FINAL

Last Name:

Student ID#:

Instructions

Fill in your Last Name and ID#. Answer all questions in the space provided. Keep your answers BRIEF! You have 1 Hour and 30 min. You may consult a double sided sheet of notes during the exam.

1	2	3	4	5	6	TOTAL
100	50	100	50	100	100	500

- 1. Let B(T) be the zero coupon bond price with expiry T.
 - (a) [50]What should the price of the following contract be: At $t_1 > 0$ I give you \$5 and at $t_2 > t_1$ you give me \$4. Your answer should be in terms of $B(t_1)$ and $B(t_2)$.
 - (b) [50]Prove your answer using an arbitrage argument.

2. [50]Let X_0, \ldots, X_n be an instruments price, and let B_0, \ldots, B_n be the bond prices at times $t_0 = 0, t_1, \ldots, t_n$ (prices are the bid prices). Assume that the bid-ask spread in instrument is x and in bond is b, both constants. Assume that you have \$1 in bond at time 0. Give a linear time algorithm to compute the maximum possible wealth after time step n.

3. [100]Consider a stock with the dynamics $dS = S\sqrt{dt} \epsilon$. Consider a binomial model with time step $\Delta t = \frac{1}{4}$ for two periods $0, \Delta t, 2\Delta t$. Assume that $\lambda_{\pm} = 1 \pm \delta$ and that $e^{r\Delta t} = \frac{5}{4}$. Assume that the initial stock price S(0) = 1. Compute the price of the Asian call option with the strike as the arithmetic average over the three times $0, \Delta t, 2\Delta t$.

4. [50]Carefully define Type I and Type II arbitrage.

Carefully *state* the positive supporting price theorem and discuss how it relates to Monte-Carlo pricing methods?

5. [100]Consider a two period problem. Define the rate of return r by $r = \log \frac{W(T)}{W(0)}$, where W represents wealth. Two stocks S_1, S_2 have rates of return r_1, r_2 respectively. Consider a portfolio Π in which we spend a fraction f_1 of the initial wealth on S_1 and f_2 on S_2 $(f_1 + f_2 = 1)$. Give an expression for the rate of return r_{Π} of this portfolio and show that

$$\max\{r_1, r_2\} \ge r_{\Pi} \ge f_1 r_1 + f_2 r_2$$

When does the left inequality become equality; when does the right?

6. [100]From the previous problem, suppose that the rates of return r_1, r_2 have a Normal distribution with means $\mu_1 = 0.05, \mu_2 = 0.1$ and variances $\sigma_1^2 = \sigma_2^2 = 1$. Let the correlation between the rate of returns be $\rho = 0.5$. For the portfolio in which $f_1 = f_2 = 0.5$, Give an expression for the VaR with confidence threshold $\alpha = 0.95$ and initial wealth W(0) = 100.

[Your final answer can be in terms of the CDF of the standard Normal, $\phi()$, or its inverse; if you need to, you may approximate the distribution of a sum of log-Normal random variables by a Normal distribution.]

SCRATCHWORK: