ASSIGNMENT 5

Homeworks are due at the beginnig of class on the due date. The point value for the 6000 level is indicated in small font.

Consider the following options on a stock S (in all cases S_0 is the initial stock price):

- 1. $C(S_0, K, T)$: the European Call option with strike K and exercise time T.
- 2. $B(S_0, K, B, T)$: the Barrier option with payoff K, barrier B and horizon T. If and when the price hits the barrier B the holder may buy at B and sell at K.
- 3. $A(S_0, T)$: the average strike Asian call option with expiry T a European call option with strike at the average value of the stock price over [0, T].
- 4. $M(S_0, T)$: the minimum strike call option a European call option with strike at the minimum price over [0, T].

1 (50 (50) points) Simulating Stock Paths

Assume the initial stock price is S_0 and it follows real and risk neutral dynamics given by

$$\Delta S = \mu S \Delta t + \sigma S \Delta W \qquad \qquad \Delta \tilde{S} = r \tilde{S} \Delta t + \sigma \tilde{S} \Delta \tilde{W}.$$

Write a program that takes as input μ , r, σ , S_0 , T, Δt and simulates the stock price from time 0 to T in time steps of Δt for the risk neutral world, using each of the following modes:

- (a) Binomial mode I: compute λ_{\pm} from μ, σ assuming that $p = \frac{1}{2}$, and then computing \tilde{p} .
- (b) Binomial mode II: compute λ_{\pm} from μ, σ assuming that $p = \frac{2}{3}$, and then computing \tilde{p} .
- (c) Continuous mode: using the continuous risk neutral dynamics r, σ generate at time step Δt as if the discrete model were taken to the limit $dt \to 0$.

For each of the three methods, give plots of representative price paths for $S_0 = 1$, $\mu = 0.07$, r = 0.03, $\sigma = 0.2$, T = 2 using $\Delta t = 0.1, 0.01, 0.0001$.

2 (50 (50) points) Pricing Options Using Monte Carlo

Use Monte Carlo simulation to price the 4 options. Assume that $S_0 = 1$, $\mu = 0.07$, r = 0.03, $\sigma = 0.2$, T = 2. For each case, use each of the three modes above, and compute the price using each of the three time discretizations, $\Delta t = 0.1, 0.01, 0.0001$.

In all cases, make some intelligent choice for the number of Monte Carlo samples that you need to take to get an accurate price. [Hint: first take a few samples to get an estimate of the variance of the Monte Carlo sample values.]

- (a) Compute C(1, 1, 2) as efficiently as you can and compare with the analytic formula.
- (b) Compute B(1, 1, 0.95, 2)
- (c) Compute A(1,2), for three possible definitions of "average": the harmonic, arithmetic, and geometric means. Explain the relative ordering of these prices.
- (d) Compute M(1,2).

3 Bonus - Unspecified Number of Points

The barrier and the minimum option values can be computed analytically. Can you compute them, and compare with your numerical estimates?