kip̃i(1− g(ki)),

µi+1 = µi − h(ki),

η ∼ N(µi+1, σ
2),

p̃i+1 = q̃ie
η,

where N(·) is the Normal distribution. In this model, there is an instantaneous price impact
by a factor (1− f(ki)) which affects all future prices by this factor, as well as an impact on
the price process itself (in this case only on the drift). This can be viewed as the sale of a
big number of shares changing the sentiment in the market.

4.3 Stochastic Inference

So far we have assumed that µ is known, and constant. Suppose that µ is not known, but
rather one has some prior over the possible values of µ. In this case one is faced with a
tradeoff between two choices: execute now, based on the current information about µ; or,
delay the execution a little in order to get a better estimate of µ and then execute optimally
later for more profit. Lets assume that at time 1, we have a Normal prior on µ, with mean
θ, and variance ρ2. If we make a trade at time 1 of size k1 and observe the price at the next
time step, p̃2, then we know that

log(p̃2)− log(q1) ∼ N(µ, σ2),

where N(·) is the Normal distribution.

Exercise 4.3

Suppose that the prior distribution of µ is a normal distribution with mean
θ and variance ρ2,

P (µ) ∼ N(θ, ρ2).

Suppose that a random variate x is drawn from a Normal distribution with
mean µ and variance σ2,

x ∼ N(µ, σ2).

Show that the posterior distribution for µ after observing x is Normal,

P (µ|x) ∼ N(θ′, ρ′
2
),
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where

θ′ = θ +
ρ2

ρ2 + σ2
(x− θ), ρ′

2
= ρ2 · 1

1 + ρ2/σ2
.

Notice in the previous exercise that the variance (uncertainty) in µ as measured by ρ2 always
drops by the same amount, independent of x and the expected value θ shifts in the direction
of x by an amount which depends on the current uncertainty.

The dynamics for the trade exit are as follows. Initially, the price is p1, and we have
some prior for µ, the drift of the price in the Geometric Brownian Motion, µ ∼ N(θ1, ρ

2
1).

If we make a trade of k shares, we will have a temporary effect on µ, the drift, given by
µ → µ − h(k) which affects the price at the next time step, and we will have a permanent
effect on µ → µ− δh(k), where the permanent effect is generally small, 0 ≤ δ ≪ 1. The full
dynamics are given by the following equations. Assume that we have an exit strategy k. At
time 1, we have p̃1 = p1, µ1 ∼ N(θ1, ρ

2
1), where θ1 = θ and ρ21 = ρ2 where p1, θ, ρ are inputs

to the system. For i ≥ 1, we have

µ ∼ N(θi, ρ
2
i ),

ηi ∼ N(µ, σ2)− h(ki), (4)

p̃i+1 = p̃i(1− f(ki))e
ηi , (5)

c̃i = kip̃i(1− g(ki))e
ηi , (6)

θi+1 = θi − δh(ki) +
ρ2i

ρ2i + σ2

(

log
p̃i+1

p̃i(1− f(ki))
+ h(ki)− θi

)

, (7)

ρ2i+1 = ρ2i ·
1

1 + ρ2i /σ
2
.

In (4) we model the instant, temporary impact of the sale of ki shares on the drift µ by
postulating that it decreases the ηi by h(ki) for the current random variate ηi. The price
evolution (5) includes both the price impact from f(ki) and the geometric evolution according
to eηi . The execution price (??) reflects the instant execution impact g(ki) as well as the
evolution. From the dynamics, log p̃i+1 − log p̃i(1 − f(ki)) equals ηi and so x = log p̃i+1 −
log p̃i(1− f(ki)) + h(ki) is a random variate from N(µ, σ2), and hence this x should be used
in conjunction with the result in Exercise 4.3 to update the prior on µ, which is given in (7).
The mean update for the prior is as given by Exercise 4.3 with the provision for a permanent
affect on the mean of lowering it by an additional δh(ki). Notice we have introduced a
parameter δ here to account for the fact that the permanent impact may be different from
the temporary impact, in general we would suppose that 0 < δ ≪ 1. Thus, the state at any
given time step i, can be summarized by the number of shares k which remain to be sold,
the price pi and the belief about µ as encoded in θi. Technically, ρi is also part of the state,
but since it deterministically changes, we do not need to worry about it.

As always, lets begin the analysis with the final time step n. In this case, there is nothing
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to do but sell all the shares, and so

C̃∗
n(k, pn, θn) = pnk(1− g(k))eηn .

Taking the expectation, the maximum wealth attainable at time n is

C∗
n(k, pn, θn) = pnk(1− g(k))E[eηn ].

Exercise 4.4

Show that the distribution of ηi is a normal distribution, specifically,

ηi ∼ N(θi − h(ki), ρ
2
i + σ2).

Hence, show that
E[eηi ] = eθi−h(ki)+

1

2
(ρ2i+σ2).

Using the result of the previous exercise, we have that

C∗
n(k, pn, θn) = pne

θnk(1− g(k))e−h(k)+ 1

2
(ρ2n+σ2),

= pne
znθnwn(k),

where wn(k) = k(1− g(k))e−h(k)+ 1

2
(ρ2n+σ2) and zn = 1.

Let’s now consider time n−1. Assuming that ℓ shares are sold at time n−1, the expected
maximum wealth attainable is

C∗
n−1(k, ℓ, pn−1, θn−1) = E[pn−1ℓ(1− g(ℓ))eηn−1 + Cn(k − ℓ, p̃n, θ̃n)],

and we have that

C∗
n−1(k, pn−1, θn−1) = max

ℓ∈{0,1,2,...,K}
C∗

n−1(k, ℓ, pn−1, θn−1).

Since p̃n = pn−1(1 − f(ℓ))eηn−1 and θ̃n = σ2

ρ2n−1
+σ2

θn−1 − δh(ℓ) +
ρ2n−1

σ2+ρ2n−1

(ηn−1 + h(ℓ)), and

using the expression for C∗
n, we have

C∗
n−1(k, ℓ, pn−1, θn−1) = pn−1ℓ(1− g(ℓ)) + E[pn−1(1− f(ℓ))(k − ℓ)(1− g(k − ℓ))eηn−1 ],

= pn−1

[

ℓ(1− g(ℓ)) + (1− f(ℓ))(k − ℓ)(1− g(k − ℓ))e
1

2
(σ2+ρ2n−1

)−h(ℓ)eθn−1

]

,

= pn−1

[

xn−1(ℓ) + yn−1(k, ℓ)e
zn−1θn−1

]

,

where zn−1 = 1, xn−1(ℓ) = ℓ(1− g(ℓ)) is an increasing function of ℓ for ℓ ∈ {0, . . . , K}, and
yn−1(k, ℓ) = (1 − f(ℓ))(k − ℓ)(1 − g(k − ℓ))e

1

2
(σ2+ρ2n−1

)−h(ℓ) is increasing in k and decreasing
in ℓ.
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