FINAL

Last Name:
Student ID\#:

Instructions

Fill in your Last Name and ID\#. Answer all questions in the space provided. Keep your answers BRIEF! You have 1 Hour and 20 min. You may consult a double sided sheet of notes during the exam.

1	2	3	4	5	6	7	TOTAL
100	50	100	50	100	100	400	500

1. Let $B(T)$ be the zero coupon bond price with expiry T.
(a) [50]What should the price of the following contract be:

At $t_{1}>0$ I give you $\$ 5$ and at $t_{2}>t_{1}$ you give me $\$ 4$.
Your answer should be in terms of $B\left(t_{1}\right)$ and $B\left(t_{2}\right)$.
(b) [50]An instrument has cash flow rate $c(t), 0 \leq t \leq T$, i.e., the cash flow in the interval $[t, t+d t]$ is $c(t) d t$. Show that the price P of this instrument should be

$$
P=\int_{0}^{T} d t B(t) c(t)
$$

Prove your answer using arbitrage arguments. (Assume that you can buy arbitrary amounts of bond at arbitrary expirations.)
2. [50]Let $r(t)$ be the cumulative return to time t of a portfolio. Assume that the possible values of t are $0,1, \ldots T$. Give a linear time algorithm to compute the Maximum Drawdown for this return series.
3. [100]Consider the single period stock - bond economy, in which at time Δt the stock couold have values $\lambda_{+} S$ or $\lambda_{-} S$, where S is the initial price, and $\lambda_{+}>\lambda_{-}$. Suppose that the interest rate is r. Let \tilde{p} be the risk neutral probability to go up, i.e., to $\lambda_{+} S$. Show that

$$
\tilde{p}=\frac{e^{r \Delta t}-\lambda_{-}}{\lambda_{+}-\lambda_{-}}
$$

What constraint does this place on $e^{r \Delta t}$, if there is to be no arbitrage? Explain the intuition.
4. [50] We would like to obtain an expected value by Monte Carlo. We draw 100 samples and the variance of this sample is $\sigma^{2}=9$ and the mean is 90 . Estimate the number of samples that need to be drawn so that the relative error is very likely not more than 10^{-3}. The relative error is the ratio of the error to the actual value.

How would your answer change if the mean had been 0.9.
5. [100]A stock has the dynamics: $d S=\frac{1}{4} \sigma^{2} d t+\sigma \sqrt{S} d W$. Show that $U=\sqrt{S}$ has the dynamics

$$
d U=\frac{\sigma}{2} d W
$$

Use this to show that $S(T)=U(T)^{2}$, where U has a Normal distribution. What are the mean and variance of $U(T)$. The distribution of S is called a χ^{2} distribution.
6. [100]Consider a two period problem. The rate of return r is defined as $W(T)=W(0)(1+r)$, where W represents wealth. Two stocks S_{1}, S_{2} have Normal rate of return with mean r_{1}, r_{2} and variance $\sigma_{1}^{2}, \sigma_{2}^{2}$. Let the correlation between the returns be ρ. Consider a portfolio in which we spend fraction f_{1} of the initial wealth on S_{1} and f_{2} on $S_{2}\left(f_{1}+f 2=1\right)$. Give an expression for the rate of return of this portfolio. What is its distribution?

Now suppose that $r_{1}=0.05, r_{2}=0.15, \sigma_{1}=\sigma_{2}=1, \rho=0.5$ and $f_{1}=f_{2}=0.5$. Give an expression for the $V a R$ with confidence threshold $\alpha=0.95$ and initial wealth $W(0)=100$. Your expression can be in terms of the CDF of the standard Normal, $\phi()$, or its inverse.
7. [400]This problem deals with generating paths backward rather than forward. For simplicity lets consider the binomial model with probability p to go up (when generating forward).
Suppose that at time step $t=n$, we "start" at position s. Remember that $s \in\{-n,-n+$ $2, \ldots, n-2, n\}$. We would like to generate a path backwards, toward $t=0$. Suppose that in general we have generated backwards to time t and are at position i. To generate the next step backward, let $P_{+}(t, i)$ be the probability that you move up (backwards) to end at $(t-1, i+1)$ and $P_{-}(t, i)$ be the probability to move down to end at $(t-1, i-1)$. Note $P_{-}(t, i)=1-P_{+}(t, i)$. Show that

$$
P_{+}(t, i)=\frac{t-i}{2 t}
$$

This allows us to generate the path backward. [Hint: You may need Bayes theorem.]

Note the remarkable thing that $P_{+}(t, i)$ is independent of p. But surely the paths we generate must depend on p, whether we do it forward or backward. Where is the p dependence?

SCRATCHWORK:

