ASSIGNMENT 1

Homeworks are due at the begining of class on the due date. The point value for the 6000 level is indicated in small font.

1 (90 (50) points) Bonds and Arbitrage

(a) $\left[30\right.$ (20)] A coupon paying bond gives coupon payments of $X_{1}, X_{2}, \ldots, X_{n}$ at times $t_{1}, t_{2}, \ldots, t_{n}$ and a final principal payment of F at time T. Use an arbitrage argument to show that the price of this bond today should be

$$
P=\sum_{i=1}^{n} X_{i} B\left(0, t_{i}\right)+F \cdot B(0, T)
$$

where $B(0, t)$ is the usual zero coupon bond.
Rewrite this formula in terms of the interest rate, r, which you can assume is a constant.
(b) $[40$ (20)] On the website for this problem set, you can download zero coupon bond data in the file zero_coupon.dat. This data was obtained from www.bondtrac.com on 09/02/05.
This file contains five columns, the first three are the month, day and year of expiry of the bond. The fourth is the time to expiry in years, T, and the fifth is the price of the bond, $B(0, T)$. The value of the payment (face value) at time T is $\$ 100$, not $\$ 1$ as discussed in class. Note that some dates are repeated because typically data is collected from multiple sources. You need to deal with this issue.
(i) Give a plot of $B(0, T)$ versus T and explain the general observed shape.
(ii) Using the prices and times to expiry, obtain the implied interest rate to that time. Plot the implied interest rate as a function of T.
Is this curve a constant?
If not, suggest explanations for why not.
(c) $[20$ (10) $]$ Using the zero coupon bond data, price the following contract.

I will pay you $\$ 1$ on $02 / 15 / 2006$ in return for $\$ 2$ on $08 / 15 / 2009$

2 (10 (50) points) Bond Portfolio Immunization

Exercise 2.10 in the notes for instruments. (Exercises 2.9, 2.8, 2.9 may be useful.)

