FINAL

Last Name:

Student ID\#:

Instructions

Fill in your Last Name and ID\#. Answer all questions in the space provided. Keep your answers BRIEF! This final is openbook.

1	2	3	4	5	6	TOTAL
100	50	$\mathbf{1 0 0}$	50	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	500

1. Let $B(T)$ be the zero coupon bond price with expiry T.
(a) [50] What should the price of the following contract be:

At $t_{1}>0$ I give you $\$ 5$ and at $t_{2}>t_{1}$ you give me $\$ 4$.
Your answer should be in terms of $B\left(t_{1}\right)$ and $B\left(t_{2}\right)$.
(b) [50]Prove your answer using an arbitrage argument.
2. [50]Let X_{0}, \ldots, X_{n} be an instruments price, and let B_{0}, \ldots, B_{n} be the bond prices at times $t_{0}=0, t_{1}, \ldots, t_{n}$ (prices are the bid prices). Assume that the bid-ask spread in instrument is x and in bond is b, both constants. Assume that you have $\$ 1$ in bond at time 0 . Give a linear time algorithm to compute the maximum possible wealth after time step n.
3. [100]Consider a stock with the dynamics $d S=S \sqrt{d t} \epsilon$. Consider a binomial model with time step $\Delta t=\frac{1}{4}$ for two periods $0, \Delta t, 2 \Delta t$. Assume that $\lambda_{ \pm}=1 \pm \delta$ and that $e^{r \Delta t}=\frac{5}{4}$. Assume that the initial stock price $S(0)=1$. Compute the price of the Asian call option with the strike as the arithmetic average over the three times $0, \Delta t, 2 \Delta t$.
4. [50]Carefully define Type I and Type II arbitrage.

Carefully state the positive supporting price theorem and discuss how it relates to MonteCarlo pricing methods?
5. [100]Consider a two period problem. Define the rate of return r by $r=\log \frac{W(T)}{W(0)}$, where W represents wealth. Two stocks S_{1}, S_{2} have rates of return r_{1}, r_{2} respectively. Consider a portfolio Π in which we spend a fraction f_{1} of the initial wealth on S_{1} and f_{2} on S_{2} $\left(f_{1}+f_{2}=1\right)$. Give an expression for the rate of return r_{Π} of this portfolio and show that

$$
\max \left\{r_{1}, r_{2}\right\} \geq r_{\Pi} \geq f_{1} r_{1}+f_{2} r_{2}
$$

When does the left inequality become equality; when does the right?
6. [100]From the previous problem, suppose that the rates of return r_{1}, r_{2} have a Normal distribution with means $\mu_{1}=0.05, \mu_{2}=0.1$ and variances $\sigma_{1}^{2}=\sigma_{2}^{2}=1$. Let the correlation between the rate of returns be $\rho=0.5$. For the portfolio in which $f_{1}=f_{2}=0.5$, Give an expression for the $V a R$ with confidence threshold $\alpha=0.95$ and initial wealth $W(0)=100$.
[Your final answer can be in terms of the CDF of the standard Normal, $\phi()$, or its inverse; if you need to, you may approximate the distriution of a sum of log-Normal random variables by a Normal distribution.]

SCRATCHWORK:

