ASSIGNMENT 5

Homeworks are due at the begining of class on the due date. The point value for the 6000 level is indicated in small font.

Consider the following options on a stock S (in all cases S_{0} is the initial stock price):

1. $C\left(S_{0}, K, T\right)$: the European Call option with strike K and exercise time T.
2. $B\left(S_{0}, K, B, T\right)$: the Barrier option with payoff K, barrier B and horizon T. If and when the price hits the barrier B the holder may buy at B and sell at K.
3. $A\left(S_{0}, T\right)$: the average strike Asian call option with expiry T - a European call option with strike at the average value of the stock price over $[0, T]$.
4. $M\left(S_{0}, T\right)$: the minimum strike call option - a European call option with strike at the minimum price over $[0, T]$.

1 (50 (50) points) Simulating Stock Paths

Assume the initial stock price is S_{0} and it follows real and risk neutral dynamics given by

$$
\Delta S=\mu S \Delta t+\sigma S \Delta W \quad \Delta \tilde{S}=r \tilde{S} \Delta t+\sigma \tilde{S} \Delta \tilde{W}
$$

Write a program that takes as input $\mu, r, \sigma, S_{0}, T, \Delta t$ and simulates the stock price from time 0 to T in time steps of Δt for the risk neutral world, using each of the following modes:
(a) Binomial mode I: compute $\lambda_{ \pm}$from μ, σ assuming that $p=\frac{1}{2}$, and then computing \tilde{p}.
(b) Binomial mode II: compute $\lambda_{ \pm}$from μ, σ assuming that $p=\frac{2}{3}$, and then computing \tilde{p}.
(c) Continuous mode: using the continuous risk neutral dynamics r, σ generate at time step Δt as if the discrete model were taken to the limit $d t \rightarrow 0$.

For each of the three methods, give plots of representative price paths for $S_{0}=1, \mu=$ $0.07, r=0.03, \sigma=0.2, T=2$ using $\Delta t=0.1,0.01,0.0001$.

2 (50 (50) points) Pricing Options Using Monte Carlo

Use Monte Carlo simulation to price the 4 options. Assume that $S_{0}=1, \mu=0.07, r=$ $0.03, \sigma=0.2, T=2$. For each case, use each of the three modes above, and compute the price using each of the three time discretizations, $\Delta t=0.1,0.01,0.0001$.

In all cases, make some intelligent choice for the number of Monte Carlo samples that you need to take to get an accurate price. [Hint: first take a few samples to get an estimate of the variance of the Monte Carlo sample values.]
(a) Compute $C(1,1,2)$ as efficiently as you can and compare with the analytic formula.
(b) Compute $B(1,1,0.95,2)$
(c) Compute $A(1,2)$, for three possible definitions of "average": the harmonic, arithmetic, and geometric means. Explain the relative ordering of these prices.
(d) Compute $M(1,2)$.

3 Bonus - Unspecified Number of Points

The barrier and the minimum option values can be computed analytically. Can you compute them, and compare with your numerical estimates?

