FINAL

Last Name:

Student ID#:

Instructions

Fill in your Last Name and ID#. Answer all questions in the space provided. Keep your answers BRIEF! You have 1 Hour and 20 min. You may consult a double sided sheet of notes during the exam.

TOTAL	7	6	5	4	3	2	1
500	400	100	100	50	100	50	100

- 1. Let B(T) be the zero coupon bond price with expiry T.
 - (a) [50]What should the price of the following contract be: At t₁ > 0 I give you \$5 and at t₂ > t₁ you give me \$4. Your answer should be in terms of B(t₁) and B(t₂).
 - (b) [50]An instrument has cash flow rate $c(t), 0 \le t \le T$, i.e., the cash flow in the interval [t, t + dt] is c(t)dt. Show that the price P of this instrument should be

$$P = \int_0^T dt \ B(t)c(t).$$

Prove your answer using arbitrage arguments. (Assume that you can buy arbitrary amounts of bond at arbitrary expirations.)

2. [50]Let r(t) be the cumulative return to time t of a portfolio. Assume that the possible values of t are $0, 1, \ldots T$. Give a *linear* time algorithm to compute the Maximum Drawdown for this return series.

3. [100]Consider the single period stock - bond economy, in which at time Δt the stock could have values $\lambda_+ S$ or $\lambda_- S$, where S is the initial price, and $\lambda_+ > \lambda_-$. Suppose that the interest rate is r. Let \tilde{p} be the risk neutral probability to go up, i.e., to $\lambda_+ S$. Show that

$$\tilde{p} = \frac{e^{r\Delta t} - \lambda_-}{\lambda_+ - \lambda_-}.$$

What constraint does this place on $e^{r\Delta t}$, if there is to be no arbitrage? Explain the intuition.

4. [50]We would like to obtain an expected value by Monte Carlo. We draw 100 samples and the variance of this sample is $\sigma^2 = 9$ and the mean is 90. *Estimate* the number of samples that need to be drawn so that the *relative error* is very likely not more than 10^{-3} . The relative error is the ratio of the error to the actual value.

How would your answer change if the mean had been 0.9.

5. [100] A stock has the dynamics: $dS = \frac{1}{4}\sigma^2 dt + \sigma\sqrt{S} dW$. Show that $U = \sqrt{S}$ has the dynamics

$$dU = \frac{\sigma}{2}dW.$$

Use this to show that $S(T) = U(T)^2$, where U has a Normal distribution. What are the mean and variance of U(T). The distribution of S is called a χ^2 distribution.

6. [100]Consider a two period problem. The rate of return r is defined as W(T) = W(0)(1+r), where W represents wealth. Two stocks S_1, S_2 have Normal rate of return with mean r_1, r_2 and variance σ_1^2, σ_2^2 . Let the correlation between the returns be ρ . Consider a portfolio in which we spend fraction f_1 of the initial wealth on S_1 and f_2 on S_2 ($f_1 + f_2 = 1$). Give an expression for the rate of return of this portfolio. What is its distribution?

Now suppose that $r_1 = 0.05, r_2 = 0.15, \sigma_1 = \sigma_2 = 1, \rho = 0.5$ and $f_1 = f_2 = 0.5$. Give an expression for the VaR with confidence threshold $\alpha = 0.95$ and initial wealth W(0) = 100. Your expression can be in terms of the CDF of the standard Normal, $\phi()$, or its inverse.

7. [400] This problem deals with generating paths backward rather than forward. For simplicity lets consider the binomial model with probability p to go up (when generating forward).

Suppose that at time step t = n, we "start" at position s. Remember that $s \in \{-n, -n + n\}$ $2, \ldots, n-2, n$. We would like to generate a path backwards, toward t = 0. Suppose that in general we have generated backwards to time t and are at position i. To generate the next step backward, let $P_{+}(t,i)$ be the probability that you move up (backwards) to end at (t-1, i+1) and $P_{-}(t, i)$ be the probability to move down to end at (t-1, i-1). Note $P_{-}(t,i) = 1 - P_{+}(t,i)$. Show that

$$P_+(t,i) = \frac{t-i}{2t}.$$

This allows us to generate the path backward. [Hint: You may need Bayes theorem.]

Note the remarkable thing that $P_{+}(t,i)$ is independent of p. But surely the paths we generate must depe nce?

nd on
$$p$$
, whether we do it forward or backward. Where is the p dependent

SCRATCHWORK: