
Computing and Quantum Computing

Malik Magdon-Ismail

June 17, 2025

1

Contents

1 Outline and Introduction to Classical Computing 6
1.1 Outline . 6
1.2 What is classical computing? . 6
1.3 Unsolvable Computing Problems . 8
1.4 What Changes When We Move to Quantum Computing 9

2 Turing Machines and Unsolvable Problems 10
2.1 Turing Machines . 10
2.2 Program Testing is Unsolvable . 11
2.3 The Halting Problem is Unsolvable . 12

3 Efficiency: The Class P 14

4 Solvable versus Verifiable 16
4.1 Polynomialy Verifiable and NP . 17
4.2 Nondeterministic Polynomial (NP) and Polynomialy Verifiable 18

5 A Hardest Problem in NP: circuit-sat 20
5.1 Boolean Circuits . 20
5.2 Cook-Levin Theorem . 20

5.2.1 Fast TMs and Small Circuits . 20
5.2.2 Proof of the Cook-Levin Theorem . 21

5.3 Example: Solving clique using circuit-sat . 22

6 NP-Completeness: Other NP-Complete Problems. 24
6.1 Reducing circuit-sat to 3-sat . 24
6.2 Other NP-complete Problems: independent-set, clique, vertex-cover 26

7 Linear Algebra and Complex Vector Spaces 27
7.1 Complex Numbers . 27
7.2 Complex Vector Spaces . 28
7.3 Basis . 29
7.4 Spectral Theorem . 30
7.5 Hadamard Matrix . 30

8 Quantum Mechanics 31
8.1 Postulates of Quantum Mechanics . 31
8.2 Spin . 34

9 Dynamics 36
9.1 Classical Dynamics . 36
9.2 Quantum Dynamics . 37
9.3 Ensembles of Independent Particles . 39

2

10 Classical Computing Using Linear Algebra 42
10.1 The Bit . 42
10.2 Classical Bits . 42
10.3 Quantum Bits . 43
10.4 Classical Computing Gates . 44
10.5 Circuits . 45

11 Reversible Gates and Quantum Gates 47
11.1 Reversible Gates . 47

11.1.1 Controlled-not . 47
11.1.2 Toffoli Gate . 48

11.2 Quantum Gates . 49
11.2.1 Building Larger Gates . 50
11.2.2 Practice . 51

11.3 No Cloning Theorem . 52

12 Unitary Operator for Classical Functions 53
12.1 The Deutsch-Jozsa Problem . 53
12.2 Converting Boolean Functions to Unitary Operators 54

13 Testing Balance of 1-bit Functions 57
13.1 Applying Uf to Superpositions . 57
13.2 Untangling the Output . 60
13.3 Quantum Circuit for 1-bit Deutsch-Jozsa . 61

14 Quantum Circuits 62
14.1 Finding the Operator for a Circuit . 62
14.2 Building a Circuit for an Operator . 65

15 Testing Balance of n-bit Functions 66
15.1 Deutsch-Jozsa Algorithm . 66

16 Philosophy of Quantum Algorithms 70
16.1 Directly Building a Circuit for Uf . 71
16.2 Circuit Uniqueness . 72

17 Learning the Weights in a Linear Function 74
17.1 Circuit for Bernstein-Vazirani . 76
17.2 Algebraic Proof . 78

18 The Search Problem 79
18.1 Seaching for a Unique Element . 79
18.2 Quantum Circuit for f . 79
18.3 Quantum Circuit for 3-sat . 81

18.3.1 An Instance of 3-sat . 82
18.3.2 General Case . 84

3

18.4 Quantum Search – Warm Up . 84

19 Grover’s Iteration 87
19.1 Operator for Reflecting About the Average . 90

20 Analysis of Grover’s Search Algorithm 94
20.1 Grover’s Coupled Recurrence . 95
20.2 Solving Grover’s Recurrence . 96
20.3 Unknown Number of Solutions . 98

21 Quantum Counting and Phase Estimation 99
21.1 Eigenvalues of the Grover Operator: Phase Estimation 102

22 Quantum Fourier Transform 104
22.1 Classical DFT Algorithm . 105

22.1.1 Fast Fourier Transform (FFT) . 107
22.2 Quantum Circuit for DFT . 108

23 Quantum Phase Estimation 112
23.1 Phase Estimation for the Grover Operator . 114
23.2 Binary Expansion of ϕ has more than t Bits. 116

24 Quantum Error Correction 120
24.1 Quantum Redundancy . 121
24.2 Modeling the Error . 122
24.3 Detecting Bit-Flip Error . 123
24.4 Correcting Bit-Flip Error . 125
24.5 Generalizing to Other Errors . 126

25 Quantum Factoring 127
25.1 Factoring and Period Finding . 127
25.2 Algorithm for Factoring . 131
25.3 Proof of Lemma 25.3 . 131

26 Quantum Period Finding 132
26.1 Quantum Black Box for f , Uf . 132
26.2 Period Finding Algorithm . 133
26.3 Applying the Quantum Fourier Transform . 134
26.4 Application to Factoring . 137

26.4.1 Quantum Black Box Circuit for f(x) = ax (mod N) 137
26.5 General Case: 2n = αr + ρ, where α, ρ ∈ N and 0 < ρ < r 137

26.5.1 Probability ℓ Yields a Divisor of r . 139
26.5.2 Rational Approximation Via Continued Fractions 141
26.5.3 Computing The Rational Approximation . 143
26.5.4 Optimality of the Continued Fraction Convergents 144
26.5.5 Full Algorithm . 148

4

26.6 Sensitivity to Phase Errors in the QFT . 148
26.7 Period Finding Via Phase Estimation . 148

27 Secure Communication – Cryptography 149
27.1 Classical Protocols . 150

27.1.1 One Time Pad . 151
27.1.2 RSA . 152

27.2 Quantum Protocols . 153
27.3 Bell States . 154

28 Quantum Key Exchange 155
28.1 Sending a Random Pure State in a Random Basis . 155
28.2 Attacking the Quantum Key Exchange Protocol . 157

28.2.1 Measure and Send . 157
28.3 Entangle and Send . 157
28.4 Bit Commitment . 157

29 Quantum Teleportation 158

30 Primer On Machine Learning 162

31 Kernel Methods 163
31.1 PCA . 163
31.2 Support Vector Machine (SVM) . 163
31.3 What can Quantum Do For Machine Learning . 163

32 Encoding Data into Quantum Circuits 164

33 Quantum Kernels 165

34 Quantum Machine Learning 166
34.1 Quantum PCA . 166
34.2 Quantum SVM . 166

35 Quantum Variational Encoder 167

36 Optimization 168
36.1 The Ising Hamiltonian . 168
36.2 Binary Programming and The Ising Hamiltonion . 168
36.3 Application to Max-Cut . 168

37 Quantum Computing For Optimization 169
37.1 Optimization as Finding the Ground State of the Hamiltonian 169
37.2 Quantum Computing for Estimating the Ground State 169
37.3 Application to the Ising Hamiltonian: Quantum Approximate Optimization 169

38 A Truly Quantum Support Vector Machine 170

5

1 Outline and Introduction to Classical Computing

The first 6 chapters are covered in detail in Magdon-Ismail (2020, Chapters 22-29).

1.1 Outline

1. Theory of classical computing. Why study it? Quantum computing is not a sprint, it’s a
marathon. At least you will have something golden to put into the bank even if QC does not
materialize in your lifetime. Also, to study QC and its potential benefits, we need a baseline.

2. Why study QC if we don’t have Q-computers? Historicaly, algorithms precede the machines
that implement them. The Babylonians knew how to multiply, but we only had the calculator
4,000 years later. Turing developed the theory of classical computing and the Universal Turing
Machine (UTM) in the 1930s, but we only had programmable computers 30 years laters.

Let us study QC-algorithms now and hope we do not have to wait 4,000 years for the first
viable QC. There are many challenges, both algorithmically in terms of quantum algorithm
design, and practically in terms of stable physical components to implement these algorithms.

3. What is QC?

4. QC Formalism.

5. QC algorithms and
✿

simulating
building our first QC.

6. What does it take to get a viable QC. The fundamental premise of classical computing is
that you can write a bit to a register and it is “permanent.” An algorithm can remember and
refer to things as needed. Well, the classical computing bit is not quite permanent. It can
get flipped, for example by ambient gamma and other EM rays with probability about 10−12

per hour. We have error correcting codes (ECC) to fight this. For example, one can store the
bit 0 as 000. Now two bits need to get flipped before it is not recognizable. Stability at the
expense of more memory. Hence, we pay big bucks for ECC memory.

A QC must be able to store the equivalent of a bit “permanently”. That is already a challenge.
On top of that, we need good quantum-ECC, another challenge.

7. If we do get Q-computers, what will become a sprint is to develop good quantum programming
languages and quantum algorithms. A programming language is just an interface between your
mind, where you build algorithms, and the hardware. A compiler is the interpreter.

What does it take to have a quantum-programming language. For starters, we need a good for-
malism within which to design quantum algorithms, which must also allow mixing of classical
and quantum algorithms.

1.2 What is classical computing?

• What is computing?

• Computing uses algorithms to solve computing problems.

• What is an algorithm? What is a computing problem?

6

A computing problem is a language. Consider deciding if a number is odd. Define the language

L = {0, 000, 00000, 0000000} = {0•2k−1 | k ∈ N}. (1)

The alphabet we will use is binary. Any string can be converted to binary. Testing if a string w is
in L amounts to “computing oddness.” A DFA can solve this problem.

q0 q1

e

0

1
1

0

0,1

states

→q0 no

q1 yes

e no

transitions
1 : q0 0 q1
2 : q0 1 e

3 : q1 0 q0
4 : q1 1 e

5 : e 0 e

6 : e 1 e

(2)

The notion of an algorithm is embedded implicitly in the DFA which is used to solve the problem.
Every DFA is an “algorithm.” The DFA is easy to build using standard physical components. For
example a vending machine.

Formulating a computing problem as a language has withstood the test of time. Here are some
example problems. Prime factorization, defined by the language

L = {(N,K) | N has a prime factor K}. (3)

Finding the shortest path between two vertices in a graph (formulate this as a language). Deter-
mining equality, defined by the language.

L = {0•n1•n | n ≥ 0} (4)

There is no DFA to solve the equality problem.

Proof. By contradiction. Assume some DFA with k states can solve this problem. Show there
are two strings which end in the same state, but one is in L and one is not. This gives the desired
contradiction, because that state cannot be both accepting and rejecting.

This is a strong theorem. It is not about DFA-programming skills. It is not just you and I that
cannot find the DFA for equality. No one can. Such a DFA provably does not exist. So what now?
Since we would like to solve equality, we need a more powerful machine.

The fundamental problem with the DFA is that it can’t remember how many 0s have passed. It
only has a finite number of internal states which can function as a primitive but bounded counter.
We need an external scratch paper. So we add an unbounded RAM (tape) and allow the DFA to
move around this RAM, read from it and write to it. This computer is a Turing Machine.

* 0 0 1 # 0 0 1␣␣␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

q0q5
q4 q3

q2

q1
L R

(5)

7

This machine is easy to implement modulo the infinite tape. But in practice we can implement it
and run it on any specific input string. If the machine comes to the end of the tape and needs more
tape, we just fetch it more tape (memory on demand). The Turing Machine is the definition of an
algorithm. This is the Church Turing thesis.

This notion of algorithms which need to dynamically create more memory because they do not
know how much memory they will need for their specific input instance are common in computing.
For example dynamic hashing for efficient search. We want to hash with no collisions, so the table
size depends on the number of items hashed. If ahead of time you don’t know how many items will
be hashed, you increase the table size (add memory) on an as needed basis. This type of algorithm
is very important to Google.

When you have a theory of computing based on some computing machine, it is very important
to make sure you can build it. Otherwise what use is the computer if it can’t be built?

Let’s say you have designed a fancy TM, but the engineer who will build it lives on the other
side of the country. What do you do? Well you write down the description of your TM and email
it to them. What does this description look like?

states, transition/move/read/write instructions, halting states, etc.. (6)

The engineer gets this description, reads it and builds the machine. Your description is just some
big string of characters (for example in ASCII) which we can convert to binary. Let M be your
machine and 〈M〉 this binary string which describes M .

M → (〈M〉, w) email−→ engineer
build−→ M → run on input w → YES/NO. (7)

The boxed process performed by the engineer is quite complex. Do you think we could build a
Turing machine to implement it instead of using an engineer? It would have to work no matter
what its input (〈M〉, w) was. This was one of the stunning results from Turing’s seminal work. It
is possible to build a single Turing machine which does the engineer’s job. Well not quite. This
TM does not have the ability to build and run M . It simulates the building and running of M on
its tape. This grand TM is called a Universal Turing Machine (UTM). It is what we call a stored
program computer today. The description 〈M〉 is the program fed into the computer and the string
w is the input for the program M . The input to the UTM is (〈M〉, w).

1.3 Unsolvable Computing Problems

The requirement that we are able to build the computing machine that implements an algorithm
which solves a computing problem is necessary. Otherwise computing is useless. This requirement
is also very limiting. Let us see a remarkable consequence.

If it is buildable, you have to be able to describe it to your engineer. In which case you
have to be able to write down a description, which is essentially some massive binary string. So
every computing machine has a binary description. This means every computing problem that can
be solved by a computing machine has an associated binary description. Further, two different
computing problems cannot be solved by the same computing machine.

solvable computing problem ↔ computing machine M for problem ↔ description 〈M〉 of M. (8)

8

Mathematically, there is an injection from solvable problems to finite binary strings (the description
of the TM that solves the problem).

|{solvable computing problems}| ≤ |{all finite binary strings}| = countable. (9)

Here is a lexicographic ordering of all finite binary strings,

B = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, . . .} (10)

Consider any infinite binary string, for example,

10011101 · · · (11)

Define a computing problem L corresponding to this infinite binary string as follows. Align each
bit with the corresponding position in B with 1 meaning the string in B is in L and 0 meaning the
string in B is not in L. Our infinite binary string defines the language

L = {ε, 00, 01, 10, 000, . . .} (12)

Every infinite binary string defines a different problem. Hence,

|{all computing problems}| = |{all infinite binary strings}| = uncountable. (13)

The conclusion is that there are uncountably many computing problems that do not have a com-
puting machine that solves them. The only requirement here is that a computing machine should
be buildable, that is describable.

Theorem 1.1. There are countably many computing machines and there are uncountably many
computing problems that cannot be solved by a computing machine.

There are many unsolvable computing problems. To catch and put some of them on display, we
need to delve deeper into Turing Machines. Before we do, let’s see how QC will change things.

1.4 What Changes When We Move to Quantum Computing

The problems we want to solve don’t change. So a computing problem is still a language, and there
are uncountably many of those.

We still want to build quantum computers to solve problems, so a quantum computer must
be describable. But then Theorem 1.1 applies and there are uncountably unsolvable computing
problems, even on a quantum computer. Indeed, a quantum computer can be simulated (very
slowly) using a classical computer. So any problem that cannot be solved by a classical computer
also cannot be solved by a quantum computer.

So, what do we gain? What changes? Efficiency. We hope that problems that can’t be solved
efficiently on classical computers can be solved efficiently on quantum computers.

9

2 Turing Machines and Unsolvable Problems

Let us summarize. Any theory of computing machines must involve computers that are buildable.
It does not matter whether we are talking about DFA, classical computers, biological computers,
molecular computers or quantum computers. Hence a computer M must be describable, that is
there is a binary encoding (description) 〈M〉 that can be used by an engineer to build M . This
means the computing machines are countable and can be listed,

〈M1〉, 〈M2〉, 〈M3〉, 〈M4〉, 〈M5〉, 〈M6〉, . . . (14)

A computing problem is specified by an infinite binary string. There are uncountably many com-
puting problems. This means there are uncoutably many problems which are not solvable by our
conputing machines. For this conclusion, we only require that a computing machine be describable.

2.1 Turing Machines

Consider the following TM run on input 101. Each edge (transition instruction) is labeled with
three entries, what the TM reads on the tape, what it writes and how it moves. It is instructive to
run the TM on its tape.

q0 q1

AE

{0}{}{R}

{#,␣}{}{} {0,#,␣}{}{}

{∗,1}{}{R}

{1}{}{L}

This TM infinite loops on input 101 by jiggling left and right. A TM’s ability to move is the source
of its power to solve complex problems. Ironically it is this same ability to move at will that leads
to this possibility of infinite loops. A TM M run on input w can do one of three things.

M(w) =







HALT with YES;

HALT with NO;

infinite loop.

(15)

If M always halts, M is a decider. If M may infinite loop, it is a recognizer. The possibility of an
infinite loop is unacceptable in practice. Hence, a solvable problem (language) is one which can be
solved by a decider. A problem L is recognizable if there exists M for which

w ∈ L →M(w) = HALT with YES
w 6∈ L →M(w) = HALT with NO or infinite loop

(16)

That is, there is a recognizer which “solves” the problem. However the possiblity of an infinite loop
is not a practical solution. A problem L is decidable if there exists M for which

w ∈ L →M(w) = HALT with YES
w 6∈ L →M(w) = HALT with NO

(17)

10

That is, there is a decider which solves the problem. Note, every decider is a recognizer, so

{deciders} ⊂ {recognizers}. (18)

Also, every decidable language is also recognizable. Since both deciders and recognizers are de-
scribable, they are both countable. Hence there are uncountably many undecidable problems and
uncountably many unrecognizable problems.

In practice, we do not build a new TM for every problem we want to solve. We just build the
universal TM Utm which can simulate the operation of any M on any input w,

Utm(〈M〉#w) =







HALT with YES, if M(w) = HALT with YES;

HALT with NO, if M(w) = HALT with NO;

infinite loop, if M(w) = infinite loop.

(19)

2.2 Program Testing is Unsolvable

It is not possible to write a program which can test if another program works correctly on a particular
input. Define the set of programs with their accepting inputs Ltm,

Ltm = {〈M〉#w |M is a TM and M(w) = HALT and YES}. (20)

Ltm consists of programs and their inputs which terminate succesfully. Is there a decider for Ltm,
that is, can we solve the problem Ltm. That means, given an input program 〈M〉 and its input w,
you must determine if M halts on w with YES or not. Isn’t this problem trivially solvable:

Build M and run it on w, outputing the result. (21)

Actually, we don’t build and run M , we just simulate running M on w using Utm. Not so fast.
The the catch is that M may infinite loop. In this case our solution of just running M will never
end and we will never output NO. What next? Since we can just build and run M , we need to do
something more sophisticated, that looks more deeply at the inner workings of M .

Can we build another program Atm that takes as input 〈M〉#w and halts with YES if M halts
with YES on w, and halts with NO otherwise,

Atm(〈M〉#w) =
{

halt with YES, if M(w) = halt with YES;

halt with NO, otherwise.
(22)

Atm is a decider for Ltm. Unfortunately, we can’t build Atm because Atm doesn’t exist. There is
no program which can test another program’s correctness. It just does not exist. Let’s say it again,
Atm does not exist !

Proof. (Contradiction) Assume the program Atm exists. We can use Atm anyway we want. In
particular, we can use it as a subroutine in any other program. Define the program D as follows.
D takes as input just the encoding 〈M〉 of a TM.

D(〈M〉) :
1: Run Atm(〈M〉#〈M〉) → YES/NO.
2: If YES, output NO. If NO, output YES.

11

The input to Atm is two strings, it can be any two strings. Hence, the first step is a valid input
to Atm, and since Atm is a decider, D is also a decider. This is because the first step must halt,
and the second step is trivial. Recall that Turing Machine encodings are finite binary strings, hence
they can be listed.

List of Turing Machines: 〈M1〉, 〈M2〉, 〈M3〉, 〈M4〉, . . . , 〈D〉, . . .

Notice that our diabolical diagonal decider D is on this list. When Atm runs on 〈Mi〉#〈Mj〉, the
result is a table like:

Atm(〈Mi〉#〈Mj〉) 〈M1〉 〈M2〉 〈M3〉 · · · 〈D〉 · · ·
〈M1〉 accept accept reject · · · accept · · ·
〈M2〉 reject reject reject · · · accept · · ·
〈M3〉 accept accept reject · · · accept · · ·

...
...

...
...

... · · · · · ·
〈D〉 reject accept accept · · · accept

reject
? · · ·

...
...

...
... · · · ...

. . .

For example, Atm rejects 〈M2〉#〈M3〉. This means M2 rejects or loops forever on the input 〈M3〉.
The diagonal entries are what happens when Mi runs on its own description 〈Mi〉. The row for 〈D〉
is the opposite of the underlined diagonal entries in the table, because D rejects 〈Mi〉 if and only if
Mi accepts 〈Mi〉. This is reminiscent of Cantor diagonalization to show reals can’t be listed. This
diagonalization shows that D can’t exist. The problem is the collision at the diagonal entry in the
row for 〈D〉. This entry is the opposite of itself!

Formally, what does D say when its input is 〈D〉 (it must halt and say something). If it says
YES, then Atm(〈D〉#〈D〉) = YES by definition of Atm, which means D, by definition, must say the
opposite, which is NO, a contradiction. If it says NO, then Atm(〈D〉#〈D〉) = NO by definition of
Atm, which means D, by definition, must say the opposite, which is YES, a contradiction. Either
possibility leads to a contradiction. Hence Atm cannot exist.

2.3 The Halting Problem is Unsolvable

Now the floodgate is open. We can use the non-existence of Atm to prove non-existence of other
programs using the general methodology of reduction. Consider a program 〈M〉 to decide a lan-
guage L. If M can be used as a subroutine to build Atm, then since Atm does not exist, M cannot
exist. This would prove that L is undecidable. Let us see how this method of reduction works in a
concrete case. Consider the halting problem,

Lhalt = {〈M〉#w |M is a TM and M halts on w}. (23)

Note, the difference between Ltm and Lhalt. To belong in Lhalt, M just needs to halt on w, it
does not need to say yes. A program that tests if another program halts is super powerful. For
example, it could be used to resolve many conjectures in mathematics like Goldbach’s conjecture
or the twin-primes conjecture. Just write a program to verify if some property holds for all integers

12

by testing the property one by one. If the property fails for any integer the program should halt
and report the counterexample. Now testing if this program halts or not will resolve the conjecture
that the property holds for all integers.

If we have a program Htm that solves Lhalt, then we can build Atm as follows.

Atm(〈M〉#w) :
1: Run Htm(〈M〉#w). If NO, halt with NO. If YES, run step 2.
2: Build and run M on w, outputing the result.

The Atm we constructed always halts and always outputs the correct answer. The build and run
method works here because we only use it when we know that M halts. The conclusion is that Htm

cannot exist and so Lhalt is undecidable. Many problems are unsolvable. Uncountably many. The
domino puzzle, Post’s Correspondence Problem (PCP), starts with a list of dominos. An instance
of the domino puzzle (PCP) is given by these three dominos.

d1 d2 d3
0

100

01

00

110

11

(24)

A sequence of dominoes produces a combined domino in which the top string is the concatenation
of all the top strings in order, and similarly for the bottom string. For example,

d3d1d3 = 110

11

0

100

110

11
, which gives the combined domino 1100110

1110011
.

Is there a sequence of these dominos (repetition allowed) with the concatenation of the to strings
matching the concatenation of the bottom strings. In this case, you can verify that d3d2d3d1 solves
the puzzle. The domino puzzle (PCP), treated as a computing problem where the input is an
arbitrary set of dominos is unsolvable.

Halting and programing testing are very important in computer science. Anytime someone
comes up with a program to solve a problem, it is important to show that the program always halts
and always gives the correct answer. We have just showed that Atm and Htm do not exist. So what
is going on in industry. Are programmers routinely putting out code that is incorrect and untested
and/or does not always terminate?

The undecidability of Ltm and Lhalt are in the general sense. There is no general program
that can test any other program for halting or correctness. However, through ingenuity and proof
methods, it may be possible to test a specific program for correctness.

Also note, a general autograder for CS1-assignments is not possible. Yet, CS1 assignments are
autograded. In what sense are CS1 assignments autogradeable? General antivirus programs are not
possible. So what exactly are you paying for in antivirus software?

13

3 Efficiency: The Class P

To summarize the Church-Turing thesis, an algorithm is a Turing-Machine. A problem is solvable
by an algorithm if there is a TM-decider for the corresponding language.

We talk about efficiency in the context of a specific problem.

L = {0•n#1•n, n ≥ 0}. (25)

The simplest TM for this problem zig-zags checking off each 0 with its corresponding 1,

* 0 0 0 0 0 0 0 0 # 1 1 1 1 1 1 1 1␣ ␣

✓ ✓

M = Turing Machine that solves {0•k#1•k}
input: Binary string w.
1: Check that the input has the correct format and return to ∗.
2: Match each 0 (left of #) to a 1 (right of #):

Move right and mark the first unmarked 0 (if none, goto step 3).
Move right and mark the first unmarked 1 (if none, reject).
Move left until you come to a marked 0.

3: If there are any unmarked 1’s, reject. Otherwise accept.

What is the runtime of this TM. This question is ambiguous. On what input? In computer science
we identify the “size” of the input by a parameter n, and we want the runtime for the worst input
of size n. Further, we are only interested in n → ∞, that is asymptotic analysis. This algorithm
makes makes n scans, and each scan takes about n steps, so the TM has Θ(n2) runtime. This is
the time-complexity of the algorithm/TM.

What if we are interested in the time-complexity of the problem itself, that is the time-complexity
of L? This quantifies how hard a problem is L, given it is solvable. For our language L above, there
is another TM based on halving the number of unmarked bits in each scan. The number of scans
required is O(logn), and each scan is n operations, so this is a TM with O(n logn) runtime. If we
are talking about the time-complexity of a problem, we must consider the time-complexity of the
best TM for the problem. In this case, you cannot beat n logn.

Let us think outside the box and envision a TM with two tapes and two independent read-write
heads. The input is on one tape. In one scan you can copy the 0s to the second tape and then
mark-off the 1s on the first tape with the 0s on the second tape. So now we have a O(n) runtime,
but with a different TM-architecture. This new architecture is a parallel architecture. It requires us
to be able to operate two TM’s independently in parallel. So, by moving to a new architecture, we
can improve the runtime even more, by a logarithmic factor. So, it looks like the time-complexity
of a problem depends on the TM architecture.

Things are now getting complicated. Should we use the best possible architecture? Should we
fix the architecture to 1-tape. But in practice, we do use parallelism. The solution we will take is
to define a time-complexity by considering broad classes. This has withstood both the test of time
and the test of practice.

A TM is fast if when you double the input size, the runtime increases by at most some constant
factor λ. Let f(n) be an upper bound on the worst case runtime on an input of size n. We say f(n)

14

is fast if
f(2n) ≤ λf(n). (26)

Which of these are fast:

log n
√
n n n2 log n (log n)logn nlogn 2

√
n 2n? (27)

Theorem 3.1. f(n) is fast if and only if f(n) is polynomial.

We care about fast algorithms, that is polynomial algorithms. In the end, practice does care about
the difference between O(n2) versus O(n logn) versus O(n). But there is a sharp theoretical divide
between polynomial runtimes and non-polynomial, i.e. exponential. In practice polynomial TMs
are tolerable, exponential ones are intolerable. In theory also, polynomial is a property of a problem,
not a particular TM-architecture. This is the extended Church-Turing thesis: A problem which is
polynomial on a single tape deterministic TM is polynomial on any reasonable TM-architecture.

Let us justify polynomial as a well-defined architecture independent notion of time-complexity
that is to be sought by algorithms/TMs. To do this, we prove the simulation theorem. We show
how to simulate our two-tape TM for L using one tape. The two tapes are interleaved to form one
tape. The heads of the two tapes are marked on the single tape. When the two-tape TM performs
some operation using a particular head, the one-tape simulator first finds the mark for the head,
and only then can it perform the operation on the relevant tape. If the two tape TM runs in time T,
the search for a head’s tape takes time O(T). This means the runtime for the one tape simulator is
O(T 2), because we need to find one of the heads at most T times. We therefore have the simulation
theorem,

Theorem 3.2. A K-tape TM with runtime t(n) can be simulated by a 1-tape TM with runtime
O(t(n)2).

So the speedup in going from sequential to parallel is at most square-root. This means if
you are polynomial in a parallel architecture, you are at most polynomial-squared on a sequential
architecture. If a problem is polynomial on one architecture, it is polynomial on any architecture,
. . . , except we are not sure about non-deterministic TM-architectures and Quantum-architectures.

Parallel architectures cannot give you exponential speed up, but could these other two archi-
tectures do that? We don’t know. Nevertheless, we will see some polynomial speedups for some
surprising problems by going to quantum architectures.

So in our theoretical classification, a problem is either polynomial, in the class P, or exponential.
We know many problems that provably do not have polynomial solutions. Testing if a program stops
in fewer than 2n steps on an input of size n is one such problem. Other problems are solving chess,
and in general games of strategy. Many useful problems are polynomial.

There are some super-useful problems in practice: clique, 3-SAT, TSP, We don’t know if
these problems are polynomial or exponential. They are on the boundary. These problems are the
keys to defining the beautiful theory of NP-completeness. We discuss that next.

15

4 Solvable versus Verifiable

In class, we talked about the frequent basket problem that your manager might ask you to solve
(see also Magdon-Ismail (2020)). Here is some customer-data (1 indicates a purchase).

beer chips milk diapers cheese

Alice (A) 1 1 0 1 0
Bob (B) 1 1 0 1 1

Charles (C) 0 0 1 1 0
David (D) 1 1 1 1 1

Three people {A, B, D} purchased the basket {beer, chips, diapers}. Your boss asks for a basket
with 10 or more items purchased by at least 5, 000 customers. For a big input, finding the solution
won’t be easy. Instead of telling your manager you couldn’t solve it, you can tell your manager that
no one can solve it efficiently today. The theory of NP-completeness allows you to make this claim.

P
fast

NP

slow

unsolvable

Every solvable problem can either be solved by a fast TM or not. If not,
every TM for the problem runs in super-polynomial time, i.e. exponential
time. So every problem is either fast or slow, where the speed of a problem
refers to the speed with which it can be solved. We do not know if the frequent
basket problem is fast or slow. It lies in a hazy boundary between fast and
slow consisting of all the problems which we cannot definitively place into one
or other category.

Here is another example. Consider two sets

S1 = {3, 5, 3, 11, 6, 2} S2 = {3, 6, 2, 11, 6, 2} (28)

and the following questions.

large-sum Is there a small subset (at most size K) whose sum is at least half the total?
partition Is there any subset whose sum is exactly half the total?

(29)
There are many efficient algorithms to solve the first question. In the general case where the input
set has n elements, an n log n solution first sorts the elements and checks the sum of the largest K.
An n logK solution uses a minheap to keep track of the top-K elements and checks their sum. A
student even suggested an O(n) algorithm using the linear-time K-selection algorithm, and then
processing the top K elements larger than that element.

The second problem looks very similar. Instead of asking for a small subset with a large sum,
it asks for any subset with an exact sum. Can you partition the set into two equal halves? Well,
this small change makes the problem very hard, and this second problem is very similar to the
frequent baskets problem. We can’t solve it fast and we don’t know if it can be solved fast. This
problem is also in the hazy region between fast and slow. We are going to build a theory for exactly
those problems, because they occur so often in practice and they are all related. We won’t cover
techniques to solve those problems (take the course in approximation algorithms for that).

Let’s focus on partition. Check that partition(S1) = no and partition(S2) = yes . So
imagine your manager gave you S1 and S2 and asked you to solve partition. You would answer no

and yes respectively. But your manager wasn’t born yesterday. You are asked to convince them.
They want a proof that your answer is correct. They want a proof that is easy for them to check.

16

How would you prove that your no -answer for S1 is correct? There is no smart way other than
a brute-force check that every subset fails.

How would you prove that your yes -answer for S2 is correct? That’s easy, just present the
subset {3, 6, 6} or the string 110010 which identifies that subset with its 1s. Given this subset, it is
easy for your manager to verify the yes answer is correct. This subset 110010 is called the evidence
or certificate. Without this evidence, it is hard for your manager to verify the yes answer without
actually solving the problem. With the evidence, it is trivial to verify the yes answer.

4.1 Polynomialy Verifiable and NP

The class of problems NP stands for nondeterministic polynomial. It is also equal to the class of
problems whose yes answer is polynomialy veriviable. partition is a problem whose yes -answer
is polynomialy verifiable. Let us formally define this.

Consider a problem L. The problem L is polynomialy verifiable if there exists a polynomial
certifier C for L. The certifier C is a TM that verifies if a yes answer is correct. Specifically,
consider any w ∈ L. Then there must exist some evidence e so that C(w#e) = yes . The runtime
of the certifier must be bounded by a polynomial in the length of w.

In our partition example, w = S2. The evidence is e = 110010. And the certifier is a TM whose
input is w and e, summarised in the algorithm:

1: Compute sum(w).
2: Compute the sum of w masked by e, that is

∑

iw[i]× e[i].
3: if 2× masked-sum = sum then
4: return yes

5: else
6: return no

It is clear that this verifier works for a general instance of partition.

Definition 4.1 (Polynomialy verifiable). A language L is polynomialy verifiable if there exists a
TM C such that:

(i) For every w ∈ L, there exists an evidence e with |e| ≤ poly(|w|) such that C(w#e) has runtime
at most a polynomial in |w| and returns yes .

(ii) For every w 6∈ L and every e with |e| ≤ poly(|w|), C(w#e) has runtime at most a polynomial
in |w| and returns no .

Notice the asymmetry between yes inputs and no inputs. Also notice that the evidence is given,
and we do not have to worry about how the evidence was obtained. That is, the runtime/effort
needed to find the correct evidence is not part of the runtime of the certifier. Let us look at another
example, the clique problem.

clique: Given a graph G and k > 1, is there a clique of size at least k?

1

2 3

4

5

(30)

17

A graph can be represented as a binary string using the edge sequence

e1,2e1,3e1,4e1,5e2,3e2,4e2,5e3,4e3,5e4,5. (31)

For our graph, the edge sequence is 1010110101. Note, the number of vertices can be inferred from
the number of edges. The clique problem asks if the graph has a subset of vertices of a particular
size such that every pair of vertices in the subset are neighbors. For example size 3. In this case the
answer is yes . What evidence would allow us to quickly verify this answer. The clique itself, which
could be represented by the binary string 11010, where the 1s in the string identify the vertices in
the clique.

In our case the input is 1010110101#111. The second string, 111 is unary for 3, the size of the
desired clique. The evidence is 11010. The certifier C(1010110101#111#11010) is summarized in
the algorithm:

1: Compute sum(e) and verify that it is at least K, the desired clique size.
2: Identify the clique from e.
3: for each pair of vertices in the clique do
4: check that the edge for that pair in the edge-sequence is 1.

This algorithm clearly generalizes and runs in polynomial time in the input size. One can get a
linear algorithm for the verifier.

Many popular problems are polynomialy verifiable: TSP, Clique, 3-SAT, Knapsack, Independent
Set, Vertex Cover, Dominating Set, It means we can quickly verify a yes instance given the
right evidence. Yet, we don’t have polynomial algorithms for any of these problems. Every problem
in P that is polynomialy solvable is also polynomialy verifiable.

4.2 Nondeterministic Polynomial (NP) and Polynomialy Verifiable

When we study DFA, we encounter nondeterministic finite automata (NFA) as a useful tool to
address concatenation and Kleen star.

q0 q1 s1 s0

0

0

1 1
0,1

0,1

0,1

(32)

When you run the NFA on 100101, the computation branches and we accept if any one of the
branches accepts. Using subset states, we can implement an NFA by a DFA with a possible expo-
nential increase in the number of states. So nondeterminism does not add any additional computing
capability to DFA. It is just a useful tool.

We can extend nondeterminism to Turing Machines.

q1 q3
{0}{1}{R}

deterministic

q1 {q0, q1, q3}
{0}{

✓

0, 1}{R,L}

nondeterministic (33)

A nondeterministic TM, at each step, can try out different possibilities. Again this results in a
branching of the computation, and the TM accepts if any branch accepts. The runtime is the runtime

18

of the longest branch. We imagine running all branches simultaneously, and so a nondeterministic
TM provides some kind of unbounded parallelism. A nondeterministic TM can be implemented
using a deterministic TM, but with an exponential increase in runtime.

The class NP are the problems that can be solved in polynomial time on a nondeterministic TM.
It turns out that a computing problem that is polynomialy verifiable can be solved in polynomial
time on a nondeterministic TM. Here is the intuition in the context of our clique-problem. We give
a nondeterministic TM M which uses our certifier as a subroutine in a nondeterministic way. The
input graph plus K is 1010110101#111.

10110110101#111 →M







try e = 00000 → run C(10110110101#111#00000) → yes or no

try e = 00001 → run C(10110110101#111#00001) → yes or no

try e = 00010 → run C(10110110101#111#00010) → yes or no

try e = 00011 → run C(10110110101#111#00011) → yes or no

try e = 00100 → run C(10110110101#111#00100) → yes or no

...

try e = 11111 → run C(10110110101#111#11111) → yes or no

(34)

The nondeterminism is only in trying out different choices for e which causes the TM to branch
(exponential number of branches). Each branch runs in polynomial time because the verifier C is
polynomial. Hence this is a polynomial TM. If any branch accepts, it means there is a 3-clique.
This is guaranteed by the properties of the certifier - if there is no 3-clique then the certifier says
no for all possible evidence.

It is a little trickier to show that if a problem is in NP then the problem is polynomialy verifiable.
The evidence is the sequence of choices made by the nondeterministic TM on any yes -branch. The
certifier simply runs the nondeterministic TM using only these choices to verify the yes . Since the
nondeterministic TM is polynomial, the certifier is also polynomial.

As you can see, the nondeterministic TM for clique above has unbounded parallelism. To make
this computation naively sequential would require running each branch in sequence and since there
are exponentially many branches, this is an exponential slowdown. Could there be some other way
to make this computation sequential that does not result in an exponential slowdown? That is THE
BURNING QUESTION in computer science. Does P = NP?

We are asking if polynomialy verifiable problems are also polynomialy solvable. The smart
money says no. Intuitively how could you possibly condense exponentially many branches to a
polynomial runtime. Alternatively, polynomial verifiability is easy given the evidence, which is the
solution itself. So just because one can quickly verify a solution, it seems like a big leap to think
that one can quickly find the solution. Nevertheless, we have no proof either way.

Our next task is to unravel some of the beautiful structure surrounding the polynomialy verifiable
problems. In particular to identify a hardest such problem, whatever that means.

19

5 A Hardest Problem in NP: circuit-sat

The last lecture discussed polynomialy solvable (P) versus polynomialy verifiable (NP). There is a
hardest problem in NP, so hard that if you can solve it in polynomial time, you can use the solver
as a subroutine to solve any NP-problem in polynomial time. Such hardest problems NP-complete.

5.1 Boolean Circuits

A Boolean circuit has vertices which can be logic gates (∧,¬,∨) or inputs.

1 x1 x2

¬

∧ ∨

∧

y

(35)

Some inputs are hard-coded, and others user specified. The output of this circuit is

y = (1 ∧ x1) ∧ (x1 ∨ x2). (36)

x1x2 = 01 is a satisfying assignment of this circuit, which means y = 1. In general, a circuit is a
DAG where the vertices with in-degree 0 are the inputs. The output vertex has out-degree 0. All
other vertices are logic gates which have inputs from other vertices and outputs to other vertices.

circuit-sat: Given a circuit (DAG) is there a satisfying assignment for inputs x1, . . . , xn?

circuit-sat is in NP since a satisfying assignment can be verified by just running the circuit (linear
time traversal). The evidence is just the satisfying assignment.

An exponential algorithm to solve circuit-sat is to try all 2n assignments. No polynomial
algorithm is known. It is conjectured that there is no algorithm substantially faster than 2n.

5.2 Cook-Levin Theorem

circuit-sat is harder than all NP-problems. This means that every other problem in NP is polyno-

mialy reducible to circuit-sat. Specifically, if an alien gave you a black box that solves circuit-sat

in polynomial time, you can literally use this black-box to solve any NP-problem in polynomial time.
This is a deep result, and proving it has two main challenges. (i) The proof must work for any NP

problem, without knowing any specific details of the problem. (ii) We don’t know any details of how
the black box works, yet we must show that this specific black box can be used to solve any NP

problem. The proof will rely on a link between fast TMs and small circuits.

5.2.1 Fast TMs and Small Circuits

Consider any fast TM. It can operate on any w, returning TM(w) in poly(|w|)-time. The nice thing
about a TM is that it can take any-length input w. In contrast, a circuit has a fixed hard-coded

20

input length. So, let us consider a TM with a fixed input w of length n and assume it runs in time
t(n) ≤ poly(n). Each step of the TM is something like

if in state q at slot i reading 0: write 1, move L and transition to state s (37)

After this instruction, the TM head is at slot i− 1. The configuration of the TM, a binary string,
encodes where the head is, the state of the system and what is on the tape. The instruction
takes the system from one configuration to another, that is it takes the binary string for the initial
configuration to a binary string for the next configuration. This transformation of the binary string
can be implemented by a small circuit (see also Magdon-Ismail (2020, Problems 29.25, 29.26)). Since
the TM is fast, only a polynomial number of tape-slots are examined, so there are only polynomially
many choices for i. Thus, a polynomial number of circuits suffice to implement one step of the TM
computation. All these small circuits operate in parallel in a “layer” of the circuits. Since the TM
is fast, to represent all steps of the computation, we require at most a polynomial number of layers.
Hence the entire circuit that implements the TM on w has a polynomial number of gates. This final
mega-circuit is constructed in time poly(t(n)) and has size poly(t(n)), where t(n) ≤ poly(|w|).

Conclusion. A fast TM on input w can be quickly converted to a small, poly(|w|)-sized, circuit.

We did not prove this theorem. We only gave the hand-wavy idea for the proof. The interested
reader can fill in the details. But, the conclusion is intuitively plausible. A fast TM on an input of
size n has an equivalent small, poly(n), circuit which can be constructed quickly, in poly(n)-time.

5.2.2 Proof of the Cook-Levin Theorem

Consider any NP-problem L. It has a fast certifier C such that C(w,e) is yes if e verifies w ∈ L
and no otherwise. Since C is fast, it can be quickly converted into a small circuit with input w,e.

small circuit

w ee

C

w

yes if e proves w ∈ L
no if e doesn’t prove w ∈ L

1 if e proves w ∈ L
0 if e doesn’t prove w ∈ L

quickly transform
certifier for w to
circuit

(38)

Treating w as hard-coded and e as the “input”, we can now build a fast decider for L.

w
small circuit

w

circuit-sat

solver 0 / 1

Decider for L (C is a certifier for L)

transform C into a
certifier circuit for w

(39)

1: Given input w, transform C into a certifier circuit for w, with e now an unknown input.
2: Use the black-box circuit-sat solver to decide if there is a satisfying assignment for e.
3: Output what the black-box says.

21

It takes poly(t(n))-time to convert C into its circuit of size poly(t(n)). The black box is polyno-
mial in the size of its input, its runtime is poly(poly(t(n))). So the total runtime is poly(t(n)) +
poly(poly(t(n))) which is poly(t(n)). Since t(n) ≤ poly(|w|), the runtime of our decider is poly(|w|)
as required. We have used the circuit-sat black box to solve L in polynomial time.

Theorem 5.1. circuit-sat is NP-complete: any NP-problem polynomialy reduces to circuit-sat.

In a nutshell, C is a TM-certifier for L. Given w, we would like to know if there is an evidence e for
w that satisfies C. By definition, w ∈ L if and only if the answer is yes. We quickly convert C into
a small circuit-certifier with w hard-coded. We want to ask the same question, is there an evidence
e that satisfies the circuit-certifier with w hard-coded. The black-box for circuit-sat answers this
question in polynomial time. Hence using this black-box, we have a polynomial solver for L.

5.3 Example: Solving clique using circuit-sat

Consider the clique problem with clique size 3 on this graph,

1

2 3

4

5

(40)

The binary sequence encoding of this graph is

〈G〉 = e12e13e14e15e23e24e25e34e35e45 = 1010110101 (41)

The answer is yes, and the evidence is the vertex subset encoded in

e = x1x2x3x4x5 = 01110. (42)

Let us build a circuit verifier for this problem. The circuit verifier will work for any graph of 5
vertices and any evidence of length 5. The circuit will be small and we will build it “quickly” which
is evidenced by us building it manually. (If we can do it manually, it must be quick .)

First we need a circuit whose output verifies if the evidence is a vertex-subset of size at least 3.
We could check each 3-subset of the evidence (3-bit and) plus an or of all these ands,

0
x1

1
x2

1
x3

1
x4

0
x5

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

In general, this circuit is too large, requiring k
(
n
k

)
and gates for n vertices and clique-size k. It is

more efficient to first sort the string and take the and of the first K its. This verifies if there are at

22

least K ones. A circuit to sort n-bits can be built with O(n logn) gates. This is illustrated below.

0

x1

1

x2

1

x3

1

x4

0

x5

sorter

1 1 1 0 0

and

at least 3 ones?
(43)

The and needs O(K) gates, so ultimately the circuit has O(n logn) gates. We now need a circuit
that processes every edge ei,j . If ei,j = 1, the circuit outputs 1. If ei,j = 0, the output is 1 if either
xi = 0 or xj = 0. The output for ei,j is ei,j ∨ xi ∨ xj . This is a small circuit Ci,j with 5 gates,

circuit Ci,j

ei,j xi xj

∨

∨

¬
¬

(44)

For each edge, we need one such gadget to check that it satisfies the clique-constraint, that is
(
n
2

)

gadgets, each with 5 gates. To ensure all clique constraints, take an and of all the outputs of these
gadgets. The final output of the clique checker is the and of the outputs of all the Ci,j ’s. We then
take the and of the output of the clique-checker with the output of the size checker circuit.

1 0 1 0 1 1 0 1 0 1
e1,2 e1,3 e1,4 e1,5 e2,3 e2,4 e2,5 e3,4 e3,5 e4,5

0
x1

1
x2

1
x3

1
x4

0
x5

C1,2

x1 x2

C1,3

x1 x3

C1,4

x1 x4

C1,5

x1 x5

C2,3

x2 x3

C2,4

x2 x4

C2,5

x2 x5

C3,4

x3 x4

C3,5

x3 x5

C4,5

x4 x5

and

sorter

and

∧

The size-verifier (right) uses only the clique-string. The clique-verifier (left) uses both the clique-
string and edge list. The inputs to each Ci,j circuit are ei,j , xi and xj , e.g. e1,2, x1, x2 into C1,2. In
the final circuit treat the evidence as unknown and check if the circuit is satisfiable using circuit-

sat black box. Our construction generalizes to an arbitrary graph G and value for K.

23

6 NP-Completeness: Other NP-Complete Problems.

To solve any problem L ∈ NP, build its corresponding certifier circuit for input w and use a black
box solver for circuit-sat to solve the problem. If the black box solver is polynomial time, then
you have a polynomial solution for your problem L. Hence, circuit-sat is harder than any NP

problem and we say that any NP problem is polynomialy reducible to circuit-sat,

NP ≤p circuit-sat. (45)

The ≤p means “at most as hard as.” Are there other problems that are harder than any problem in
NP? Yes. And showing so is considerably easier than what we did to prove this for circuit-sat.
The reason is that we can use the fact that circuit-sat is NP-complete. Specifically consider any
problem L∗ ∈ NP and a polynomial black box solver for L∗. If we can show that we can use this
black box solver to polynomialy solve circuit-sat, then we would have actually built a polynomial
black box solver for circuit-sat and circuit-sat ≤p L∗. We can polynomialy solve any problem
L ∈ NP by first building the solver for circuit-sat and then using it to solve L. This means the
polynomial solver for L∗ can be used to polynomialy solve any problem in NP and

NP ≤p L∗. (46)

That is, the ≤p relation is transitive,

NP ≤p circuit-sat and circuit-sat ≤p L∗ → NP ≤p L∗. (47)

6.1 Reducing circuit-sat to 3-sat

Consider an instance of circuit sat. Here is the circuit which computes (1 ∧ x1) ∧ (x1 ∨ x2),

1 x1 x2

¬

∧ ∨

∧

y

(48)

Any circuit computes a Boolean expression, so satisfiability of general Boolean expressions is clearly
harder than circuit-sat. Let us analyze further the circuit above and convert it into satisfiability of
a very structured Boolean expression. First replace all non-input vertices by variables that indicate
the output of the vertex. We have variables v1, v2, v3, v4, v5,

v1 x1 x2

v2

v3 v4

v5

(49)

24

The outputs of the variables corresponding to the specific gates in our circuit are given by

v1 = 1 (50)

v2 = x1 (51)

v3 = v1 ∧ v2 (52)

v4 = x1 ∨ x2 (53)

v5 = v3 ∧ v4. (54)

These are the propagation rules of the circuit. They explicitly tell us, step by step, how to compute
the output of the circuit. For example, for x1 = x2 = 1:

v1 = 1; v2 = 0; v3 = 0; v4 = 1; v5 = 0. (55)

If we wish the output of the circuit to be 1, we additionally require v5 = 1. Hence if the following six
conditions can be simultaneously satisfied, for some choices of x1, x2, then the circuit is satisfiable:

v1 = 1 (56)

v2 = x1 (57)

v3 = v1 ∧ v2 (58)

v4 = x1 ∨ x2 (59)

v5 = v3 ∧ v4 (60)

v5 = 1. (61)

Replace each condition with a Boolean expression that is true if and only if the condition is satisfied.

v1 = 1 → (v1)
v2 = x1 → (v2 ∨ x1) ∧ (v2 ∨ x1)
v3 = v1 ∧ v2 → (v3 ∨ v1 ∨ v2) ∧ (v3 ∨ v1) ∧ (v3 ∨ v2)
v4 = x1 ∨ x2 → (v4 ∨ x1 ∨ x2) ∧ (v4 ∨ x1) ∧ (v4 ∨ x2)
v5 = v3 ∧ v4 → (v5 ∨ v3 ∨ v4) ∧ (v5 ∨ v3) ∧ (v5 ∨ v4)
v5 = 1 → (v5).

(62)

Verify the condition on the left is true if and only if the Boolean expression on the right is true.
Also convince yourself that a general circuit with its propagation rules can be converted to a set
of Boolean expressions like this. There is a Boolean expression for each non-input vertex. The
circuit is satisfied if every condition is true, that is every Boolean expression is true. Each Boolean
expression is the and of clauses, where each clause is an or of at most 3 terms. All 13 clauses must
be true, that is we must satisfy a massive and of all the clauses in all the Boolean expressions, a
CNF. For n non-input vertices and d input vertices, the number of clauses is at most 3n and the
number of variables is n + d. Every one of these clauses is satisfiable by appropriately setting the
n+ d Boolean variables if and only if the circuit is satistiable. We define the NP-problem 3-sat.

3-sat: Given a set of n clauses over variables x1, . . . , xn, where each clause is the OR of at
most 3 terms, is there an assignment to x1, . . . , xn for which every clause is true?

That is, can all clauses be satisfied. Clearly, 3-sat is in NP. To solve an instance of circuit-sat

with n non-input vertices and d input vertices, first transform it to the corresponding set of at most
3n clauses and using a black box solver for 3-sat on these clauses. We have proved

Theorem 6.1. circuit-sat ≤p 3-sat. That is, 3-sat is NP-complete.

25

6.2 Other NP-complete Problems: independent-set, clique, vertex-cover

circuit-sat is a relatively complex problem to deal with, involving complex circuits. But, 3-sat

is relatively easy to handle, consisting only of a bunch of clauses with each clause being an or of
at most 3 terms. 3-sat is a power-tool for finding other NP-complete.

In general, to show that L is NP-complete, polynomialy reduce any known NP-complete problem
L∗ to L. That is, we show how we can polynomially solve L∗ if we have a black box polynomial
solver for L. Let’s see this in action by proving that indep-set is NP-complete. A set of vertices
in a graph is an independent set if every pair of vertices in the set is non-adjacent.

indep-set: Given a graph G and K ≥ 1, is there an independent set of size at least K.

We show that 3-sat is polynomialy reducible to indep-set. Consider the instance of 3-sat

(y ∨ x ∨ z)(x ∨ z)(x ∨ z)(x ∨ y ∨ z). (63)

These clauses are satisfiable if and only if one can pick exactly one term from each clause to make
true without any conflicts between terms picked to be made true. A conflict is for example picking
both x and x to make true. They conflict because both cannot be made true.

Build a graph as follows. Each clause is a clique with a vertex for each term. Vertices in different
cliques are linked if they correspond to conflicting terms. We get a conflict graph,

clause 1 clause 2 clause 3 clause 4

xy

z

x

z

x

z

yx

z

Any independent set has at
most one vertex in each clause.

Edges are conflicts. Both
vertices cannot be picked.

If there is an independent set whose size equals the number of clauses, then it means exactly one
vertex is picked from each clique and the vertices do not conflict which means they can all be made
true. So, if we have a black box solver for indep-set, we can solve 3-sat. We have proved

Theorem 6.2. 3-sat ≤p indep-set. That is, indep-set is NP-complete.

We leave it as an exercise for you to formally prove indep-set is NP-complete. Also, show that
clique and vertex-cover are NP-complete by polynomialy reducing them to indep-set. So now
we have the NP-complete problems

{circuit-sat, 3-sat, indep-set,clique,vertex-cover}. (64)

Karp, in his seminal 1972 paper, gave 21 problems in diverse domains that are NP-complete. This
list has since exploded to several thousands of problems occuring frequently in practice and in very
diverse areas. We need to solve these problems in practice. These problems are typically phrased
as optimization problems. What do we do?

1. Change the objective to an easier one for which there is a polynomial solution.

2. Change the problem.

3. Approximate the solution.

26

7 Linear Algebra and Complex Vector Spaces

We begin our study of quantum computing by reviewing some of the useful math. The complex
numbers are perhaps one of humanity’s greatest inventions, along with calculus, induction, language,
written storage of knowledge, the wheel, etc. You will never encounter a complex number in the
real world, yet they are essential for how we model the world, and without them there would be no
quantum mechanics. They also play an important role in algorithms like the FFT.

Linear algebra is instrumental to the study of linear operators. There are two formulations of
quantum mechanics, the PDE approach due to Schrödinger and the matrix mechanics approach due
to Heisenberg. We will follow the latter approach which is heavily based in linear operators. We are
going to try to learn about quantum computing algorithms without learning quantum mechanics.
To build quantum computers, however, you will have to become one with quantum mechanics.

7.1 Complex Numbers

To solve x2 + 1 = 0, we invented i =
√
−1, a placeholder for the solution of this equation. And

thence, the entire field of complex analysis developed around this simple concept. It is a miracle
that this “imaginary” concept has such an influence on all things real. Mathematically, the complex
numbers are algebraically closed. This is the content of the fundamental theorem of algebra: every
polynomial with complex coefficients (for example x2 + 1) has at least one complex zero.

A complex number with real part a and imaginary part b is written

x = a+ ib. (65)

Complex numbers can be added, subtracted, multiplied and divided using standard algebra and
i2 = −1. A complex number is a point on the Cartesian plane with coordinates (a, b),

r

(a, b)

θ

(66)

In polar coordinates, the representation is (r, θ), where a = r cos θ and b = r sin θ, and so

r2 = a2 + b2

tan θ = b/a.
(67)

The polar representation is not unique and (r, θ+2kπ) for k ∈ Z is the same complex number. The
spectacular theorem of Euler is a power-tool,

eiθ = cos θ + i sin θ. (68)

This truly remarkable relation links the complex numbers, calculus, the number e, and geome-
try/trigonometry. Since (eiθ)n = einθ, we immediately get Demoivre’s relation,

(cosx+ i sinx)n = einx = cosnx+ i sinnx. (69)

27

Euler’s formula allows us to multiply and take powers of complex numbers effortlessly. Since

x = a+ ib = reiθ, (70)

It follows that xn = rneinθ and x1x2 = r1r2e
i(θ1+θ2). In the polar representation,

(r, θ)n = (rn, nθ)
(r1, θ1)× (r2, θ2) = (r1r2, θ1 + θ2)

(r, θ)1/n = (r1/n, (θ + 2kπ)/n).

(71)

The complex conjugate of a complex number is obtained by negating the imaginary part.

x = a+ ib→ x∗ = a− ib. (72)

In the polar representation, x = (r, θ) → x∗ = (r,−θ).

7.2 Complex Vector Spaces

The complex vector space C
n of dimension n consists of all vectors with n components, where the

components are complex numbers. Here is an example of a complex vector and a complex matrix.

x =





1− i
2i
−1



 A =

[
1− i 1 + i 3
2i −1 1 + 2i

]

. (73)

A is an operator from C
3 7→ C

2. We compute the matrix-vector product Ax in the usual way.
We define the transpose in the usual way. We can also take the complex conjugate of a matrix by
taking the complex conjugate of every entry. An important operation is to take the transpose of
the complex conjugate, called the dagger,

x† =
[
1 + i −2i −1

]
A† =





1 + i −2i
1− i −1
3 1− 2i



 . (74)

Verify that
(A + B)t = At + Bt, (AB)t = BtAt;

(A + B)† = A† + B†, (AB)† = B†A†;
(75)

The inner product 〈x, y〉 = xty from real vector spaces won’t work in complex vector spaces. One
reason is that the norm ‖x‖2 = 〈x, x〉 should be non-negative. This is not true when x, y can be
complex. Instead, we use the dagger and define the inner product

〈x, y〉 = x†y. (76)

This definition implies linearity in the second argument,

〈x, ay + bz〉 = a〈x, y〉+ b〈x, z〉. (77)

What is 〈ax+ bz, y〉? Note, one could instead insist on linearity in the first argument, in which case
〈x, y〉 = y†x. Note that the inner product is not symmetric, 〈x, y〉 = 〈y, x〉†. For operators A,B,

〈Ax,By〉 = (Ax)†By = x†A†By. (78)

28

An operator A (matrix) is hermitian (or self-adjoint) if A† = A. A is unitary if A−1 = A†, i.e.

AA† = A†A = I. (79)

A quantum computer is a quantum physical system. Unitary operators play an important role
because they drive the time evolution of a quantum system (quantum computer), specifically eitH

where H is the Hamiltonian operator. An algorithm on a quantum computer takes the state from
an initial configuration to a final configuration in which we measure a result. Thus, any algorithm is
performing a time-evolution of the initial state and hence must be a unitary operator. The general
form of the 2× 2 unitary operator, up to a multiplicative phase is

U =

[
r

√
1− r2eiϕ1√

1− r2eiϕ2 −rei(ϕ1−ϕ2)

]

(80)

In quantum mechanics, observables are related to Hermitian operators. The result of a quantum
algorithm must be a measurable observable. Hence, quantum algorithms are related to hermitian
operators. Observables are related to hermitian operators through eigenvectors and eigenvalues
(eigen meaning “special”). For a matrix A, a nonzero vector v for which

Av = λv (81)

is called an eigenvector of A and λ is the associated eigenvalue.

7.3 Basis

An orthonormal basis in an n-dimensional complex vector space is a collection of n pairwise or-
thogonal unit vectors. More generally a basis is a largest set of linearly independent vectors. The
standard basis consists of the column vectors in

E = [e1, e2, . . . , en] =














1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0

...
...

...
...

. . . 0
0 0 0 0 · · · 1














. (82)

The basis is represented by the square matrix E. The basis is orthonormal if E†E = In. That is, if
E is unitary. The components of a vector v in the basis E, given by [x1, x2, . . . , xn]

t represent v as
a linear combination of the basis vectors,

v = [e1, e2, . . . , en]









x1
x2
x3
...
xn










= x1e1 + x2e2 + · · ·+ xnen. (83)

29

Usually vectors will be clear from the context, but sometimes we will use bold to emphasize some
quantity as a vector. The components in one orthonormal basis can be transformed into another
orthonormal basis. If v has components [z1, z2, . . . , zn]

t in the orthonormal basis F, then

v = Fz → z = F†v = F†Ex. (84)

The matrix F†E is a basis transformation matrix that transforms the components x in basis E to
the components z in basis F.

7.4 Spectral Theorem

For any n-dimensional hermitian operator H, one can construct an orthonormal basis composed of
its eigenvectors. This is the spectral theorem. That is, there is a unitary basis U for which

HU = UΛ, (85)

where Λ is a diagonal matrix composed of eigenvalues of H along the diagonal. This is called the
spectral theorem. Applying U† to both sides,

U†HU = Λ. (86)

That is, H can be diagonalized by a unitary matrix. The spectral theorem is a very powerful tool.

7.5 Hadamard Matrix

A particularly important quantum gate is the Hadamard gate, which is related to the Hadamard
matrix. The unnormalized Hadamard matrix Qn is defined by

Q0 = [1]; Qn+1 =

[
Qn Qn

Qn −Qn

]

. (87)

For example,

Q1 =

[
1 1
1 −1

]

; Q2 =







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1






. (88)

The normalized Hadamard matrix Hn simply normalizes the matrix so each column has unit norm,

Hn = 2−n/2Qn. (89)

The Hadamard matrix has many useful properties. You can prove them by induction.

1. Hn is a 2n × 2n matrix.

2. Hn is hermitian and unitary, H†
nHn = I2n .

3. Qn has only entries ±1.

4. The first row and column of Qn are all 1’s. The sum of every other column and row is 0.

30

8 Quantum Mechanics

We hope to learn about QC algorithms with minimal knowledge of quantum mechanics. However,
if you want to build a quantum computer, well that will be a physical system governed by the laws
of quantum mechanics. So you’ll need to know some quantum mechanics. At least we will give you
the postulates and how they are relevant to building a stable quantum computer.

In quantum mechanics, we use |ψ〉 to represent the state of the system you are interested in,
for example the state of a quantum computer, which includes its input and output. The quantum
computer is a black box unitary operator U that takes the input state to the output state. In the
output state, we measure some observable which corresponds to the result,

|ψin〉

input registers Quantum Algorithm
Quantum Computer

U
|ψout〉

output registers
measure

? answer

(90)

Quantum mechanics postulates rules for:

• How the state evolves under the quantum computing algorithm as well as interactions with
the environment.

• What happens when you measure the result.

We don’t know why the rules are this way. We do know that these rules plus lots of mathematics,
are remarkably accurate at describing the physical world, especially at tiny scales where classical
mechanics fail. Similarly, we don’t know why Newton’s law is F = ma and not F = ma2, for
example? However, we do know that Newton’s law is remarkably accurate at describing the real
world at large scales – the classical regime. How did we find the rules of quantum mechanics. Similar
to how Newton found his laws. Observe, guess the laws and then test the predictions.

8.1 Postulates of Quantum Mechanics

The state of a system is specified by a vector |ψ〉 in a complex vector space with the standard inner
product. The inner product of |ψ〉 and |φ〉 is written 〈φ|ψ〉 (bra-ket notation), where

〈φ|ψ〉 = (|φ〉)†|ψ〉. (91)

The state is normalized to 1, as required by the probabilistic interpretation of measurements,

〈ψ|ψ〉 = 1. (92)

The system’s state evolves with time, so it starts at |ψ(0)〉 and evolves to |ψ(t)〉 over time t. This
evolution is driven by the energy operator, or Hamiltonian operator Ĥ.1 Specifically,

|ψ(t)〉 = e−iĤt|ψ(0)〉. (93)

1We sometimes use the hat notation, Â, to emphasize something is an operator (matrix).

31

(There is a constant ~, the reduced plank constant, which sets the units for energy. We set it to 1 for
simplicity of presentation.) Just understanding this formula is non-trivial. What is the exponent of
an operator? This is defined using the Taylor series for the exponential. It is a non-trivial exercise

for the reader to show e−iĤt is a unitary operator whenever Ĥ is hermitian, which it is. This means
that time-evolution preserves geometry, in particular the norm of the state stays 1,

〈ψ(t)|ψ(t)〉 = (e−iĤt|ψ(0)〉)†e−iĤt|ψ(0)〉 (94)

= (|ψ(0)〉)†(e−iĤt)†e−iĤt|ψ(0)〉 (95)

= (|ψ(0)〉)†|ψ(0)〉 (96)

= 〈ψ(0)|ψ(0)〉 (97)

= 1. (98)

An observable is associated to a hermitian operator. There are operators for position, momentum,
energy, spin, etc. Let us consider the observable A, associated to the operator Â. Since Â is
hermitian it has an orthonormal eigenbasis for the state space, |φ1〉, . . . , |φn〉 (assuming the state-
space is n-dimensional), and the eigenvector |φi〉 has an associated eigenvalue λi. This means we
can get the “coordinates” of |ψ〉 in this eigenbasis,

|ψ〉 =
n∑

i=1

ai|φi〉. (99)

The ai can be complex. In state |ψ〉, when you measure the observable A, the result is an eigenvalue
λi of the associated operator Â. Which eigenvalue you see is random, with

probability to observe λi = ‖ai‖2 = a∗i ai. (100)

These probabilities are determined from the expansion of |ψ〉 in the eigenbasis of Â. We can also
compute the expected value of the observable,

E[A] =
∑

i

λi‖ai‖2 (101)

We can get a convenient expression for this expected value as follows. Note that

Â|ψ〉 =
n∑

i=1

aiλi|φi〉. (102)

Computing 〈|ψ〉, Â|ψ〉〉 gives

〈|ψ〉, Â|ψ〉〉 =

n∑

j=1

a∗j |φj〉†
n∑

i=1

aiλi|φi〉 (103)

=

n∑

j=1

n∑

i=1

λia
∗
jai|φj〉†|φi〉. (104)

32

Since |φj〉†|φi〉 = δij because the eigenbasis is orthonormal, we have that

〈|ψ〉, Â|ψ〉〉 =
n∑

j=1

n∑

i=1

λia
∗
jaiδij (105)

=
n∑

j=1

λja
∗
jaj = E[A]. (106)

To avoid cumbersome notation, we write the inner product 〈|ψ〉, Â|ψ〉〉 as 〈ψ|Â|ψ〉.
Another wierd thing happens. The state changes upon measurement. If the measurement is λi,

then the state collapses to the corresponding eigenvector, |ψ〉 → |φi〉. When the state is one of these
eigenvectors, we call it a pure state, otherwise it is a mixed state. State collapse is always to a pure
state. This state collapse is perhaps the most counter-intuitive aspect of quantum mechanics. It is
also counterintuitive that the properties of the state, when measured are random. Let us summarize.

1. [State] The state |ψ〉 is a complete representation of a system. It is normalized, so 〈ψ|ψ〉 = 1.

2. [Time Evolution] The state evolves according to the Hamiltonian operator |ψ(t)〉 = e−iĤt|ψ(0)〉.

3. [Observables] An observable A corresponds to an operator Â. Operators standard observables
like position, momentum, energy, are specified in the postulates. We don’t give them here.

4. [Measurement] When you measure an observable A with corresponding operator Â, the pos-
sible measurements are the eigenvalues of Â. If Â has orthonormal eigenbasis |φi〉 with corre-
sponding eigenvalues λi, then we can expand |ψ〉 in this basis,

|ψ〉 =
n∑

i=1

ai|φi〉. (107)

The eigenvalue λi is measured with probability ‖ai‖2 and E[A] = 〈ψ|Â|ψ〉.

5. [State Collapse Upon Measurement] If the measured value is λi, then the state collapses to
the corresponding eigenvector of Â, |ψ〉 → |φi〉.

6. There are some other postulates regarding different types of particles, e.g. the state is anti-
symmetric with respect fermion-exchange. We won’t go into those details.

How do these postulates of quantum mechanics affect us when we are trying to build a quantum
computer. Let us go back to our idealized workflow figure from before. The initial state of the
quantum computer is a quantum state. The algorithm evolves this state into a final state and
we extract the result by measuring some property of the final state. We assume the result is the
output of our quantum algorithm - some unitary operator that evolves the state. Unfortunately, our
computer interacts with the universe. The universe interaction contaminates our algorithm by also
driving some of the state evolution. We can try to isolate the quantum computer from the universe,
but, because we have to ultimately make the measurement, there will always be some evolution

33

of the final state that is not due to the quantum algorithm. Hence the result we measure will be
contaminated. We need ways to error correct. So, the actual picture looks more like

|ψin〉

input registers Quantum Algorithm
Quantum Computer

U
|ψout〉

output registers
measure

?
state collapse

random
answer

UNIVERSE
(108)

Then there is the measured result being nondeterministic. This won’t do. If our quantum algorithm
must tell if a number is prime, the answer must be a deterministic yes or no. Hence, we have to
ensure that the final state is a pure state, so the result is definitive. This impacts the design of
quantum-algorithms as well as the measurement process, which should keep the state pure. Lastly,
from the practical perspective we need to store the quantum equivalent of bits, keep them stable,
allow for the robust evolution of that state under an algorithm and reliable measurement of the
state to obtain the final result. These are all non-trivial requirements, which largely puts quantum
computation far from practice. The path to a viable quantum computer is more like a marathon,
not a sprint. So patience and endurance are necessary. The first step is to develop the seeds, the
theory of quantum algorithms. This is the main focus of this course. Though we don’t yet have the
pasture on which to plant these seeds, it is still a worthy task.

8.2 Spin

Some particles have a property called spin, e.g., spin-up or spin-down. Particles with two possible
spins can encode a bit. Spin-up is 1 and spin-down is 0. Spin depends on the axis of rotation. So
when we measure spin, we do so with respect to an axis. We define operators corresponding to the
three common axes x, y, z. These are the three spin operators (in units with ~ = 1),

Ŝx =
1

2

[
0 1
1 0

]

, Ŝy =
1

2

[
0 −i
i 0

]

, Ŝz =
1

2

[
1 0
0 −1

]

. (109)

Consider the spin operator Ŝz. Measuring spin about the z-axis produces a result λe3, where λ is
the magnitude or amount of spin, and e3 = [0, 0, 1]t is the basis vector in the z-direction. The e3
says it is the z-spin that you measured. According to the postulates, the possible values for λ are
the eigenvalues of Ŝz. As an exercise verify that the eigenvalue, eigenvector pairs of Ŝz are:

λ+z =
1

2
, |φ+z 〉 =

[
1
0

]

, λ−z = −1

2
, |φ−z 〉 =

[
0
1

]

. (110)

34

The possible z-spins are ±1
2e3. Similarly, the eigenvalue-eigenvector pairs for Ŝx and Ŝy are

λ+x =
1

2
, |φ+x 〉 =

[
1/
√
2

1/
√
2

]

, λ−x = −1

2
, |φ−x 〉 =

[
1/
√
2

−1/
√
2

]

; (111)

λ+y =
1

2
, |φ+y 〉 =

[
1/
√
2

i/
√
2

]

, λ−y = −1

2
, |φ−y 〉 =

[
1/
√
2

−i/
√
2

]

. (112)

The possible measurements for the x-spin are ±1
2e1 and for the y-spin are ±1

2e2, where e1, e2, e3 are
the standard basis in 3 dimensions. In practice, one can measure the spin in any direction defined
by a unit vector v = [vx, vy, vz]. Such a vector can be represented by its two polar coordinates ϕ, ϑ,

v =





vx
vy
vz



 =





sinϑ cosϕ
sinϑ sinϕ

cosϑ



 . (113)

(We only have a limited set of notation, so please distinguish between the azimuthal angle ϕ and
the eigenbasis-vector |φ〉.) Abusing notation and defining the vector of operators Ŝ = [Ŝx, Ŝy, Ŝz]

t,
we define the spin-operator for the direction v by

Ŝv = v • Ŝ = vxŜx + vyŜy + vzŜz =
1

2

[
cosϑ e−iϕ sinϑ

eiϕ sinϑ − cosϑ

]

(114)

This definition of the spin-operator in the v-direction is chosen to satisfy a consistency condition.
First, the possible spin measurements (eigenvalues) must be λ±v = ±1

2 as can be verified. In the pure
state defined by the eigenvector |φ+v 〉, the positive spin state about the axis v, the expected x-spin
should be vx/2. Similarly, the expected y-spin and z-spin should be vy/2 and vz/2 respectively.
That means the expected spin is +1

2 in the v direction. We want

E[Ŝ] =







〈φ+v |Ŝx|φ+v 〉
〈φ+v |Ŝy|φ+v 〉
〈φ+v |Ŝz|φ+v 〉






=






sinϑ cosϕ

sinϑ sinϕ

cosϑ




 . (115)

Indeed, this is the case. Prove it. First find the spin-up eigenvector,

|φ+v 〉 =
[

cosϑ/2
eiϕ sinϑ/2

]

. (116)

Show that 〈φ+v |Ŝx|φ+v 〉 = sinϑ cosϕ. Similarly prove the other two components of (115).
Here is a useful exercise. A particle starts with x-spin up. You measure the z-spin and then

measure the x-spin again. What are the probabilities for the four possible outcomes:

+ +
+ −
− +
− −

(117)

Even though we know the particle starts with x-spin up, the measurement of the x-spin after you
measure the z-spin could be down. This is very counterintuitive.

35

9 Dynamics

Why do we need to study dynamics? Let’s look at a classical computer, the Turing machine. The
TM starts off with the input written on the tape. The TM’s state plus what is on the tape plus
where its read-write head is can be viewed as the system’s configuation. The TM-instructions (i.e.,
the algorithm) tell the TM what to do depending on what it reads on the tape. It can write
something, transition states and move left or right, thus the system’s configuration evolves to a
new configuration. This dynamics is driven by the specifics of the algorithm. So, an algorithm
dictates the dynamics of the TM’s configuration. When the dynamics ends, we look at the final
configuration to “measure” the answer delivered by the algorithm on the starting input.

None of this high-level discussion changes when we move to quantum algorithms. A quantum
algorithm dicates the dynamics of the configuration of the quantum computer, starting from some
initial configuration. When the dynamics ends, we measure the configuration of the quantum
computer to determine our answer. Some of the details change in moving from the classical realm
to the quantum realm, and these small changes make all the difference.

9.1 Classical Dynamics

A ball starting in vertex q1 transitions according to the following graph,

q1 q2

q3

0 1/2

0

1/3

1/6

1/3
1/6

5/6
2/3

(118)

An arrow indicates a possible transition from vertex qi to qj , and the weight on an arrow is the
probability of that transition. For example, after 1 transition, the probability is 1/3 to be in q2 and
2/3 to be in q3. Collect these probabilities into a transition matrix T, where Tij is the probability
to transition from qj to qi. Column j in T are the probabilities to transition from qj . We have

T =





0 1/6 5/6
1/3 1/2 1/6
2/3 1/3 0



 . (119)

Notice that every column sums to 1 because from any vertex, the ball must transition to some
vertex. Such a T is called a stochastic matrix, and the ball follows a Markov chain. Our matrix T
also has rows which sum to 1 (called doubly stochastic). Such a Markov chain can be run backwards
in time using Tt, that is the process is reversible. We can represent the state of the ball by the

36

probabilities it is in each vertex. The start state and the state after one transition are

|ψ0〉 =





1
0
0



 , |ψ1〉 =





0
1/3
2/3



 . (120)

You can verify that |ψ1〉 = T|ψ0〉. In general, you can show by induction that after k transitions,

|ψk〉 = Tk|ψ0〉. (121)

You have to show that if the vertex probabilities at step k are given by |ψk〉, then the vertex
probabilities at step k + 1 are given by T|ψk〉. The system dynamics is captured by the transition
matrix T and we say that T is the propagator for the system, propagating the state into the future.

9.2 Quantum Dynamics

In quantum dynamics, the state |ψ〉 containing the probabilities to be in each vertex is replaced by
a state |ψ〉 with amplitudes to be in each vertex. Here are some possible states.

|ψ0〉 =





1
0
0



 , |ψ0〉 =





i
0
0



 , |ψ0〉 =





√

2/3
0

−
√

1/3



 . (122)

Amplitudes are not probabilities. They can be negative or even complex, and they do not sum to 1.
The amplitudes are converted into probabilities by computing the norm squared of the amplitude.
The probabilities corresponding to the above amplitudes are

P0 =





1
0
0



 , P0 =





1
0
0



 , P0 =





2/3
0
1/3



 . (123)

These are valid non-negative real probabilities summing to 1, that is 〈ψ0|ψ0〉 = 1. Just like in
classical dynamics, the amplitudes propagate forward in time using a propagator U. Unlike in the
classical case where the propagator (probabilty transition matrix) is a real stochastic matrix, the
propagator in a quantum dynamics can have complex entries. Consider the following dynamics,

q1 q2

q3

1/
√
2 i/2

i/
√
2

−i/2

1/
√
2

i/2
−i/

√
2

0
−i/2

(124)

37

These quantum dynamics can be summarized in the matrix

U =





1/
√
2 1/

√
2 0

−i/2 i/2 −i/
√
2

−i/2 i/2 i/
√
2



 . (125)

The first column of U, for example, has the amplitudes to transition from vertex q1 to qi. The state
after one step of propagation is

|ψ1〉 = U|ψ0〉. (126)

For |ψ1〉 to be valid amplitudes, the norm squared of its entries must be valid probabilities and sum
to 1. That is 〈ψ1|ψ1〉 = 1 for any |ψ0〉. That is, for all |ψ0〉

〈ψ1|ψ1〉 = 〈ψ0|U†U|ψ0〉 = 〈ψ0|ψ0〉 = 1. (127)

This means U must be unitary, as can be verified for our choice of U. In quantum mechanics, the

propagator in time e−iĤt is unitary because Ĥ is hermitian. The evolution of any quantum system
like a quantum computer is driven by a unitary operator and hence preserves the normalization of
a state. Let’s see the evolution of our three example starting states under our unitary matrix U:





1
0
0




U→





1/
√
2

−i/2
−i/2



 ,





i
0
0




U→





i/
√
2

1/2
1/2



 ,





√

2/3
0

−
√

1/3




U→





1/
√
3

0

−i
√

2/3



 . (128)

Something interesting happens in our third example above, a result of the state containing quantum
amplitudes not probabilities. The final amplitude for q2 is 0. There are starting amplitudes for q1
and q3. Each of q1 and q3 has an amplitude to transition to q2 independently. Together, these
amplitudes cancel to give 0. This cannot happen in the classical setting. If q1, q3 have probabilities
to transition to q2 individually, then together those probabilities add, and cannot possibly give 0.
This cancellation happens in the quantum system because we are adding amplitudes which are
complex numbers. Non-zero amplitudes adding to give 0 is called interference. This is a long known
phenomenon in wave propagation. Quantum systems have wave-like properties.

You can now square the final amplitudes to get the new probabilities to be in each vertex for
each of our examples above. Notice, in the classical setting the probabilities directly evolve into
probabilities under action by T. In the quantum setting it is not possible to find a linear operator
to evolve probabilities to probabilities. In the background you have the quantum state which is the
amplitudes. In the background these amplitudes evolve to new amplitudes under the action of the
linear operator U. Once the evolution of amplitudes is done, we can get the probabilities of being
each vertex. If we measure the state, we will get the probabilities to be in each vertex.

Classical We can calculate the new probabilities from previous probabilities. We can actually see
the ball as it makes its transitions from one vertex to another governed by these probabilities.

Quantum We do not see the amplitudes. The amplitudes evolve in the background. We do not
see where the particle is through this evolution. In the end, we measure the particle and the
amplitude-norms tell us the probabilities to observe the particle in a vertex. After we take
the measurement, the amplitudes collapse to a pure state.

38

9.3 Ensembles of Independent Particles

What happens if we have two particles? Consider two independent balls following the quantum
dynamics in the previous section. Label the particles’ starting amplitudes as a and b,

a =





a1
a2
a3




U→ Ua, b =





b1
b2
b3




U→ Ub. (129)

The particles each evolve independently under U. First, how do we represent the state of the
two-particle system. Since each particle can be in {q1, q2, q3}, there are 9 possibilities for the pair,

{q1q1, q1q2, q1q3, q2q1, q2q2, q2q3, q3q1, q3q2, q3q3}. (130)

These are the so-called product states, obtained by taking the Cartesian product of the states
available to a and the states available to b,

{q1, q2, q3} × {q1, q2, q3}. (131)

The particles are independent, so

P[a is in qi and b is in qj] = P[a is in qi]× P[b is in qj] = ‖ai‖2‖bj‖2. (132)

But, since ‖aibj‖2 = ‖ai‖2‖bj‖2, we obtain the correct probabilities if the amplitudes multiply.
Thus, the state of the two-particle system is represented by the vector of amplitudes

q1q1
q1q2
q1q3
q2q1
q2q2
q2q3
q3q1
q3q2
q3q3

















a1b1
a1b2
a1b3
a2b1
a2b2
a2b3
a3b1
a3b2
a3b3

















=






a1b

a2b

a3b




 . (133)

The final vector on the right is the tensor product a⊗ b (also called the Kroneker product),

a⊗ b =






a1b

a2b

a3b




 . (134)

You take a and multiply each component of a by an entire b. Note that the possible joint states
are also a tensor product, b ⊗ b. The amplitudes for a system of 2 independent particles is the
tensor product of the individual amplitudes,

|ψab〉 = |ψa〉 ⊗ |ψb〉. (135)

This is the case for independent particles. Not every 9-dimensional vector of amplitudes is the
tensor product of two 3-dimensional amplitudes – the reader should construct an example. If the

39

state of the two particle system is represented by such a 9-dimensional vector of amplitudes, those
two particles cannot be independent. We say that those particles are entangled, and the state is an
entangled state. Generalizing to three particles, a, b and c, the joint state is

a⊗ b⊗ c. (136)

We encourage the reader to show that if the individual amplitudes a, b, c are normalized, then so
is the tensor product a⊗ b⊗ c.

What happens under independent evolution? The new states are Ua and Ub. So, from our prior
discussion, the new joint state is Ua⊗Ub. Let us first compute Ua,

Ua =





U11a1 + U12a2 + U13a3
U21a1 + U22a2 + U23a3
U31a1 + U32a2 + U33a3



 . (137)

We can now compute Ua ⊗ Ub by multiplying each component of Ua with an entire copy of Ub.
Therefore, we have that

Ua⊗Ub =





(U11a1 + U12a2 + U13a3)Ub
(U21a1 + U22a2 + U23a3)Ub
(U31a1 + U32a2 + U33a3)Ub



 . (138)

Can we write this as the evolution of the 2-particle state a⊗ b under some operator V,

Ua⊗Ub = V(a⊗ b). (139)

Indeed we can, and the question is what is V? Note that

(U11a1 + U12a2 + U13a3)Ub = (U11Ua1b+ U12Ua2b+ U13Ua3b) (140)

=
[
U11U U12U U13U

] 



a1b
a2b
a3b




(141)

=
[
U11U U12U U13U

]
a⊗ b. (142)

Similarly, we can write the other components in (138) to get

Ua⊗Ub =





U11U U12U U13U
U21U U22U U23U
U31U U32U U33U





︸ ︷︷ ︸

V

a⊗ b. (143)

We can now identify V. To obtain V, start with U and multiply each entry in U by an entire copy
of the full matrix U. This is very similar to the tensor product of two vectors, and we can define
the tensor product of two matrices A⊗B: start with A and multiply every entry by an entire copy
of B (A and B need not have the same dimensions),

A⊗ B =








A11B A12B · · · A1mB
A21B A22B · · · A2mB

...
Ad1B Ad2B · · · AdmB







. (144)

40

If A is d×m and B is ℓ× n then A⊗B is dℓ×mn. The tensor product of two vectors is a special
case of the tensor product of two matrices.

Getting back to the evolution of k independent particles, if you have independent particles with
amplitudes given by the states a1,a2, . . . ,ak, the joint state is the tensor product

a1 ⊗ a2 ⊗ · · · ⊗ ak. (145)

If the particles independently evolve according to their own unitary matrices U1, . . . ,Uk, then the
evolution of the joint state is driven by the tensor product U1 ⊗ · · · ⊗Uk,

a1 ⊗ a2 ⊗ · · · ⊗ ak → U1a1 ⊗U2a2 ⊗ · · · ⊗Ukak (146)

= (U1 ⊗ · · · ⊗Uk)(a1 ⊗ a2 ⊗ · · · ⊗ ak). (147)

It is an exercise for the reader to show that the tensor product of unitary matrices is unitary. This
implies that the normalized joint tensor product state remains normalized.2 We also leave it to the
reader to show that the tensor product is associative,

A⊗ (B⊗ C) = (A⊗ B)⊗ C. (148)

Note, the tensor product is generally not commutative, A ⊗ B 6= B ⊗ A (find a counter example).
The two matrices A⊗B and B⊗A do however have the same entries and they can be transformed
into each other by a permutation of rows and columns. We also leave it to the reader to show that
the tensor product distributes over addition,

A⊗ (B1 + B2) = A⊗ B1 +A⊗ B2;

(A1 +A2)⊗ B = A1 ⊗ B+A2 ⊗ B. (149)

2It implies more, that the norm of all vectors are preserved when acted upon by U1 ⊗ · · · ⊗ Uk, not just vectors
which are tensor products.

41

10 Classical Computing Using Linear Algebra

To move toward quantum computing, we start with classical computing and generalize. This will
become seemless within a linear algebraic framework using the considerable machinary in linear
algebra that we have built and since quantum dynamics has a nice linear algebraic formulation
based on hermitian operators for observables and unitary operators for evolution of state.

10.1 The Bit

With an eye on the postulates of quantum mechanics, we realize that to measure a bit as 0 or 1
(an observable with two possible values), the bit-operator for this observable must have at least two
eigenvectors with different eigenvalues. Hence, the minimum dimension of this operator is 2 and we
may as well assume the eigenvectors are the standard basis, [10] for value 0 and [01] for value 1.

10.2 Classical Bits

The classical bit is in one of two states, |0〉 and |1〉. In the 2-dimensional eigenvector representation,

|0〉 =
[
1
0

]

, |1〉 =
[
0
1

]

. (150)

This won’t change when we move to the quantum realm. The only change will be that the classical
bits are the standard basis vectors in a 2-dimensional complex vector space. What about a two-bit
system, for example the first bit is 0 and the second is 1, |01〉,

|01〉 = |0〉 ⊗ |1〉 =








1

[
0
1

]

0

[
0
1

]







=







0
1
0
0






. (151)

All the possible 2-bit states correspond to all the four standard basis vectors in 4-dimensions,

|00〉 |01〉 |10〉 |11〉






1
0
0
0













0
1
0
0













0
0
1
0













0
0
0
1







. (152)

This generalizes to an n-bit system. The classical state has n-bits. There are 2n of these. In the
vector representation, these classical states are the standard basis vectors in 2n-dimensions,

|00 · · · 00〉 |00 · · · 01〉 |00 · · · 10〉 · · · |11 · · · 10〉 |11 · · · 11〉











1
0
0
...
0
0























0
1
0
...
0
0























0
0
1
...
0
0












· · ·












0
0
0
...
1
0























0
0
0
...
0
1












.

(153)

42

We can leverage the vector representation and allow any state |ψ〉,

|ψ〉 =
[
p0
p1

]

. (154)

Now, p0 is the probability the bit is |0〉 and p1 the probability the bit is |1〉, p0 + p1 = 1. For a two
probabilistic bit system with |ψ〉 = [p0p1] and |φ〉 =

[
t0
t1

]
being independent bits,

|ψφ〉 = |ψ〉 ⊗ |φ〉 =








p0

[
t0
t1

]

p1

[
t0
t1

]







=







p0t0
p0t1
p1t0
p1t1






=







P[|00〉]
P[|01〉]
P[|10〉]
P[|11〉]






. (155)

You never see a probabilistic bit. The probabilistic bit |ψ〉 just represents our uncertainty about
what the bit is. When you “measure” the state, you will always see either the bit |0〉 or |1〉.

10.3 Quantum Bits

The leap from classical bits to quantum bits using the vector representation is trivial. We simply
replace probabilities with amplitudes and the state of a qubit is now a complex vector,

|ψ〉 =
[
a0
a1

]

, (156)

where a0 is the amplitude for |0〉 and a1 is the amplitude for |1〉. You never see a qubit. You only
“measure” a qubit, producing a bit, either |0〉 or |1〉. The probability to get |0〉 is ‖a0‖2, and the
probability to get |1〉 is ‖a1‖2, so ‖a0‖2 + ‖a1‖2 = 1. A general representation for a qubit is

|ψ〉 =
[

cos θ
eiφ sin θ

]

. (157)

For a two qubit system |ψ〉 = [a0a1] and |φ〉 = [b0b1], the joint state is

|ψφ〉 = |ψ〉 ⊗ |φ〉 =








a0

[
b0
b1

]

a1

[
b0
b1

]







=







a0b0
a0b1
a1b0
a1b1






;







P[|00〉]
P[|01〉]
P[|10〉]
P[|11〉]






=







‖a0b0‖2
‖a0b1‖2
‖a1b0‖2
‖a1b1‖2






; . (158)

Consider the joint state






a0b0
a0b1
a1b0
a1b1






=







1/
√
2

0
0

1/
√
2






. (159)

This is a valid set of amplitudes because their squared norms sum to 1. However, this state is not
the tensor product of two single qubit states. This is because a0b1 = 0 → a0 = 0 or b1 = 0, and
both cases are not possible: If a0 = 0 then a0b0 6= 1/

√
2; if b1 = 0 then a1b1 6= 1/

√
2. So this joint

state cannot be from two independent qubits. Such qubits are called entangled.

43

How do we implement a qubit in practice? The requirements are we need to create it and keep
it stable.3 We need to evolve the qubit according to a “quantum algorithm”. We need to measure
the final qubit without significantly perturbing the state. Some possibilities are:

• Electron orbits in small atoms. The ground-state orbit is |0〉 and the excited state is |1〉.
• Photon polarization, left-right or up-down (to store two states)
• Intrinsic spin, e.g., electron-spin is up or down in the direction of measurement.

The last word on implementing qubits is an ongoing research question.

10.4 Classical Computing Gates

Bits and qubits are both represented as vectors. Classical computing gates operate on input bits
to produce output bits. We show how to represent classical gates as matrices so that their action
on input bits can be implemented by multiplying the corresponding matrix with the input bits
represented as a vector. Let us begin with not,

|ψ〉 not |ξ〉

|0〉 → |1〉 |1〉 → |0〉
[
1
0

]

→
[
0
1

] [
0
1

]

→
[
1
0

]

(160)

The action of not can be implemented by the matrix

not =

[
0 1
1 0

]

. (161)

This is verified by

not

[
1 0
0 1

]

=

[
0 1
1 0

]

. (162)

The columns of the not are constructed directly from its action on the standard basis vectors,
which are the classical bits. not can now be applied to any state |ψ〉 = [a0a1],

not · |ψ〉 =
[
0 1
1 0

] [
a0
a1

]

=

[
a1
a0

]

. (163)

The action of not is simply to flip amplitudes. Let us now consider and,

|ψ〉
|φ〉 and |ξ〉

|00〉 → |0〉 |01〉 → |0〉 |10〉 → |0〉 |11〉 → |1〉






1
0
0
0






→
[
1
0

]







0
1
0
0






→
[
1
0

]







0
0
1
0






→
[
1
0

]







0
0
0
1






→
[
0
1

]

(164)

3Classical computing would be a disaster if bit were unstable and kept flipping at random.

44

The action of and can be implemented by the matrix

and =

[
1 1 1 0
0 0 0 1

]

. (165)

This is verified by

and







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






=

[
1 1 1 0
0 0 0 1

]

. (166)

The columns of the and are constructed directly from its action on the standard basis vectors (in
4-dimensions), which are the classical bits. and can now be applied to an arbitrary 2-bit state,

and · |ψ〉 =
[
1 1 1 0
0 0 0 1

]







a0
a1
a2
a3






=

[
a0 + a1 + a2

a3

]

. (167)

We leave it for the reader to show

or =

[
1 0 0 0
0 1 1 1

]

, nand = not · and =

[
0 1
1 0

] [
1 1 1 0
0 0 0 1

]

=

[
0 0 0 1
1 1 1 0

]

. (168)

10.5 Circuits

A circuit combines gates sequentially (in series) or in parallel. First let us consider sequential,

|ψ〉 a b |ξ〉
(169)

The linear operator for this circuit is obtained from the individual linear operators by multiplication,

|ξ〉 = BA|ψ〉. (170)

For the parallel case,

|ψ1〉

|ψ2〉

a

b

|φ1〉

|φ2〉 (171)

The linear operator for this circuit is obtained by using the tensor product,

|ψ1〉 ⊗ |ψ2〉 → A|ψ1〉 ⊗B|ψ2〉 = (A⊗B)(|ψ1〉 ⊗ |ψ2〉). (172)

We can combine sequential and parallel,

|ψ1〉

|ψ2〉

a1

b1

a2

b2

|φ1〉

|φ2〉 (173)

45

The linear operator for this circuit is a tensor product of products,

|ψ1〉 ⊗ |ψ2〉 → A2A1|ψ1〉 ⊗B2B1|ψ2〉 = (A2A1 ⊗B2B1)(|ψ1〉 ⊗ |ψ2〉). (174)

Let us do an example. Consider the circuit,

|ψ1〉

|ψ2ψ3〉

not

and

or |φ1〉
(175)

The linear operator for this circuit is or ·
(

not ⊗ and
)
, and the reader can verify that

or ·
(

not ⊗ and
)
=

[
0 0 0 0 1 1 1 0
1 1 1 1 0 0 0 1

]

. (176)

One last example. Often we apply a circuit, take some of the bits into one circuit and leave the
others alone. Suppose the input is n-bits, and the first circuit outputs m bits. We take the first p
of those m bits into another circuit and leave the others alone.

|ψ〉n a
b B|φ〉p

|φ〉m−p

|φ〉p

|φ〉m−p (177)

We can analyze this circuit as follows. The output of A is |φ〉p⊗ |φ〉m−p = A|ψ〉n. Then we operate
in parallel on |φ〉p and |φ〉m−p,

|φ〉p ⊗ |φ〉m−p → B|φ〉p ⊗ |φ〉m−p = B|φ〉p ⊗ I2m−p |φ〉m−p = (B ⊗ I2m−p) (|φ〉p ⊗ |φ〉m−p)
︸ ︷︷ ︸

A|ψ〉n

(178)

That is, parallel to B, we are implementing the identity. We have,

|φ〉p ⊗ |φ〉m−p → (B ⊗ I2m−p) ·A · |ψ〉n. (179)

This circuit is implemented by the linear operator (B ⊗ I2m−p) ·A.

46

11 Reversible Gates and Quantum Gates

We saw some classical gates. We now take the bridge over to quantum gates and prove our first
little result relating to quantum computing, namely no cloning. Let us begin with reversible gates.

11.1 Reversible Gates

not is reversible, from the output you can determine the input. and is not reversible. From the
output, you cannot always determine the input. If the output is |0〉, you do not know if the input
was |00〉, |01〉 or |10〉. Information is lost. Erasing information dissipates energy in the form of heat.
This is based on statistical thermodynamic considerations and the 2nd law of thermodynamics.
Here is an intuition of why erasing information dissipates energy. We show a bucket with two
compartments that can be used to store 1 bit of information, “left” or “right”. The bit starts “left”.

Open a hole in the middle barrier and water drains to the right-compartment. This water flow can
power a turbine generating energy until the water levels equalize, at which point we have erased
the information in the bit. We now can’t tell whether the bit started “left” or “right”. Erasing the
information dissipated the energy stored in the bit.

Bennet had the idea that if one could do computing with reversible processes, then energy is
not lost – the ultimate in green computing. Landaurer gave a lower bound on the minimum energy
dissipation in erasing a bit. The debate is still ongoing whether this lower bound can be achieved or
if reversible computation can be accomplished without energy input. Independent of this debate, it
is still interesting to see if we can construct reversible classical gates, and further, this is a first step
toward quantum gates which requires more than reversible. Quantum gates must also be unitary.

11.1.1 Controlled-not

Let us consider xor, which is not reversible,

xor =

[
1 0 0 1
0 1 1 0

]

. (180)

A useful trick to obtain reversible gates is to pass some of the input bits unchanged to the output
so that the computation is reversible. Here is the idea in action with xor,

|x〉

|y〉
Cnot

|x〉

|x⊕ y〉
(181)

We are computing the xor, but passing through |x〉 for the sole purpose of being able to reconstruct
the input given the output. This gate is called controlled-not, even though we are computing xor

47

(we will see why soon). The name is not important. You should convince yourself that if you ran
the output through another Cnot gate, you can recover the input,

|x〉

|y〉
Cnot

|x〉

|x⊕ y〉
Cnot

|x〉

|x⊕ x⊕ y〉
(182)

The reason we have recovered the input is because x ⊕ x ⊕ y = 0 ⊕ y = y. This gate is called
the controlled not, because when |x〉 = |1〉, the y-output gets negated, otherwise the y-output is
unchanged. Hence, whether y is negated is controlled by the value of x. This is the linear algebraic
equivalent of the “if. . . else” statement,

If |x〉 = |1〉 then flip |y〉, else keep |y〉.

What is the linear operator for Cnot. The action of Cnot on the standard basis vectors is

|00〉 → |00〉 |01〉 → |01〉 |10〉 → |11〉 |11〉 → |10〉, (183)

from which we get the operator,

Cnot =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






. (184)

This matrix is its own inverse, Cnot2 = I4. Controlling bits will be crucial in quantum algorithms.

11.1.2 Toffoli Gate

Another interesting reversible gate is the Toffoli gate, with two controlling bits to compute the xor,

|x〉

|y〉

|z〉

T

|x〉

|y〉

|z ⊕ (x ∧ y)〉
(185)

Using the action of T on the standard basis, you can construct the linear operator for T ,

T =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0















. (186)

48

Setting the inputs appropriately implements and, not and fan-out, as you can verify:

and not fan-out

|x〉

|y〉

|0〉

T

|x〉

|y〉

|x ∧ y〉

|1〉

|1〉

|z〉

T

|1〉

|1〉

|¬z〉

|1〉

|y〉

|0〉

T

|1〉

|y〉

|y〉
(187)

fan-out is essentially a copy operation. Given these three operations, we can implement any
Boolean circuit, since {and,not, fan-out} are a universal set of gates. In practice, and and not

alone are universal because we can implement fan-out by just splitting the wire (assuming bits
are implemented using voltage and curents). Not only is the Toffoli gate universal, the Toffoli gate
is its own inverse, T 2 = I8, and further T is unitary. There are other universal gates with these
properties, for example the Fredkin gate.

It is a useful exercise for the reader to construct the nand operation using one Toffoli gate, and
the or operation using two Toffoli gates.

11.2 Quantum Gates

Quantum gates are unitary operators that operate on qubits. From the theoretical perspective,
that’s all there is to it. However, from the practical perspective one has to consider what unitary
operators can be implemented efficiently by natural physical processes. So in classical computing,
we settled on nand because we can implement this gate very efficiently (space and time) using
semiconductor transistors. If we had not invented semiconductor transistors, the face of computing
in terms of what gates we use might look very different today.

So too with quantum gates. We will consider several quantum gates, and there are different
sets of universal gates – unitary operators. We can build algorithms by combining these universal
gates. But which algorithms will stand the test of time will depend on which quantum gates become
efficiently implementable, if any. Quantum computing is a marathon, not a sprint. The general
form of a unitary operator for one qubit, up to an overall phase, can be written

U =

[
r

√
1− r2eiφ1√

1− r2eiφ2 −rei(φ1+φ2)
]

(188)

Here are some example unitary operators for one qubit. Each is a valid quantum gate. Whether
these gates can be implemented on a massive scale using natural physical processes will not be our
concern. Among the operators we have already seen, the Hadamard, not, Cnot and Toffoli are
quantum gates (unitary). Just as a reminder, the Hadamard gate is

H =
1√
2

[
1 1
1 −1

]

. (189)

Some other valid quantum gates are:

σx =

[
0 1
1 0

]

σy =

[
0 −i
i 0

]

σz =

[
1 0
0 −1

]

R(θ) =

[
1 0
0 eiθ

]

(190)

49

The operator R(θ) shifts the phase of the amplitude for |1〉. The phase gate S = R(π/2) is a useful
special case because it plays a core role in the Gottesman-Knill theorem. This phase shift-operator
is useful for building larger gates from smaller ones.

An important difference between the quantum computing and classical computing worlds is
measurement. Measuring a qubit produces a classical bit |0〉 or |1〉. In such a case the qubit

collapses to the classical bit measured. We will denote this measurement operation ? ,

|ψ〉 =
[
a0
a1

]

?

|0〉

|1〉

prob ‖a0‖2

prob ‖a1‖2 (191)

The measurement operation is non-linear, non-unitary and non-reversible. It returns a classical bit
and also collapses the state to that classical bit.

11.2.1 Building Larger Gates

Any unitary operation on an n-qubit state is a valid quantum gate. But, we are not going to go
off and build a new massive quantum gate for every quantum algorithm. Instead, we would build a
small set of gates and combine those in various ways to get larger gates (unitary operators). This is
similar to what we do with classical circuits. We have the core universal gates, for example {nand},
and from those we can build circuits to implement arbitrary Boolean functions. In classical circuit
theory the interesting question is what Boolean functions can be implemented with polynomialy
many basic gates. A similar issue faces quantum computing. What unitary operators can be
implemented using a small set of core quantum gates, and can these unitary operators be classically
simulated efficiently. Relevant to these issues are the Solovay-Kitaev theorem and the Gottesman-
Knill theorem which we give at the end for informational completeness.

Let us begin with the operations for combining quantum gates (unitary operators). We can
combine serially, which is the product. We can combine in parallel, which is the tensor product.
There is one other important operation. We saw it before, namely controlling an operator with a
bit. If U is a quantum gate, we define the controlled-U , or CU as the quantum gate which does
nothing if the controlling bit is |0〉 and implements U if the controlling bit is |1〉. The controlled
gate is the quantum equivalent of the classical if . . . then . . . controlling mechanism which we are
all familiar with from classical programming. The circuit diagram below represents this operation,

|x〉

|y〉n

⊕

U

|x〉

(δx0I + δx1U)|y〉
(192)

If U =
[
a b
c d

]
, then by considering the action of CU on the standard basis |00〉, |01〉, |10〉, |11〉 we find

|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉
|0〉 ⊗ |1〉 → |0〉 ⊗ |1〉
|1〉 ⊗ |0〉 → |1〉 ⊗ U |0〉 = |1〉 ⊗ (a|0〉+ c|1〉)
|1〉 ⊗ |1〉 → |1〉 ⊗ U |1〉 = |1〉 ⊗ (b|0〉+ d|1〉).

(193)

50

The reader can now verify that

CU =







1 0 0 0
0 1 0 0
0 0 a b
0 0 c d






=

[
I 0
0 U

]

. (194)

In general, when |y〉 is an n-qubit state, adding the controlling bit doubles the size of the state and
the dimensions of the operator, producing the controlled operator

CU =

[
I2n 02n×2n

02n×2n U

]

. (195)

Notice, that since U is unitary, so is CU ,

(CU)†CU =

[
I2n 02n×2n

02n×2n U †

] [
I2n 02n×2n

02n×2n U

]

=

[
I2n 02n×2n

02n×2n U †U

]

= I2n+1 . (196)

Here are some of the basic one and two qubit quantum gates

I2, not, H1, R(cos−1(3/5)); I4,
Cnot, H2. (197)

It turns out that these gates are universal, in that they can be combined to approximate any unitary
operator within accuracy ǫ. The number of gates needed is O(4n log(1/ǫ)), which is essentially the
content of the Solovay-Kitaev theorem. The Gottesman-Knill theorem says that if you combine
only Cnot, H,R(π/2), which are generators of the Clifford algebra, then this quantum gate can be
polynomialy simulated on a classical computer.

11.2.2 Practice

To get some practice with quantum gates and building unitary operators from basic quantum gates,
see if you can use combine the gates in (197) to implement the unitary operator in (216) on page
55. Remember that a controlling bit can be used to operate on the other bits in one case and not
in another. A controlling bit is the quantum equivalent of the if . . . then We suggest you try
to interpret and analyze the following circuit, where x, y, z are bits.

|x〉

|y, z〉

⊕ not ⊕ not

Cnot I2 ⊗ not

|ψ〉

|φ, ξ〉
(198)

You may review the mechanics of a controlling bit in the discussion before eq. (192) on page 50.
More generally, Let A and B be two unitary operators on n bits. A and B are 2n× 2n matrices.

Show how to use a controlling bit to implemet the unitary operator

[
A 02n×2n

02n×2n B

]

(199)

51

11.3 No Cloning Theorem

Before the fancy quantum stuff starts, let us first see one limitation of quantum gates. In classical
computing you can move or copy a file (bits). In quantum computing, you can only move, not copy.
Star Trek got it right. When Kirk teleports down to a plannet the copy of Kirk on the Enterprise
must disappear. In quantum computing, cut-and-paste is possible but copy-and-paste is not.

Theorem 11.1 (No Cloning). There is no unitary operator that can copy a quantum state exactly.

Let’s prove this. In general, what would it mean to clone a qubit. Something like:

|x〉 ⊗ |0〉 U→|x〉 ⊗ |x〉. (200)

You have a joint state with two qubits. The first state is the qubit you would like to clone, and the
second starts in some default state, say |0〉. Under the action of U , the second qubit becomes an
exact copy of x. Let us consider an arbitrary state |x〉 = c0|0〉+ c1|1〉.

U((c0|0〉+ c1|1〉)⊗ |0〉) = (c0|0〉+ c1|1〉)⊗ (c0|0〉+ c1|1〉) (201)

=

[
c0
c1

]

⊗
[
c0
c1

]

=







c20
c0c1
c1c0
c21






. (202)

But, U is a linear operator and tensor product is also a linear operator, so

U((c0|0〉+ c1|1〉)⊗ |0〉) = U(c0|0〉 ⊗ |0〉+ c1|1〉 ⊗ |0〉) (203)

= U(c0|0〉 ⊗ |0〉) + U(c1|1〉 ⊗ |0〉) (204)

= c0|0〉 ⊗ c0|0〉+ c1|1〉 ⊗ c1|1〉 (205)

=

[
c0
0

]

⊗
[
c0
0

]

+

[
0
c1

]

⊗
[
0
c1

]

=







c20
0
0
c21






. (206)

The first step is because the tensor product is linear; the second step is because U is linear; the
third step is by definition of the copy operator. We have a contradiction (two different expressions
for the same quantity) unless one of c0 or c1 are zero, in which case we are cloning a classical bit.
No linear operator can clone an arbitrary qubit, but you can clone classical bits (e.g., the Toffoli
gate).

52

12 Unitary Operator for Classical Functions

The basic framework for a typical quantum algorithm is:
1. Initialize qubits into pure classical states.
2. Place the qubits into a superposition of states.
3. Run the quantum algorithm (unitary operator) on the superposition of states.
4. Measure the final qubits to get the answer.

In theory steps 2 and 3 can be represented by a single unitary operator. But, step 2 is often generic,
whereas step 3 is the one which will depend intricately on the problem we are solving, hence we
keep them separate. In a typical problem we have some classical Boolean function f and we ask
some question of this function. The main speedup from quantum algorithms comes from step 2. By
running the function on a superposition of classical input states, the algorithm somehow gets global
information about f on all inputs. This is because of linearity. When f is applied to a superposition,
you get the superposition of the outputs when f is individually applied to each classical state. So,
we get information about f on all these classical states simultaneously. The task is then to unravel
all this data to get the information we need to answer the question about f .

If you want a simple analogy from the physical world, go outside to take a look around. You
have just one eye (okay two eyes), but play along, or just close one eye. This eye is receiving
all the electromagnetic radiation bouncing off every object. All these EM rays are simultaneously
hitting every retinal cell from every object. So, your eye is applying the “get-EM-radiation”-function
simultaneously to every object in your environment. You then untangle all this data simultaneously
arriving from every object to get specific information about specific objects, like the red bird is 2
meters away at my 2-o’clock.

We will motivate the general workflow with a simple, albeit contrived, example. First, what is
the analog of a Boolean function in the quantum realm? An arbitrary Boolean function will rarely
be invertible, let alone unitary. This won’t do in the quantum realm, because quantum gates are
unitary. Our first task will be to convert the Boolean function into a unitary operator, and then
extract whatever property we need about f from this unitary operator.

12.1 The Deutsch-Jozsa Problem

Let f be a Boolean function on n bits, f : {0, 1}n 7→ {0, 1}. The function is constant if f(x) = |0〉
for all x ∈ {0, 1}n or f(x) = |1〉 for all x ∈ {0, 1}n. The function is balanced if f(x) = |0〉 for half
of the x ∈ {0, 1}n and f(x) = |1〉 for the other half.

Of course there are all kinds of other functions in between balanced and constant. Note that
there are 22

n
Boolean functions on n bits. Here are the 4 Boolean functions on 1 bit together with

the linear operator for each function:

f00 f01 f10 f11

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

Constant Balanced Balanced Constant
[
1 1
0 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 0
1 1

]

(207)

53

The task is to determine if the function is balanced or constant, assuming it is one of the two. The
function f is given as a black box linear operator. You cannot see inside the black-box. You can,
however, apply the function to any input, and using as few function evaluations as possible, you
must determine if f is constant or balanced. Here is an algorithm for the one bit case, n = 1.

f(0)?

f(1)? f(1)?

constant balanced balanced constant

0 1

0 1 0 1

(208)

The algorithm needs to use the black box for f two times. For the general n bit case, evaluate f on
any 1+ 2n−1 different n-bit inputs. If the function ever outputs two different values, it is balanced.
Otherwise it is constant. This is exponentially many evaluations. A randomized algorithm is to
choose k random n-bit inputs. If f is constant on these k inputs say constant, otherwise balanced.
When you say balanced you will always be right. When you say constant, the chances you are
wrong is 1/2k−1. The baby miracle of the day is a quantum algorithm that only needs to use the
black box for f once. By applying f just once, it is able to get information about f on all inputs.

12.2 Converting Boolean Functions to Unitary Operators

The Deutsch-Josza problem is well defined, but it is not yet fit for the quantum realm because as
we saw earlier, the function f may not be a unitary operator. Not to worry. One can represent any
Boolean function as a unitary operator that effectively computes the function. To do this, we use a
controlling bit. The general setup for a classical function taking an n-bit input is

|x〉n f |f(x)〉
(209)

For n > 1, such a function takes n bits to one bit and hence cannot be invertible, let alone unitary.
We define a unitary implementation of f using a controlling bit z, similar to the way we defined
Cnot. This unitary implementation is Uf ,

|x〉n

|z〉
Uf

|x〉n

|z ⊕ f(x)〉
(210)

Let’s examine all the ingredients in this construction. First, the number of input bits is n + 1
and the same for the number of output bits. For Uf to be reversible, the output must contain
information about |z〉 and |x〉n. Clearly |x〉n can be reconstructed, and information about z is in
the (n + 1)th bit. The function f is also accessible in Uf by simply setting |z〉 = |0〉. The first
n qubits are referred to as the input qubits or input registers. The bottom qubit is the output
register, because that is where all the information about f(x) is stored. However, that is only the
case when a classical pure state is fed into Uf . As we will see, something strange happens when Uf

54

operates on a superposition. First, lets show that Uf is invertible. Indeed, Uf is its own inverse,

|x〉n

|z〉
Uf

|x〉n

|z ⊕ f(z)〉
Uf

|x〉n

|z ⊕ f(x)⊕ f(x)
︸ ︷︷ ︸

|0〉

〉

(211)

The final output is |x〉n⊗ |z〉 because |z〉⊕ |0〉 = |z〉. Let us now show that Uf is unitary no matter
what the Boolean function f is (Uf is also real and hermitian). To see this, let us work with a
concrete case. In general an n-bit Boolean function is a linear operator that maps C

2n 7→ C
2, and

hence is a 2× 2n matrix. Consider the two-bit Boolean function

|00〉 → |1〉, |01〉 → |1〉, |10〉 → |0〉, |11〉 → |1〉, (212)

From the action of f on the standard basis, we get the linear operator

f =

[
0 0 1 0
1 1 0 1

]

. (213)

The action of Uf is given by

|x, z〉 Uf→ |x, z ⊕ f(x)〉. (214)

The action of Uf on the standard basis vectors is given by

|000〉→|001〉
























1
0
0
0
0
0
0
0

















































0
1
0
0
0
0
0
0

























|001〉→|000〉
























0
1
0
0
0
0
0
0

















































1
0
0
0
0
0
0
0

























|010〉→|011〉
























0
0
1
0
0
0
0
0

















































0
0
0
1
0
0
0
0

























|011〉→|010〉
























0
0
0
1
0
0
0
0

















































0
0
1
0
0
0
0
0

























|100〉→|100〉
























0
0
0
0
1
0
0
0

















































0
0
0
0
1
0
0
0

























|101〉→|101〉
























0
0
0
0
0
1
0
0

















































0
0
0
0
0
1
0
0

























|110〉→|111〉
























0
0
0
0
0
0
1
0

















































0
0
0
0
0
0
0
1

























|111〉→|110〉
























0
0
0
0
0
0
0
1

















































0
0
0
0
0
0
1
0

























(215)

We can now immediately write down the matrix for Uf ,

Uf =















0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0















=
















not 02×2 02×2 02×2

02×2 not 02×2 02×2

02×2 02×2 I2 02×2

02×2 02×2 02×2 not
















. (216)

Observe that Uf has a very nice structure. It is block-diagonal, composed of (2×2)-blocks along the
diagonal, 2n of them. Each block is either not or I2. If the first n bits of the corresponding state
map to 1, the block is not, otherwise the block is I2. You should convince yourself that this block-
diagonal structure is true in general for any Boolean function on n-bits. From this block-diagonal
structure, you should be able to prove that Uf is real, hermitian and unitary.

55

Summary. In the classical world, f is given as a black-box linear operator. In the quantum
world we construct a unitary operator Uf from f using a controlling bit z. Uf is a black box
unitary operator implemented by some collection of quantum gates (physical processes). I cannot
tell you what those physical processes are – that is, what will quantum hardware look like, but
who cares. Lets build quantum algorithms based off unitary operators and hope that some day
we can implement these algorithms on quantum hardware. If the quantum hardware (gates) are
very different from what we assume here, you will we have the necessary machinary to adapt your
algorithms to whatever the quantum hardware be. Just as you learned to program in Pascal. It’s
no biggie to program those same algorithms in C++ or Python.

56

13 Testing Balance of 1-bit Functions

Recall the Deutsch-Jozsa problem for 1-bit Boolean functions. Here are the four possible functions,

f00 f01 f10 f11

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

|0〉

|1〉

Constant Balanced Balanced Constant
[
1 1
0 0

] [
1 0
0 1

] [
0 1
1 0

] [
0 0
1 1

]

(217)

A function f is given as a black box,

|x〉 f |f(x)〉
(218)

The task is to determine if f is balanced or constant. A classical algorithm evaluates f twice, on
the two possible inputs |0〉 and |1〉. In the quantum realm, the function is given as a quantum black
box unitary operator Uf ,

|x〉

|z〉
Uf

|x〉

|z ⊕ f(x)〉
(219)

The unitary operator Uf is a 4× 4 matrix. The idea behind a quantum algorithm is to evaluate Uf
on a superposition of states. This gives global information about f on all possible inputs. The task
is to then untangle this information and see if we can figure out whether f is balanced or constant.
Take as an analogy the eye which gathers, in one shot, the electromagnetic signals from your entire
environment, from all the objects. Then your brain unravels this superposition of EM-signals to
conclude specific information about specific objects in specific locations.

Let’s warmup with a simple computation,

|0〉

|1〉
Uf

|0〉

|f(0)〉
(220)

Clearly, this computation gives only information about f(0), if we measure the bottom bit.

13.1 Applying Uf to Superpositions

Let’s now consider a superposition for the top bit,

1√
2
(|0〉+ |1〉)

|1〉
Uf

?

? (221)

57

Let’s work out what the output is. The input state is (|0〉 + |1〉)/
√
2 ⊗ |1〉, and using linearity of

the tensor product, the input is

1√
2
|0〉 ⊗ |1〉+ 1√

2
|1〉 ⊗ |1〉 = 1√

2
|0, 1〉+ 1√

2
|1, 1〉. (222)

You should work out what this input is as a vector. Now, since Uf is a linear operator, we have

Uf

(
1√
2
|0, 1〉+ 1√

2
|1, 1〉

)

=
1√
2
Uf (|0, 1〉) +

1√
2
Uf (|1, 1〉) (223)

=
1√
2
|0, f(0)〉+ 1√

2
|1, f(1)〉 (224)

This is an interesting state. If the function is constant, then the output state is a tensor product,
but if the function is balanced, then the output is entangled. Hence, we already see qualitatively
different behavior depending on whether the function is balanced or constant. Let us consider a
superposition for the first bit,

|0〉

1√
2
(|0〉 − |1〉)

Uf

?

?
(225)

Again, we can use linearity of the tensor product to identify the input as

1√
2
|0, 0〉 − 1√

2
|0, 1〉. (226)

Applying Uf to this and using linearity, the output is

1√
2
Uf (|0, 0〉)−

1√
2
Uf (|0, 1〉) =

1√
2
|0, f(0)〉 − 1√

2
|0, f(0)〉 (227)

=

{
1√
2
(|0, 0〉 − |0, 1〉) f(0) = 0

−1√
2
(|0, 0〉 − |0, 1〉) f(0) = 1

(228)

=
(−1)f(0)√

2
(|0, 0〉 − |0, 1〉). (229)

=
(−1)f(0)√

2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉). (230)

=
(−1)f(0)√

2
|0〉 ⊗ (|0〉 − |1〉). (231)

The reader should verify/justify every step in the derivation above. The last step uses linearity of
the tensor product. Let’s go all out and see what happens with a superposition on both input bits,

1√
2
(|0〉+ |1〉)

1√
2
(|0〉 − |1〉)

Uf

?

?
(232)

58

The input is 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉 − |1〉). By linearity of the tensor product, this input is

1

2
|0, 0〉 − 1

2
|0, 1〉+ 1

2
|1, 0〉 − 1

2
|1, 1〉. (233)

Applying Uf to this input and using linearity of Uf , we get

1
2Uf (|0, 0〉)− 1

2Uf (|0, 1〉) + 1
2Uf (|1, 0〉)− 1

2Uf (|1, 1〉)

= 1
2 |0, f(0)〉 − 1

2 |0, f(0)〉+ 1
2 |1, f(1)〉 − 1

2 |1, f(1)〉 [definition of Uf]

= (−1)f(0)

2 (|0, 0〉 − |0, 1〉) + (−1)f(1)

2 (|1, 0〉 − |1, 1〉) [Check this]

= (−1)f(0)

2 (|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉) + (−1)f(1)

2 (|1〉 ⊗ |0〉 − |1〉 ⊗ |1〉) [joint state tensor product]

= (−1)f(0)

2 |0〉 ⊗ (|0〉 − |1〉) + (−1)f(1)

2 |1〉 ⊗ (|0〉 − |1〉) [tensor product linearity]

=
1√
2

(

(−1)f(0)|0〉+ (−1)f(1)|1〉
)

︸ ︷︷ ︸

top qubit

⊗ 1√
2
(|0〉 − |1〉)

︸ ︷︷ ︸

bottom qubit

[tensor product linearity]

(234)
Again, the reader should verify every step in the derivation above. The intersting point is that
the output is a tensor product, that is, we can clearly identify the top qubit output state and the
bottom qubit output state. The output qubits are not entangled,

1√
2
(|0〉+ |1〉)

1√
2
(|0〉 − |1〉)

Uf

1√
2

(
(−1)f(0)|0〉+ (−1)f(1)|1〉

)

1√
2
(|0〉 − |1〉)

(235)

Notice that the top output qubit contains information about both f(0) and f(1). Interestingly, the
state of the bottom qubit has been left unchanged. This might be counterintuitive. In the definition
of Uf it left the top bits unchanged. That was the definition of Uf for classical bits. Here we see
that when Uf operates on general qubits, it may not leave the top qubit unchanged. In the end,
Qf is just a unitary operator. Its action on classical bits just serves to define how Uf operates on
a basis, which completely defines the linear operator. This linear operator is a matrix, and we can
always convert the input to a vector and apply the matrix to the vector. Our analysis above gives
the result. It is imperative for the reader to work through the details of the next example.

Example 13.1. Let f be f11 from the begining of the lecture.
1. Show that

Uf =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







(236)

59

2. Show that the input and output to Uf in (235) are the vectors

|input〉 =







1/2
−1/2
1/2
−1/2






, |output〉 =







−1/2
1/2
−1/2
1/2






. (237)

3. Verify the following computation,

Uf · |input〉 =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0













1/2
−1/2
1/2
−1/2






=







−1/2
1/2
−1/2
1/2






= |output〉. (238)

13.2 Untangling the Output

We now know how Uf acts on superpositions. Let’s get back to the problem at hand, to determine
if f is balanced. The recap of where we are is:

1√
2
(|0〉+ |1〉)

1√
2
(|0〉 − |1〉)

Uf

1√
2

(
(−1)f(0)|0〉+ (−1)f(1)|1〉

)

1√
2
(|0〉 − |1〉)

(239)

We can now relate to the human eye which receives all the EM-rays from the environment. We need
to untangle the signal. In our case, the signal is the top qubit which contains information about f
on all inputs. So, let’s measure the top qubit. The result is |0〉 with probability 1/2 and |1〉 with
probability 1/2. That’s no help, because the result of the measurement is independent of f , even
though the top bit is dependent on f . Let’s take a closer look at the top qubit in the output,

1√
2

(

(−1)f(0)|0〉+ (−1)f(1)|1〉
)

=

[
(−1)f(0)/

√
2

(−1)f(1)/
√
2

]

. (240)

Recall the Hadamard matrix,

H =
1√
2

[
1 1
1 −1

]

. (241)

What happens if we hit this top qubit with the Hadamard matrix,

1√
2

[
1 1
1 −1

] [
(−1)f(0)/

√
2

(−1)f(1)/
√
2

]

=
1

2

[
(−1)f(0) + (−1)f(1)

(−1)f(0) − (−1)f(1)

]

(242)

=







[

±1

0

]

f is constant

[

0

±1

]

f is balanced

(243)

We are at the punchline. The Hadamard matrix is the great untangler of superpositions. By
applying the Hadamard matrix to the top qubit, it has untangled the superposition of information

60

to always give a pure state, a classical bit. If you measure the top qubit after applying the great
untangler, you will always measure |0〉 if f is constant, and you will always measure |1〉 if f is
balanced. Done! We have a way to test if f is balanced by evaluating f , i.e. applying Uf , once.

13.3 Quantum Circuit for 1-bit Deutsch-Jozsa

The final quantum algorithm that achieves the miracle of testing if a function is balanced using just
one evaluation of the function is represented in the following circuit.

1√
2
(|0〉+ |1〉)

1√
2
(|0〉 − |1〉)

Uf

H ?

(244)

Recall that ? is the measurement operation. So, the circuit above indicates that we apply H to the
top qubit and then measure the top qubit. We would be done, except for a practical consideration.
We evaluate Uf on a joint state which is a superposition. However, we cannot in general create
arbitrary qubit states, in particular the superpositions that are input into Uf . It is easy to create
pure states, i.e. classical bits. For example if electron spin is how we are encoding the bit, then the
bit can be set to | ↑〉 by appropriately setting a magnetic field, and similarly for | ↓〉.

How do we get these superposition states to feed into Uf , given that we can only start with pure
classical bits. We need to apply some unitary operator to the classical states, and also hope that
unitary operator can be implemented as a quantum gate by some physical process. Luckily we do
not need to look too far for this unitary operator. The Hadamard will do, because note that,

H|0〉 =
1√
2

[
1 1
1 −1

] [
1
0

]

=

[
1/
√
2

1/
√
2

]

=
1√
2
(|0〉+ |1〉) (245)

H|1〉 =
1√
2

[
1 1
1 −1

] [
0
1

]

=

[
1/
√
2

−1/
√
2

]

=
1√
2
(|0〉 − |1〉). (246)

These are exactly what we need. So the mighty Hadamard is not only the great untangler of
superposed states, but it is also the great creator of superposed states. The final quantum circuit
to solve the 1-bit Deutsch Jozsa problem is

|0〉

|1〉

H

H

Uf

H ?

(247)

We can now write down the unitary operator that corresponds to the circuit above,

(H⊗ I) · Uf · (H⊗H). (248)

Note that H ⊗ H is a 4 × 4 Hadamard matrix. We are applying this unitary operator to |0〉 ⊗ |1〉,
but this operator can be applied to any input |ψ〉. The next exercise is imperative.

Example 13.2. Compute the operator in (248) for f11 in Example 13.1. Apply this operator to
the input |0〉 ⊗ |1〉 = [0, 1, 0, 0]t. Explain how the output vector agrees with the top bit being |0〉.

61

14 Quantum Circuits

We just saw our first quantum circuit that tests balance of 1-bit function,

|0〉

|1〉

H

H

Uf

H ?

(249)

Let us briefly discuss building and analyzing quantum circuits. We must guess what gates will be
stantard when quantum hardware is widely available. Presumably these gates will be stable and
implemented in some physical quantum substrate, much like today we implement Boolean logic
gates like nand in semiconductors. With no other guide, let us focus on some useful gates,

I =

[
1 0
0 1

]

; not =

[
0 1
1 0

]

; H =
1√
2

[
1 1
1 −1

]

; R(θ) =

[
1 0
0 eiθ

]

. (250)

Additionally, we one can multiply by a phase eiφ,4 use a control bit to control the output of a gate,
and also take the controlled xor of output qubits (all these operations are unitary). We already saw
the use of controlling bits, and we used the controlled xor when we converted a Boolean function
f to its unitary equivalent Uf . Using these standard gates plus the additional operations, we can
pretty much implement any unitary operator we need. We address two tasks:

1. Given a quantum circuit that uses the standard gates and controlling inputs, what does it do.
That is, what is the unitary operator it implements.

2. Given a task, i.e., a unitary operator, find a circuit that implements the operator.
As we discuss several examples, we will also see conventions for graphically defining the circuits.

14.1 Finding the Operator for a Circuit

Let U be the unitary operator
[
a b
c d

]
. The operator U operates on 1 qubit. We start with a simple

example, the quantum equivalent of if. . . else. . . , the controlled U in (192) on page 50,

|x〉

|y〉

⊕

U

|x〉

x = 0 → |y〉
x = 1 → U |y〉

(251)

The bottom qubit outputs |y〉 if x = 0. The output is U |y〉 if x = 1. U only operates when x = 1.
To analyze this circuit, we apply it to the standard basis |00〉, |01〉, |10〉, |11〉,

|00〉 → |00〉 =









1
0
0
0









|01〉 → |01〉 =









0
1
0
0









|10〉 → |1〉 ⊗

[

a

c

]

=









0
0
a

c









|11〉 → |1〉 ⊗

[

b

d

]

=









0
0
b

d









. (252)

We can now write down the operator for controlled-U ,

CU =







1 0 0 0
0 1 0 0
0 0 a b
0 0 c d






=

[
I 0

0 U

]

. (253)

4This is just unitary evolution according to a constant Hamiltonian.

62

Let us use this method for several similar examples. What if we flip the controlling bit and U ,

|x〉

|y〉

U

⊕
(254)

Verify that the standard basis transforms as

|00〉 → |00〉 =









1
0
0
0









|01〉 →

[

a

c

]

⊗ |1〉 =









0
a

0
c









|10〉 → |10〉 =









0
0
1
0









|11〉 →

[

b

d

]

⊗ |1〉 =









0
b

0
d









. (255)

We can now write down the operator,







1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d






. (256)

What if we negate the controlling bit first,

|x〉

|y〉

not ⊕

U (257)

|00〉 → |1〉 ⊗

[

a
c

]

=









0
0
a

c









|01〉 → |1〉 ⊗

[

b

d

]

=









0
0
b

d









|10〉 → |00〉 =









1
0
0
0









|11〉 → |01〉 =









0
1
0
0









. (258)

We can now write down the operator,







0 0 1 0
0 0 0 1
a b 0 0
c d 0 0






=

[
0 I
U 0

]

. (259)

This is not quite the equivalent of if not x . . . because x is negated at the end. To get a true
negatively controlled U , we can negate x back to its original bit after it has done its controlling,

|x〉

|y〉

not ⊕ not

U (260)

|00〉 → |0〉 ⊗

[

a
c

]

=









a

c

0
0









|01〉 → |0〉 ⊗

[

b

d

]

=









b

d

0
0









|10〉 → |10〉 =









0
0
1
0









|11〉 → |11〉 =









0
0
0
1









. (261)

63

We can now write down the operator,






a b 0 0
c d 0 0
0 0 1 0
0 0 0 1






=

[
U 0

0 I

]

. (262)

One final example which we leave to the reader. If we negate only after controlling,

|x〉

|y〉

⊕ not

U (263)

show that the resulting operator is
[
0 U
I 0

]
. So, given any operator U , we see that we can construct

the following four operators using either controlling bits or negated controlling bits,
[
I 0

0 U

] [
0 I
U 0

] [
U 0

0 I

] [
0 U
I 0

]

. (264)

Let us find the operator for this complicated circuit,

|x〉

|y〉

H

H

⊕

⊕

not

U (265)

Note the use of two controlling bits simultaneously. That is perfectly fine. Let us try to figure out
what happens when we hit the basis vector |00〉 with this circuit. The first “level” of the circuit
produces H|0〉 ⊗ H|0〉. That was easy enough. But now when we feed this to the second “level”, it
is not clear what happens.

We saw that the circuit has two levels in sequence. The action plan is to figure out the operator
for each level, and then we get the operator for the whole circuit by multiplying. The operator for
the first level is easy, it is just H⊗H.

Let is see what happens if the standard basis is fed directly into the second level,

|00〉 → |00〉 |01〉 → not|0〉 ⊗ |1〉 |10〉 → |1〉 ⊗ U |0〉 |11〉 → not|1〉 ⊗ U |1〉. (266)

We can now write down the operator for the second level,






1 0 0 b
0 0 0 d
0 0 a 0
0 1 c 0






. (267)

Note that this is not a unitary operator unless U is diagonal, so it could not be implemented by a
quantum mechanical circuit. Nevertheless, it is a useful exercise to flex our muscles. The (generally
non-unitary) operator for the circuit is then







1 0 0 b
0 0 0 d
0 0 a 0
0 1 c 0






· (H ⊗H). (268)

64

14.2 Building a Circuit for an Operator

Finding the circuit for an operator is like computer programming. Writing a program to solve
a problem requires creativity. There is no prescription. And so it is with quantum computer
programming. Given a unitary operator that solves a task, one has to use some creativity to find a
circuit to implement the operator. There are some useful tricks to know, starting with (264). Here
are a few more tricks. Given n-qubit unitary operators A,B, we can get

[
A 0

0 B

]

(269)

using the trick
[
A 0

0 B

]

=

[
A 0

0 I

] [
I 0

0 B

]

=

[
I 0

0 B

] [
A 0

0 I

]

. (270)

We know circuits for both operators on the right (see (264)) which we run in sequence. Consider

[
0 A
B 0

]

(271)

(It is a useful exercise to show that this operator is indeed unitary.) We use the identity

[
0 A
B 0

]

=

[
0 I
I 0

] [
B 0

0 A

]

. (272)

The first operator on the RHS is not ⊗ I. Applying these in sequence gives this circuit for
[
0 A
B 0

]
,

[
0 A
B 0

]

:
|x〉

|y〉

⊕ not ⊕

A B

(273)

Verify the circuit above. Practice makes perfect. Try to construct a circuit for this operator,

U =















0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0















(274)

65

15 Testing Balance of n-bit Functions

Assume the n-qubit function f is either balanced or constant. Recall that Uf is the 2n+1 × 2n+1

unitary operator that is equivalent to f . A simple extension of the circuit that tested balance of a
1-bit function is

|0〉n

|1〉

Hn

H

Uf

Hn ?
|φ1〉

|φ2〉

|ψ〉

(275)

It is going to be a heavy linear algebra lift to figure out what this circuit is doing. The only way to
learn this stuff is to work the algebra yourself.

15.1 Deutsch-Jozsa Algorithm

Let’s analyze this circuit in the two cases, f is constant and f is balanced. First note that the input
to the first Hn is |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 = |00 · · · 0〉 which is the first standard basis vector. Therefore
Hn|0〉n is just the first column of Hn. We know that the first column of Hn is just a 2n-vector of
1’s, normalized. Hence,

|φ1〉 = Hn|0〉n =
1

2n/2












1
1
1
...
1
1












=
1

2n/2

2n∑

i=1

ei =
1

2n/2

∑

x∈{0,1}n
|x〉. (276)

The RHS is simply a statement that Hn is the great entangler, constructing a uniform superposition
of every possible n-bit pure state starting from |0〉. A much simpler computation gives

|φ2〉 = H|1〉 = 1√
2

[
1 1
1 −1

] [
0
1

]

=
1√
2
(|0〉 − |1〉). (277)

Therefore, the input to Uf is

|φ1〉 ⊗ |φ2〉 =




1

2n/2

∑

x∈{0,1}n
|x〉



⊗ 1√
2
(|0〉 − |1〉) (278)

=
1

2n/2

∑

x∈{0,1}n
|x〉 ⊗ 1√

2
(|0〉 − |1〉) (279)

In the last step we used linearity of the tensor product. We now apply Uf to this sum of tensor
products to get |ψ〉. Using linearity of Uf , we get

1

2n/2

∑

x∈{0,1}n
Uf

(

|x〉 ⊗ 1√
2
(|0〉 − |1〉)

)

. (280)

66

Recall that |x〉 is a classical pure state, a standard basis vector. We have

Uf

(

|x〉 ⊗ 1√
2
(|0〉 − |1〉)

)

=
1√
2
Uf (|x〉 ⊗ |0〉 − |x〉 ⊗ |1〉) (281)

=
1√
2
Uf (|x〉 ⊗ |0〉)− 1√

2
Uf (|x〉 ⊗ |1〉) (282)

=
1√
2
|x〉 ⊗ |f(x)〉 − 1√

2
|x〉 ⊗ |f(x)〉 (283)

= (−1)f(x)|x〉 ⊗ |0〉 − |1〉√
2

(284)

The first step uses linearity of tensor product; the second step uses linearity of Uf ; the third step
uses the definition of Uf , because |x〉 is a classical pure state; the last step is for the reader to verify,
depending on whether f(x) = 0 or f(x) = 1. Plugging this back into the expression for the output
from Uf , we get

1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x〉 ⊗ |0〉 − |1〉√

2
(285)

=




1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x〉



⊗ |0〉 − |1〉√
2

, (286)

where the last step uses linearity of the tensor product. The state on the top n output qubits is

|ψ〉 = 1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x〉. (287)

and the state on the bottom output is

1√
2
(|0〉 − |1〉). (288)

In terms of the circuit diagram, here is where we are,

|0〉n

|1〉

Hn

H

Uf

1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x〉

|0〉 − |1〉√
2 (289)

Something strange. All of the information about f is in the input registers, even though Uf was
designed with the information about f in the output bit. This is one of the strange things that
can happen when an operator hits a superposition of states. For a pure classical state as input, the
information about f would be in the output qubit. This is not so when the input is a superposition.

To get the final output of the top n qubits, we hit |ψ〉 with Hn, now acting as the great untangler.
Let’s first consider the case where f is constant. Then

|ψ〉 = ± 1

2n/2

∑

x∈{0,1}n
|x〉 = ±Hn|0〉, (290)

67

where the ± depends on whether f(x) = 0 or f(x) = 1. In this case, Hn|ψ〉 is given by

Hn|ψ〉 = ±H2
n|0〉 = ±|0〉, (291)

because H2
n = I. So, when we measure the top n qubits, they will all be zero, because no other

classical state has non-zero amplitude. Let’s see what happens if f is balanced. In this case Hn|ψ〉
is complicated. Let us write

|ψ〉 = 1

2n/2










ψ1

ψ2

ψ3
...
ψ2n










(292)

Each ψi is ±1 because |ψ〉 is a linear combination of all the basis vectors with each amplitude being
(−1)f(xi)/2n/2. Since f is balanced, half of the ψi are +1 and the other half are −1. This means
1t|ψ〉 = 0. This is interesting, because when we consider Hn|ψ〉, we get

Hn|ψ〉 =
1

2n/2










ht

1

ht

2

ht

3
...

ht

2n



















ψ1

ψ2

ψ3
...
ψ2n










. (293)

The ht

i are the rows of Hn. The first entry in Hn|ψ〉 is the amplitude for the first basis vector
|000 · · · 0〉. So, the first entry in Hn|ψ〉 is the amplitude for the pure state |000 · · · 0〉. The first row
of Hn is all ones, ht

1 = 1t. Because 1t|ψ〉 = 0, Hn|ψ〉 has zero in its first entry,

Hn|ψ〉 =










0
?
?
...
?










. (294)

While we do not know the other entries in Hn|ψ〉, the fact that the first entry is 0 is huge. It means
the amplitude to measure all bits 0 is zero when f is balanced. If f is balanced, at least one of the
measured bits will be 1. If f is constant, all measured bits will be 0. We have our algorithm:

1: Run the circuit.
2: Measure the top n qubits.
3: if all qubits are 0 then
4: f is constant.
5: else
6: f is balanced.

Our analysis proves the algorithm works. Yes, the problem is contrived, requiring the function to
be either constant or perfectly balanced. It is interesting to analyze other cases. We have our first
quantum algorithm. With one function evaluation it tests balance, where the classical algorithm
requires 2n−1 + 1 function evaluations. That is an exponential gain.

68

However, is it really. If we are to implement this circuit by explicitly encoding Uf then all
efficiency gains are lost since Uf is exponential in size. The information theoretic gain is still there,
though, that one function “evaluation” suffices. The quantum gains come when the function is
specified directly as Uf using a small circuit, implemented using basic quantum gates. By one
application of this circuit, we test if f is balanced or constant. There is no information paradox
here. We traded 1-bit of information of f on some input with 1-bit of information regarding the
relationships between f on several inputs. In both cases, we have received just 1-bit of information.

69

16 Philosophy of Quantum Algorithms

Let’s take stock. A quantum algorithm somehow miraculously gets global information about a
Boolean function f by simultaneously evaluating it on all possible inputs at once. To accomplish
this, the typical first step is to place the starting pure state into an appropriate superposition of all
the pure states. Here is an example,

|0〉n

|0〉

Hn
Uf

|φ〉

(295)

The input to Uf is |φ〉 ⊗ |0〉, where

|φ〉 = 1

2n/2

∑

z∈{0,1}n
|z〉. (296)

The sum is over all n-bit pure states. The definition of Uf for pure states is

Uf (|z〉 ⊗ |0〉) = |z〉 ⊗ |f(z)〉. (297)

Using linearity of Uf and tensor product, we find that the output is

|output〉 = 1

2n/2

∑

z∈{0,1}n
|z〉 ⊗ |f(z)〉. (298)

A lot of the magic in a quantum algorithm happens here. We have miraculously applied f to every
possible input z, and all this information is contained in the output state. The rest of the magic
in the quantum algorithm is to see if we can untangle all this information to get at what we want.
One way to untangle is to measure the output. Now the state collapses by randomly picking one of
the pure states, |z0〉 ⊗ |f(z0)〉. So, in the end we get only the single bit of information f(z0). We
are only entitled to one bit of information about f(x) because we only made one evaluation of Uf .

So what is going on with testing balance of f . It seems like we are getting information about
f globally, a lot more than one bit of information. No. It is still just one bit of information, a
binary outcome on whether f is balanced or constant. It is just that the nature of the information
is different. Rather than the 1-bit of information giving the value of f(z0), it gives information on
the relationship between values of f . But, it is still one bit of information.

Can we get a free-lunch by continuing to measure the output? First we get |z0〉 ⊗ |f(z0)〉. The
state collapses to this pure state and from then we always get |z0〉 ⊗ |f(z0)〉. So we don’t get
additional information about f by continuing to measure. Quantum state collapse prevents this.
Here is a new idea. Before measuring, make several identical copies of |output〉. Each copy will
collapse independently to possibly different pure states, giving f for those pure states. Thus, we
extract multiple bits from one evaluation of Uf . This too is prevented. Why? Because you cannot
clone quantum states, by the no-cloning theorem we proved earlier. Everything neatly fits together.

70

16.1 Directly Building a Circuit for Uf

You may be worried about where we got Uf . All the information by f is stored in Uf (twice infact),
so if we explicitly construct the 2n+1× 2n+1 matrix Uf , then we are basically examining f on every
input. And certainly, if the quantum circuit is doing no more than explicitly computing the matrix
product Uf (|φ〉 ⊗ |0〉), then the runtime will be exponential. For this to be practical in any way, it
is necessary for us to be given Uf as a black-box quantum circuit, presumably one that only uses
poly(n) quantum gates. Let’s see an example of this.

Fix an n-bit parameter a = [a1, . . . , an] and define a function on n bits x = [x1, . . . , xn],

f(x) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ anxn. (299)

The addition is modulo 2, equivalent to xor. f(x) is like an inner product for binary vectors. f
takes the inner product of x with a, a fixed parameter. For a = [1, 0, 1], we have

x1 x2 x3 f(x)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(300)

We can immediately write down Uf as a block diagonal with 2× 2 blocks,
























I2 02×2 02×2 02×2 02×2 02×2 02×2 02×2

02×2 not 02×2 02×2 02×2 02×2 02×2 02×2

02×2 02×2 I2 02×2 02×2 02×2 02×2 02×2

02×2 02×2 02×2 not 02×2 02×2 02×2 02×2

02×2 02×2 02×2 02×2 not 02×2 02×2 02×2

02×2 02×2 02×2 02×2 02×2 I2 02×2 02×2

02×2 02×2 02×2 02×2 02×2 02×2 not 02×2

02×2 02×2 02×2 02×2 02×2 02×2 02×2 I2
























(301)

The columns can be partitioned into consecutive pairs. Each pair corresponds to a pure state on
the first n-bit input vector |x〉 with the control bit |0〉 or |1〉. The pair of columns corresponds to
|x, 0〉 and |x, 1〉. The block is I when f(x) = 0 and not otherwise. Try to implement this unitary
operator using the tricks that we saw earlier. A quicker approach is to look at the form for f(x)
and build the circuit directly. Recall that the output of Uf on a pure state is

Uf (|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ f(x)〉. (302)

71

The bottom (output) qubit is just

|y ⊕ a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ anxn〉. (303)

Starting with the y-bit, process each xi. If the corresponding ai is 0, do nothing. If the corresponding
ai is 1, flip the y-bit provided the xi-bit is 1. That is, xi is controlling a not on y. It is only such
a control bit when ai is 1. Here is the circuit that implements this logic,

|x1〉a1 = 1 |x1〉

|x2〉a2 = 1 |x2〉

|x3〉a3 = 0 |x3〉

|x4〉a4 = 0 |x4〉

|x5〉a5 = 1 |x5〉

|y〉 |y ⊕ f(x)〉

⊕

⊕

⊕

not not not

Uf (304)

We went directly from the definition of an important function to its circuit. This circuit generalizes
to n-bits and any a, and is compact (linear in size). The matrix Uf grows exponentially, which does
not matter if we are given Uf as a compact black-box circuit using standard quantum gates.

16.2 Circuit Uniqueness

The circuit for a given operator is not unique. Consider this circuit,

H

H

⊕

not

H

H

(305)

The reader may verify that the operator for this circuit is

(H ⊗H) ·







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






· (H ⊗H) =







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0






. (306)

Now consider the circuit where we remove the Hadamards and reverse the roles of the controlling
bit and the controlled bit,

⊕

not

(307)

Again, please verify that the operator for this circuit is






1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0






. (308)

72

These two circuits implement the same operator. So circuits for a given operator are not unique.
It is a very hard task to find the minimum sized circuit for a given operator. Looking at the first
circuit, it appears that the top qubit is unaffected by the circuit, as it is hit twice with a Hadamaard
(which is the identity) and it is used as a controlling bit (which shouldn’t change the bit). However,
looking at the second circuit it is clear that the bottom qubit is unchanged, and it is the bottom
bit that is actually controlling the top qubit. It is also interesting that sandwiching a controlled
not between Hadamards is equivalent to simply switching the roles of the controlling and controlled
bits. This particular fact will be useful later. The next exercise is imperative.

Example 16.1. Construct the unitary operator for the circuit like the one in (304) using the
function defined in (300) with a = [1, 0, 1]. Verify that you get the operator in (301).

Get the operator for the circuit in (304) using two methods. First see how the circuit operates
on the computational basis [e1, . . . , e16] to infer the operator. Second construct the operator for
each c-not and multiply these operators together.

All these methods should produce the same operator in (301).

73

17 Learning the Weights in a Linear Function

In the last lecture we considered the Boolean version of a linear function,

f(x) = a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ anxn, (309)

where a = a1, · · · , an and x = x1, · · · , xn are n-bit vectors. Think of a as a hidden parameter and
x is the input to the function f . This is a convenient function because we can directly construct a
compact circuit for Uf . For a = 11001, the circuit for Uf is

|x1〉a1 = 1 |x1〉

|x2〉a2 = 1 |x2〉

|x3〉a3 = 0 |x3〉

|x4〉a4 = 0 |x4〉

|x5〉a5 = 1 |x5〉

|y〉 |y ⊕ f(x)〉

⊕

⊕

⊕

not not not

Uf (310)

Given f (or Uf) as a black box, the Bernstein-Vazirani problem is to infer the parameters a.
A prominent example of this problem arose in the context of college rankings. Here is the a

simplified story. U.S. News maintains a ranking of colleges. A university has a set of features

x = [in-coming SAT,% small classes, faculty-to-student-ratio, . . .] (311)

Some features in x are self-reported. U.S. News computes a score atx for a set of heavily guarded
proprietary weights. The universities are ranked according to this score. The weights are guarded
because if some university knew the weights, they could strategically improve their features for the
large weights, thereby manipulating the rankings. Every year a university’s features change, and
they see their ranking (a proxy for the score). Hence they are repeatedly querrying a function like
f with different x. At some point they have learned a and can strategically improve their rankings.
This actually happened. Let’s get back to f in (309). Observe that

f(1000 · · · 00) = a1
f(0100 · · · 00) = a2
f(0010 · · · 00) = a3
f(0001 · · · 00) = a4

...
...

...
f(0000 · · · 10) = an−1

f(0000 · · · 01) = an

(312)

We can learn a using n function evaluations. If n is large, the weights are safe because many queries
are needed to learn a. Each querry gives us 1 bit of information. We get n bits from n queries,
namely the bits a1, · · · , an. We cannot hope to do better using 1-bit queries. Here is an information

74

theoretic proof. There are 2m possible outcomes using m one-bit queries. Since there are 2n possible
choices for a, if 2m < 2n, by pigeonhole, any mapping from the set of {a} to the query outcomes
assigns at least two a’s to the same query outcome. Those two a’s aren’t disambiguated.

In the classical world, the weights are safe. In the quantum world this is not the case. A
single evaluation of Uf suffices to reveal a. We begin our quantum algorithm by applying Uf to a
superposition of states. This is usually the first bit of magic in any quantum algorithm. We get
information on f for all inputs using just one evaluation of Uf . The second bit of magic comes when
it is time to untangle this information to get at what we need. Here is the first step,

|0〉n

|1〉

Hn

H

Uf

1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x〉

|0〉 − |1〉√
2 (313)

We have already derived this first step many times, using linearity of tensor product and linearity of
Uf (see, for example, the discussion accompanying the Deutsch-Jozsa algorithm on page 66). The
reader should derive it one more time themselves and commit this first step to memory. This is
typically the start of any quantum algorithm.

How do we untangle the information in the first n qubits. Since H is also the great untangler,
lets try H and see what happens. At this point it is good to tinker with an example. Let a = 01.

x1 x2 f(x)

0 0 0
0 1 1
1 0 0
1 1 1

(314)

We can immediately write down Uf ,

Uf =













I2 02×2 02×2 02×2

02×2 not 02×2 02×2

02×2 02×2 I2 02×2

02×2 02×2 02×2 not













(315)

The circuit we are proposing to extract a is

|0〉2

|1〉

H2

H

Uf

H2

H
(316)

75

The operator for this circuit is (H2 ⊗ H) · Uf · (H2 ⊗ H). The input to the circuit is |001〉 =
[0, 1, 0, 0, 0, 0, 0, 0]t. It is now just an exercise in careful linear algebra to verify

(H2 ⊗H) · Uf · (H2 ⊗H)















0
1
0
0
0
0
0
0















=















0
0
0
1
0
0
0
0















|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

.

On the right we show the pure state corresponding to each amplitude. We also highlighted the first
two bits of the pure state. Note that the amplitude is only non-zero when the first two bits are
01, which is exactly a. If we measure the top two qubits, we get a. Is this always the case. Yes!
Note, since we only care about the top two qubits in the measurement, we can save one gate by
removing the last H on the lower register. This means that the lower register will be in the state
(|0〉 − |1〉)/

√
2 and the measurement will yield either |010〉 or |011〉 with equal probabilities. In

either case the first two qubits give a.

17.1 Circuit for Bernstein-Vazirani

We claim, in general, that the circuit

|0〉n

|1〉

Hn

H

Uf

Hn

H
(317)

Here is a proof by picture on an example with a = 11001. We directly examine the circuit above
using the circuit for Uf . The circuit to learn a is

|0〉a1 = 1 H H

|0〉a2 = 1 H H

|0〉a3 = 0 H H

|0〉a4 = 0 H H

|0〉a5 = 1 H H

|1〉 H H

⊕

⊕

⊕

not not not

Uf

(318)
Note that on the third and fourth qubits where a3 = a4 = 0, the input bit is hit by H2 = I in
sequence. The circuit can be simplified by removing pairs of Hadamards in sequence (the Hadamards
in blue). We can also slide an operator along a qubit wire up to any other operator or controlling

76

bit. For example, the Hadamard on the right in the top qubit wire can slide all the way left up
to the controlling bit. We cannot slide it further, because that would interfere with the controlling
operator. Similarly, we can slide the left Hadamard on the 2nd qubit wire to the right, and the
right Hadamard on this same wire to the left. After removing Hadamards in sequence and sliding
the left Hadamards right and the right Hadamards left, the simplified circuit is

|0〉a1 = 1

|0〉a2 = 1

|0〉a3 = 0

|0〉a4 = 0

|0〉a5 = 1

H H

H H

H H

|1〉 H H

⊕

⊕

⊕

not not not

(319)
Now a trick. Between each pair of nots, insert a pair of Hadamards in sequence, which is allowed
because H2 = I. We get,

|0〉a1 = 1

|0〉a2 = 1

|0〉a3 = 0

|0〉a4 = 0

|0〉a5 = 1

H H

H H

H H

|1〉 H

⊕

⊕

⊕

not not notH H H H H

(320)
We highlighted three 2-qubit circuits in dashed boxes. Each is a Cnot sandwiched between
Hadamards. We saw in Section 16.2 on page 72 that such a circuit is equivalent to a Cnot, where
the roles of the controlling bit and negated bit are interchanged. Hence, we get the equivalent circuit

|0〉a1 = 1 |1〉

|0〉a2 = 1 |1〉

|0〉a3 = 0 |0〉

|0〉a4 = 0 |0〉

|0〉a5 = 1 |1〉

|1〉

not

not

not

⊕ ⊕ ⊕
(321)

77

For this simple circuit, one can now find the outputs of the top 5 qubits, because the controlling
bit is |1〉 and so all the nots are activated on input qubits {1,2,5} and the other input qubits are
unaltered. This circuit produces a at the output. The construction generalizes to any n and a.

17.2 Algebraic Proof

It is instructive to work through the algebraic proof that the circuit in the previous section produces
a on the outputs of the top n qubits. We need to analyze

Hn




1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x〉



 (322)

=
1

2n/2

∑

x∈{0,1}n
(−1)a·xHn|x〉

=
1

2n/2

∑

x1,...,xn∈{0,1}n
(−1)a1x1⊕a2x2⊕···⊕anxnH|x1〉 ⊗H|x2〉 ⊗ · · · ⊗H|xn〉

Let us consider the case a1 = 0. We get

1

2n/2

∑

x1,...,xn∈{0,1}n
(−1)a2x2⊕···⊕anxnH|x1〉 ⊗H|x2〉 ⊗ · · · ⊗H|xn〉 (323)

=
1

2n/2

∑

x1,∈{0,1}
H|x1〉 ⊗

∑

x2,...,xn∈{0,1}n
(−1)a2x2⊕···⊕anxnH|x2〉 ⊗ · · · ⊗H|xn〉

=
1

2n/2
H(|0〉+ |1〉)⊗

∑

x2,...,xn∈{0,1}n
(−1)a2x2⊕···⊕anxnH|x2〉 ⊗ · · · ⊗H|xn〉

= |0〉 ⊗ 1

2(n−1)/2

∑

x2,...,xn∈{0,1}n
(−1)a2x2⊕···⊕anxnH|x2〉 ⊗ · · · ⊗H|xn〉.

The last step follows because H2 = I, so = H(|0〉 + |1〉) =
√
2H2|0〉 =

√
2|0〉. So the first bit is in

the pure state |0〉. Now suppose a1 = 1. Summing over x1, we get

1

2n/2

∑

x2,...,xn∈{0,1}n
(−1)a2x2⊕···⊕anxnH|0〉 ⊗H|x2〉 ⊗ · · · ⊗H|xn〉+ (324)

1

2n/2

∑

x2,...,xn∈{0,1}n
(−1)1⊕a2x2⊕···⊕anxnH|1〉 ⊗H|x2〉 ⊗ · · · ⊗H|xn〉

=
1

2n/2
H(|0〉 − |1〉)⊗

∑

x2,...,xn∈{0,1}n
(−1)a2x2⊕···⊕anxnH|x2〉 ⊗ · · · ⊗H|xn〉

= |1〉 ⊗ 1

2(n−1)/2

∑

x2,...,xn∈{0,1}n
(−1)a2x2⊕···⊕anxnH|x2〉 ⊗ · · · ⊗H|xn〉. (325)

The last step is because = H(|0〉 − |1〉) =
√
2H2|1〉 =

√
2|1〉. This time, the first bit is in the pure

state |1〉. We have shown that the first bit is in the pure state |a1〉. The remaining sum is exactly
of the same form as the full sum, but over one fewer bit. It follows by induction that every output
qubit j is in the pure state |aj〉. Measuring the n output qubits gives |a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |an〉.

78

18 The Search Problem

You have a container of objects, for example a list of 2n elements L = {z1, z2, . . . , z2n} and some
target element z∗. The task is to find the element z∗ in L, or equivalently to return the index of the
element z∗ in L. We can formulate this task using Boolean functions. Let x index the elements, x
has n bits. Define the function

f(x) =

{

1 if zx = z∗;

0 if zx 6= z∗.
(326)

The goal is to find an x for which f(x) = 1. So, the general search task can be formulated as
finding the 1’s of a Boolean function: given a (quantum) black-box for the function f(x), find an
x for which f(x) = 1. Here is an example. Given a graph as an edge list, G = e1,2e1,3 · · · , en−1,n

define the function f(x|G,K) with parameters G and K ∈ N. The function takes an n bit input
x = x1 · · ·xn that identifies a vertex set. The function outputs 1 if and only if x is a clique in G
of size at least K. We saw such “certifiers” before when we talked about NP-completeness. Finding
an x for which f(x|G,K) = 1 is equivalent to finding a clique in G of size at least K.

18.1 Seaching for a Unique Element

We first consider a simple version of the problem. There is exactly one x∗ on which evaluates to 1.
We have access to a (quantum) black-box function f(x)

f(x) =

{

1 if x = x∗;

0 if x 6= x∗.
(327)

The classical algorithm evaluates f(x) on each of the 2n possible x to find x∗. The worst case
runtime is 2n. A randomized algorithm which samples M of the xi has a success probability M/2n.
A success probability of 1/2 can be achieved with 2n/2 evaluations of f .

18.2 Quantum Circuit for f

For a quantum search algorithm, we are given a quantum black-box circuit Uf that implements
f(x).

|x〉
|y〉

Uf
|x〉
|y ⊕ f(x)〉

(328)

One can always specify the function using a small quantum circuit. This does not mean the function
itself is given as a small circuit, only that it is possible to do so. To specify f , it suffices to specify
x∗. Let us take an example with x∗ = 10010, that is,

f(x) = and(x1, x2, x3, x4, x5). (329)

We need a circuit for Uf that implements

|x〉
|y〉

Uf
|x〉
|y ⊕ and(x1, x2, x3, x4, x5)〉 (330)

79

So, Uf needs to implement a controlled-not of |y〉, controlled by and(x1, x2, x3, x4, x5),

|x1〉 |x1〉⊕

|x2〉 |x2〉⊕

|x3〉 |x3〉⊕

|x4〉 |x4〉⊕

|x5〉 |x5〉⊕

not not

not not

not not

|y〉 |y ⊕ and(x1, x2, x3, x4, x5)〉not

Uf (331)

The circuit above is nice and compact, but it does not use standard gates. You cannot ask your
hardware team to manufacture quantum gates on demand. We need a circuit that uses only standard
gates, for example c-not, cc-not (Toffoli), Hadamard, etc. We need to implement a massive and

of |x1〉, . . . , |x5〉 and use this to control the not on |y〉. If we have auxillary qubits, we can do this
using singly and doubly controlled gates. These auxillary qubits are sometimes called ancilliary
qubits. Here is a simple way to do this.

|x1〉 ⊕
|x2〉 ⊕
|x3〉 ⊕
|x4〉 ⊕
|x5〉 ⊕

not

=

|0〉b1

|0〉b2

|0〉b3

|x1〉
|x2〉
|x3〉
|x4〉
|x5〉

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

not

not

not

not

not

not

not

(332)

Let’s analyze the circuit equivalence above to make sure it works. Note that the ccnot gates are
just Toffoli gates. For classical inputs, the first not on ancillary qubit b3 emits |1〉 if and only if
|x1〉 = |x2〉 = |1〉. Then, b2’s not emits |1〉 if and only if b3 and |x3〉 are both |1〉 which is if and
only if |x1〉 = |x2〉 = |x3〉 = |1〉. Then, b1’s not emits |1〉 if and only if b2 and |x4〉 are both |1〉
which is if and only if |x1〉 = |x2〉 = |x3〉 = |x4〉 = |1〉. Finally, the bottom not is controlled if and
only if b1 and |x4〉 are both |1〉 which is if and only if |x1〉 = |x2〉 = |x3〉 = |x4〉 = |x5〉 = |1〉, as
desired. Note, the remaining three Toffoli gates after the bottom not simply undo the actions of
the first three Tofolli gates as the Toffoli gate is its own inverse.

The circuit for Uf can be compact. That does not mean the circuit given as a black-box will be
implemented in the most compact way. Note also that ancilliary qubits are costly to initialize and
maintain in a stable state. The construction above needs n− 2 ancillary qubits. As a challenge, try

80

to implement this mulitiply controlled not using no ancillary qubits. We will give you some hints
and you can fill in the details. Let Z be the 1-qubit circuit/gate defined by

Z =
1

2

[
1 + i 1− i
1− i 1 + i

]

. (333)

Note that Z can be implemented using basic gates as HR(π)H, where R(θ) is the phase gate defined
in (190) on page 49. The important properties that Z satisfies are

1. Z2 = not, and
2. Z is unitary.

Verify the following circuit equivalence, by checking the action on the standard basis or otherwise.

|x1〉 ⊕
|x2〉 ⊕

not

=
|x1〉
|x2〉

⊕ ⊕ ⊕
⊕ ⊕not not

Z Z† Z

(334)

More generally, show the equivalence

|x1〉 ⊕
|x2〉 ⊕
|x3〉 ⊕
|x4〉 ⊕
|x5〉 ⊕

not

=
|x1〉
|x2〉
|x3〉
|x4〉
|x5〉

⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕
⊕ ⊕ ⊕

⊕ ⊕not not

Z Z† Z

(335)

Show that the not on the LHS can be replaced by an arbitrary unitary gate U with an appropriately
defined Z that is unitary and satisfies Z2 = U.

You can now use this equivalence to recursively construct a circuit for the 5-multiply controlled
not using standard 1-qubit gates and controlled one-qubit gates. How many gates did you need
for this construction. Note that our earlier construction used a linear number of Toffoli gates but
required three additional work qubits. This current construction will produce an exponential sized
circuit that does not need auxillary work-qubits. This is a common space-complexity tradeoff in
computing where at the expense of extra workspace (one type of resource) the task can be solved
with less complexity (another type of resource). It is an interesting question whether fewer gates
can be used for the multiply controlled not when no auxilliary work-qubits are allowed.

18.3 Quantum Circuit for 3-sat

As we saw in Section 6, 3-sat is NP-complete. If we have an efficient quantum circuit for solving
3-sat problems, we can use that to build an efficient circuit for any NP problem. Let’s build a
circuit for an instance of 3-sat to illustrate the general idea. The basic idea is to represent an
instance of 3-sat as a Boolean function whose solutions are satisfying assignments. We can then
use Grover’s algorithm a circuit for the corresponding unitary operator Uf .

81

18.3.1 An Instance of 3-sat

Consider this instance of 3-sat with three clauses,

(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) (336)

Recall the goal is to decide if there is a satisfying assignment to the variables so that every clause
is true. In this example there are many satisfying assignments. This example has n = 3 variables
and m = 3 clauses. Define the Boolean function

f(x1, x2, x3) =

{

1 if (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) is true;

0 otherwise.
(337)

The function f is just evaluating an and of three Boolean expressions. The experienced reader
would recognize this as a disjunctive normal form (DNF) representation of the function f . recall
that the equivalent unitary operator is defined by

|x1〉
|x2〉
|x3〉
|y〉

Uf

|x1〉
|x2〉
|x3〉
|y ⊕ f(x)〉

(338)

View the role of f as flipping the |y〉-bit whenever f is 1. That is, f is a controlling bit for a not

on |y〉. We can equivalently get Uf from a circuit like

|0〉
|x1〉
|x2〉
|x3〉
|y〉

V V †

⊕

not

|0〉
|x1〉
|x2〉
|x3〉
|y ⊕ f(x)〉

|f(x)〉

(339)

The operator V produces |f(x)〉 on the top ancillary bit, which is used to control the not on |y〉.
Our function f is the and of three clauses. Label the three clauses |z1〉, |z2〉, |z3〉. Controlling the
not on |y〉 with |f〉 is equivalent to a multiply controlled not on |y〉, where the controlling bits
are |z1〉, |z2〉, |z3〉. We discussed one circuit for controlling an operator with multiple bits in (332)

82

on page 80. Here is a circuit implementing this idea that uses additional ancillary bits.

|x1〉
|x2〉
|x3〉
|0〉
|0〉
|0〉
|y〉

W W †
⊕
⊕
⊕

not

|x1〉
|x2〉
|x3〉
|0〉
|0〉
|0〉
|y ⊕ f(x)〉

|z1〉

|z2〉

|z3〉

(340)

Let us find a circuit for |z1〉. We use

z1 = x1 ∨ x2 ∨ x3
eqv≡ not(x1 ∧ x2 ∧ x3). (341)

Since a multiple and is just a multiply controlled not on a |0〉-bit, the reader should verify in detail
that the following quantum circuit computes |z1〉,

|x1〉
|x2〉
|x3〉
|0〉
|0〉

not

not

⊕
⊕

not

⊕
⊕

not not

⊕
⊕

not

not

not

|x1〉
|x2〉
|x3〉
|0〉
|z1〉 (342)

The nots and Toffolis on qubits 1,2,3,4 are undone by nots and Toffolis in reverse order, which is
important so that the states |x1〉, |x2〉, |x3〉, |0〉 are reproduced on the top four qubits. This means
that the ancillary |0〉-qubit that was restored to |0〉 can be reused, together with |x1〉, |x2〉, |x3〉 to
produce |z2〉, |z3〉. A similar construction works to get |z2〉, |z3〉. We leave it to the reader to go
through the details and derive the full circuit to compute |z1〉, |z2〉, |z3〉 shown below,

|x1〉
|x2〉
|x3〉
|0〉
|0〉
|0〉
|0〉

not

not

⊕
⊕

not

⊕
⊕

not not

⊕
⊕

not

not

not

not

⊕
⊕

not

⊕
⊕

not not

⊕
⊕

not

not

not

not

⊕
⊕

not

⊕
⊕

not

⊕
⊕

not

not

not

not

|x1〉
|x2〉
|x3〉
|0〉
|z1〉
|z2〉
|z3〉

Circuit for |z1〉 Circuit for |z2〉 Circuit for |z3〉

(343)

83

The circuit in (343) can be plugged into (340) to implement Uf . Note that in a repeated use of
Uf it is important to undo the effects of W by applying W † so that the three ancillary qubits
that produced |z1〉, |z2〉, |z3〉 can be reused. Since the circuit only uses not and Toffoli, and both
of these gates are their own inverse, one can simply apply the gates that have been used to get
|z1〉, |z2〉, |z3〉 in reverse order to obtain W †. This inverse has to be performed after using the
clauses |z1〉, |z2〉, |z3〉 to control the not on |y〉. In our example, we need three Toffolis and three
nots to reset |z1〉, |z2〉, |z3〉 to |0〉, |0〉, |0〉.

18.3.2 General Case

Consider an instance of 3-sat with n variables x1, . . . , xn and m clauses z1, . . . , zm. We need three
Toffolis to implement each clause and at most seven additional nots. To reset each clause |zi〉 to
|0〉 we need one more Toffoli and not, so we need 4m Toffolis and at most 8m nots.

In terms of qubits, which are costly, we need n qubits for the variables, m+ 1 qubits initialized
to |0〉 to compute the clauses. We also need to implement the multiply controlled not on |y〉
where the m clauses are the controlling bits. This requires m− 2 qubits initialized to |0〉 using the
construction in (332) on page 80 and m− 1 Toffolis. We can reuse the qubit that is reset to |0〉 in
(343), so we need an additional m − 1 qubits. A more advanced construction does not even need
these additional m − 1 qubits, and can make do with the single |0〉 from (343). In summary, the
resources we need are at most:

Toffoli 5m− 1
not 8m
qubits n+ 2m− 2

18.4 Quantum Search – Warm Up

Let’s start with the following setup.

|0〉n

|0〉

Hn
Uf |φ〉 = 1

2n/2

∑

|x〉∈{0,1}n
|x〉 ⊗ |f(x)〉

(344)

By now, we are expert in the analysis that leads to the expression for |φ〉 above,

|φ〉 = Uf (Hn|0〉n ⊗ |0〉) (345)

= Uf

(

1

2n/2

∑

x

|x〉 ⊗ |0〉
)

(346)

=
1

2n/2

∑

x

Uf (|x〉 ⊗ |0〉) (347)

=
1

2n/2

∑

x

|x〉 ⊗ |f(x)〉). (348)

This is great, in that |φ〉 contains information about f(x) on all x, but if we measure, the state
will collapse uniformly randomly to some pure state |x0〉 ⊗ |f(x0)〉. The amplitudes of every pure

84

state are exactly the same, 1/2n/2. This is just random guess and check. The probability to get the
correct x∗ is 1/2n, exactly the same as classical guess and check.

Here is a second try. We leave you to derive the output state for this familiar setup.

|0〉n

|1〉

Hn

H

Uf

1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x〉

|0〉 − |1〉√
2

1
2n/2

∑

x |x〉

|0〉−|1〉√
2 (349)

Now, all the information about f is contained in the top n qubits. The amplitude for each pure
state is (−1)f(x)/2n/2. The amplitude for |x∗〉 is −1/2n/2. The amplitude for all the other |x〉 is
1/2n/2. This is good. There is an asymmetry between x∗ and all the other x. However, if we
measure the top n bits, we still have the same problem as guess and check. The probabilities are
1/2n for all x, so we get a random |x0〉. It’s worse, because we don’t even recover the value f(x0).
So far, we haven’t been able to do any better than random guess and check. Our short term goal is
to find some way to do better than random guess and check with one function evaluation. Anything
better, no matter how small the improvement, will be a breakthrough.

Here is an example. Suppose x∗ = 10, so

f(00) = 0 f(01) = 0 f(10) = 1 f(11) = 0. (350)

and

Uf =











I2 02×2 02×2 02×2

02×2 I2 02×2 02×2

02×2 02×2 not 02×2

02×2 02×2 02×2 I2











(351)

The output state for this Uf is

|φ〉 =







1/2
1/2
−1/2
1/2






⊗
[
1/
√
2

−1/
√
2

]

. (352)

As we already said, measuring the top two qubits give a uniform distribution over all pure states.
But all is not lost, because we have introduced an asymmetry for the state |10〉. Suppose we could
somehow subtract 1/2 from each amplitude for the top qubits. Then we would get [0, 0,−1, 0]t.
Now if we measure, we are golden. The result will be |10〉 with probability 1. It turns out we will
be able to do something like that, which is what Grover’s iteration accomplishes. But for that you
have to stay tuned to the next lecture.

85

A crucial ingredient in Grover’s iteration is the following operator. Let’s analyze it.







ψ1

ψ2

ψ3

ψ4







1√
2

[
1
−1

]

Uf

(353)

This operator is just Uf , but with its bottom bit set to (|0〉 − |1〉)/
√
2. So, this is a linear operator

on the top two bits. This discussion will generalize to n-bit functions, even if the function evaluates

to 1 on more than one input. Let us compute the output. We want Uf (|ψ〉 ⊗
[

1/
√
2

−1/
√
2

]

),











I2 02×2 02×2 02×2

02×2 I2 02×2 02×2

02×2 02×2 not 02×2

02×2 02×2 02×2 I2


























ψ1

[
1/
√
2

−1/
√
2

]

ψ2

[
1/
√
2

−1/
√
2

]

ψ3

[
1/
√
2

−1/
√
2

]

ψ4

[
1/
√
2

−1/
√
2

]
















(354)

The highlighted red not only operates on the ψ3 component. Its effect is to flip the top and bottom
component, which is equivalent to multiplying by −1. The result is

Uf

(

|ψ〉 ⊗
[
1/
√
2

−1/
√
2

])

=
















ψ1

[
1/
√
2

−1/
√
2

]

ψ2

[
1/
√
2

−1/
√
2

]

ψ3

[
−1/

√
2

1/
√
2

]

ψ4

[
1/
√
2

−1/
√
2

]
















=
















ψ1

[
1/
√
2

−1/
√
2

]

ψ2

[
1/
√
2

−1/
√
2

]

−ψ3

[
1/
√
2

−1/
√
2

]

ψ4

[
1/
√
2

−1/
√
2

]
















=







ψ1

ψ2

−ψ3

ψ4






⊗
[
1/
√
2

−1/
√
2

]

.

The end effect of this operator is quite simple. It leaves the bottom qubit unaltered, and flips the sign
of the amplitude for the component corresponding to x∗, the pure state on which f evaluates to 1.
This is a general fact about this operator. If f had m solutions to f(x) = 1, then this operator,
treated as an operator on the state of the top n qubits, flips the sign only of those components
corresponding to the inputs x∗ for which f(x∗) = 1, leaving the bottom qubit unaltered. This is a
useful operator that can be invoked anytime we wish to flip the sign of a special few components,
the ones corresponding to the pure states for which f = 1.

It is a useful exercise to consider the following f ,

f(00) = 1 f(01) = 0 f(10) = 1 f(11) = 0. (355)

Construct Uf and show that the operator in (353) flips the sign of two components of |ψ〉.

86

19 Grover’s Iteration

We are considering this setup for a 2-bit function f ,

f(00) = 0 f(01) = 0 f(10) = 1 f(11) = 0, (356)

|0〉2

|1〉

H2

H

Uf

1

2n/2

∑

x∈{0,1}n
(−1)f(x)|x〉

|0〉 − |1〉√
2

1
2n/2

∑

x |x〉

|0〉−|1〉√
2 (357)

The state of the top qubits is






1/2
1/2
−1/2
1/2






. (358)

Measuring the top qubits gives a random pure state. We successfully find x∗ = 10 with probability
1/4. Our goal is to amplify the amplitude for |10〉 so that the measurement will yield x∗ with a
probability greater than 1/4. No matter how small the improvement above 1/4, it is a breakthrough.
Here is Grover’s great insight, illustrated with a pictorial view of these four amplitudes.

|00〉 |01〉 |10〉 |11〉

1
2

−1
2

1
4

0

(359)

The blue line is the average amplitude. Since most amplitudes are 1/2, the average (blue line)
is positive and the distance from the positive amplitudes to the average is smaller than from the
negative amplitude for x∗ to the average. Suppose we reflect all the amplitudes around the average.

|00〉 |01〉 |10〉 |11〉
0

1

1
4

(360)

87

A miracle has occurred. The amplitude for |10〉 is 1, and all other amplitudes are 0. A measurement
yields |x∗〉 with probability 1. Let’s call this wierd operation of reflecting the amplitudes around
the average W. The situation after applying applying W is summarized in the picture below.

|0〉2

|1〉

H2

H

Uf

W







0
0
1
0







|0〉 − |1〉√
2

1
2n/2

∑

x |x〉

|0〉−|1〉√
2

[1/2

1/2

−1/2

1/2

]

(361)

The situation is similar if n > 2. Let’s consider n = 3 with x∗ = 100, so

f(000) = 0, f(001) = 0, f(010) = 0, f(011) = 0, f(100) = 1, f(101) = 0, f(110) = 0, f(111) = 0.
(362)

Here is the situation before we apply our wierd operation W,

|0〉3

|1〉

H3

H

Uf

1
23/2







1
1
1
1
−1
1
1
1







1
2n/2

∑

x |x〉

|0〉−|1〉√
2

|0〉−|1〉√
2 (363)

Pictorially, the amplitudes before applying W are:

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

1
23/2

− 1
23/2

3
4 · 1

23/2

0

(364)
The black amplitudes are at 1/23/2, and the red one is at −1/23/2. The average (blue line) is at
3/27/2, which is much closer to the black amplitudes (relatively speaking) than for the case n = 2.

88

To apply W, we reflect all the amplitudes about the average blue line. The results is

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

1
2 · 1

23/2

5
25/2

3
4 · 1

23/2

0

(365)
The probability to measure |100〉 after one use of Uf is

P[success] =

(
5

25/2

)2

=
25

32
= 0.78125 ≫ 1

8
. (366)

It is not as big of a miracle as with the n = 2 case, where the probability of success was 1. For
the general n-bit function, the situation is similar. After applying Uf , all amplititudes are 1/2n/2,
except for the solution |x∗〉 whose amplitude is −1/2n/2. The average is

1

2n
× 2n − 2

2n/2
. (367)

Reflecting the amplitude of x∗ about this average gives

P[success] =
1

2n

(

3− 4

2n

)2

. (368)

When n gets large, the probability of success is approximately 9/2n, which is miniscule. You might
think this is nothing to write home about, but it is a breakthrough, because it is 9 times bigger
than random guess and check! Applying Uf followed by W is one Grover iteration,

|0〉3

|1〉

H3

H

Uf

W












1/25/2

1/25/2

1/25/2

1/25/2

5/25/2

1/25/2

1/25/2

1/25/2












|0〉−|1〉√
2

Grover Iteration

(369)

89

What if we apply a second Grover Iteration,

|0〉3

|1〉

H3

H

Uf

W












1/25/2

1/25/2

1/25/2

1/25/2

5/25/2

1/25/2

1/25/2

1/25/2












|0〉−|1〉√
2

Uf

W

Grover Iteration

(370)

We leave it to the reader to show that the state for the top 3 qubits is
















−1/27/2

−1/27/2

−1/27/2

−1/27/2

11/27/2

−1/27/2

−1/27/2

−1/27/2
















. (371)

The probability of success is now

P[success] =

(
11

27/2

)2

=
121

128
≈ 0.95, (372)

and we are in business. We can go wild and continue doing Grover iterations. The obvious cost is
more evaluations of Uf , but something worse happens. We leave it to you to show that with another
Grover iteration, the probability of success goes down. There is an optimal number of Grover
Iterations. In this case you can see why. The non-solution components have become negative. So
those amplitudes will get larger in absolute value after reflecting about the average. We will analyze
this in the next lecture. Before that, let us examine more carefully this wierd operation W. It turns
out to not be so wierd.

19.1 Operator for Reflecting About the Average

The operation W which reflects about the average is an important technique for amplifying the
amplitude of specific components of the state. Starting from state |ψ〉, reflecting about the average
transforms each component ψi as follows,

ψi → ψ − (ψi − ψ) = 2ψ − ψi. (373)

In vector form,
W|ψ〉 = 21ψ − |ψ〉. (374)

90

Averaging is a linear operation, so W is a linear operation. Indeed, ψ = 1t|ψ〉/2n, and we have

W|ψ〉 = 2

2n
11t|ψ〉 − |ψ〉, (375)

from which we identify the operator W as

W =
2

2n
11t − I. (376)

W is hermitian, and even more, it is unitary,

W†W =

(
2

2n
11t − I

)(
2

2n
11t − I

)

(377)

=
4

22n
11t11t − 4

2n
11t + I (378)

=
4

22n
1 (1t1)
︸ ︷︷ ︸

2n

1t − 4

2n
11t + I (379)

=
4 · 2n
22n

11t − 4

2n
11t + I (380)

= I. (381)

This means W can be implemented by a quantum circuit. In fact, W can be implemented by a
compact circuit using the standard one and two bit gates. Let’s see how. We need to first massage
W into a more suitable form. Recall that Hn|0〉n = 1/2n/2. Since |0〉n is the first standard basis
vector e1,

W = 2Hne1e
t

1Hn − I. (382)

Using the fact that H2
n = I,

W = Hn (2e1e
t

1 − I)
︸ ︷︷ ︸

V

Hn. (383)

Since Hn = H⊗n, we have that W is the circuit

H H

H H

H H

H H

H H

H H

H H

H H

V = 2e1e
t

1 − I

(384)

We now need a circuit for V to be done. It suffices to get a circuit for −V because this has the
effect of just flipping the sign of all the amplitudes in |ψ〉, which is a benign operation to the state
in quantum mechanics (it does not affect the measurement probabilities). We need a circuit for

−V = I− 2e1e
t

1 . (385)

91

Let us first see what the operator −V looks like, as a matrix. We need to examine its action on the
pure basis states ei. Using et

i ej = δij ,

{

−Ve1 = −e1;

−Vei = ei i 6= 1.
(386)

We can now write down −V as a matrix,

−V =
[
−e1 e2 e3 · · · e2n

]
=














−1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1














. (387)

Recall that a matrix of the form
[
I 0

0 U

]
is a multiply controlled-U . Our −V is of the form

[
U 0

0 I

]
,

also a multiply controlled-U with some minor role modifications, such as negations. The reader may
wish to review Lecture 11 and compute the operator for the following circuit with U =

[
a b
c d

]
,

not not⊕
not not⊕
not not⊕
not not⊕
not not⊕
not not⊕
not not⊕
not notU (388)

We need to analyze the action of the circuit on the pure basis states. The only non-trivial cases are
when U is activated, because otherwise this circuit acts as the identity. We only need to consider
the case where all the top bits are 0, |000 · · · 00〉 and |000 · · · 01〉.

|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 ⊗ |0〉 → |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 ⊗ not · U |1〉 (389)

|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 ⊗ |0〉 → |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 ⊗ not · U |0〉. (390)

Since not · U |1〉 =
[
d
b

]
and not · U |0〉 = [ca], we have that the operator for this circuit is














d c 0 0 · · · 0 0
b a 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1














. (391)

92

By inspection, we can write down the circuit for −V,

not not⊕
not not⊕
not not⊕
not not⊕
not not⊕
not not⊕
not not⊕
not not

[
1 0
0 −1

]

(392)

The operator being controlled is the Pauli spin-z operator σz, and is considered a basic 1-qubit gate.
Alternatively, you can implement it as H · not ·H,

σz =

[
1 0
0 −1

]

=
1

2

[
1 1
1 −1

] [
0 1
1 0

] [
1 1
1 −1

]

= H · not ·H. (393)

We can now use a construction such as in (332) on page 80 to implement the multiply controlled
circuit above using standard gates. Plugging −V into (383), we get the circuit for W.

93

20 Analysis of Grover’s Search Algorithm

It should not surprise you that computer scientists have had a healthy dose of mathematics. You
need to take your medicine because a computer is essentially a mathematical device. If you want
to analyze any algorithm on any architecture, you need to do so mathematically. We are going to
analyze Grover’s iteration, in the general case where f(x) = 1 has m solutions.

|ψt〉

|0〉−|1〉√
2

Uf

W |ψt+1〉

|0〉−|1〉√
2

Grover Iteration

(394)

In this setup, Uf flips the sign of all the components corresponding to the pure states which are
solutions to f(x) = 1. Then, W reflects all the amplitides about the average. The Grover iter-
ation begins with |ψ0〉 = 1/2n/2. Here is an example with n = 3 and m = 3. The components
corresponding to solutions of f(x) = 1 are in bold (amplitudes are rounded).

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉















0.354
0.354

0.354

0.354
0.354
0.354
0.354

0.354















→















−0.177
0.530

0.530

−0.177
−0.177
−0.177
0.530

−0.177















→















−0.442
−0.088

−0.088

−0.442
−0.442
−0.442
−0.088

−0.442















→















−0.044
−0.575

−0.575

−0.044
−0.044
−0.044
−0.575

−0.044















→















0.420
−0.199

−0.199

0.420
0.420
0.420

−0.199

0.420















→















0.254
0.475

0.475

0.254
0.254
0.254
0.475

0.254















P[success] 0.375 0.844 0.023 0.990 0.119 0.677

(395)

Success occurs if a bold pure state is measured, so the success probability is the sum of squares of
the bold entries in the state. We plot the probability of success versus Grover iteration # below,

0 10 20 30 40 50

Grover iteration #

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
[S

u
c
c
e

s
s
]

(n,m)=(3,3)

0 10 20 30 40 50

Grover iteration #

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
[S

u
c
c
e

s
s
]

(n,m)=(9,3)

94

There are two takeaways from the example above. The first takeaway is repeated application of the
Grover iteration does not monotonically increase the probability of success. The success probability
oscillates. On the left, we show the the example with n = 3 and m = 3. The behavior looks
rather erratic. On the right, we show the case with n = 9,m = 3. As you can see things get much
smoother. We wish to perform the fewest iterations (evaluations of Uf), so we need to decide when
to stop iterating. We should stop when the success probability stops increasing. In this case, after
1 iteration. This does not give the maximum probability, but one that is high enough that it can
be boosted to as large a probability that we want by repeating the whole process. For example, if
we run for 1 iteration and repeat three times, we get a success probability of 0.996.

The second takeaway is the bold entries corresponding to solutions stay equal. This is because
they start that way and the operators Uf and W treat them symmetrically. The same is true of the
non-bold entries corresponding to non-solutions. Let xt be the value of a bold entry at iteration t
and yt the value of a non-bold entry. The initial condition is

x0 = y0 =
1

2n/2
. (396)

The probability of success after t iterations is

P[success] = mx2t . (397)

Our first task is to find xt, yt after t iterations.

20.1 Grover’s Coupled Recurrence

A Grover iteration updates the vector [xtyt] to
[xt+1
yt+1

]
. In the first step Uf is applied,

[
xt
yt

]

→
[
−xt
yt

]

(398)

In the second step, we apply W. The average amplitude is ((2n−m)yt−mxt)/2n and each amplitude
ψi → 2ψ − ψi, so

xt+1 = 2× (2n −m)yt −mxt
2n

+ xt (399)

yt+1 = 2× (2n −m)yt −mxt
2n

− yt. (400)

Simplifying and defining q = m/2n−1,

xt+1 = (1− q)xt + (2− q)yt (401)

yt+1 = −qxt + (1− q)yt. (402)

(403)

It is convenient to define the vector zt = [xtyt]. Then,

zt+1 = Azt, (404)

95

where A is the matrix

A =

[
1− q 2− q
−q 1− q

]

. (405)

This is a recurrence for a vector, a generalization of a simple recurrence. Since A is not diagonal,
this is a coupled recurrence, or discrete dynamical system. We will solve this recurrence using a
general technique for solving such recurrences, a technique that is worth mastering and storing away
for future use.

20.2 Solving Grover’s Recurrence

The first step in solving the system is to analyze the driver of the system, namely the matrix A. In
particular, we look at the spectral structure of A, its eigenvalues λ± and eigenvectors v± defined by

Av± = λ±v±. (406)

The eigenvalues are the roots of the characteristic polynomial,

(1− q − λ)2 + q(2− q) = 0. (407)

An exercise for the reader is to compute the roots of this quadratic,

λ± = (1− q)± i
√

q(2− q). (408)

Using these computed eigenvalues, the eigenvectors are then obtained by solving (406). Another
exercise for the reader is to show that the eigenvectors are

v± =

[
1

±i
√

q
2−q

]

. (409)

Armed with the eigenvalues and eigenvectors, we are ready to solve Grover’s recurrence. We start
with z0,

z0 =

[
1/2n/2

1/2n/2

]

. (410)

Since the eigenvectors v± are independent, they are a basis Therefore z0 = αv+ + βv−. Again, the
reader may show that

α =
1

21+n/2

(

1− i

√
2− q

q

)

, (411)

β =
1

21+n/2

(

1 + i

√
2− q

q

)

. (412)

The matrix A behaves like a scaler when it operates on an eigenvector,

Atv± = λt±v±. (413)

Since zt = Atz0, by linearity,

zt = Atz0 (414)

= αλt+v+ + βλt−v−. (415)

96

We want xt which is the first component of zt. Since the first component of v± is 1, we have that

xt = αλt+ + βλt− (416)

= α
(

(1− q) + i
√

q(2− q)
)t

+ β
(

(1− q)− i
√

q(2− q)
)t
. (417)

We need to exponentiate complex numbers. That is no problem in polar form. We write

(1− q)± i
√

q(2− q) = e±iθ, (418)

where

tan θ =

√

q(2− q)

1− q
. (419)

Then,

xt = αeitθ + βe−itθ (420)

Using the expressions for α and β in (412), after some algebra,

xt =
1

21+n/2
(eitθ + e−itθ)− i

21+n/2

√
2− q

q
(eitθ − e−itθ) (421)

=
i

2n/2
cos tθ +

i

2n/2

√
2− q

q
sin tθ. (422)

We now have the probability of success, mx2t ,

P[success] =
m

2n

(

cos tθ +

√
2− q

q
sin tθ

)2

. (423)

We can simplify further using a trigometric identities from highschool,

cosX + γ sinX =
√

1 + γ2 sin(X + φ), (424)

where tanφ = 1/γ. In our case, X = tθ and γ
√

(2− q)/q. Since
√

1 + γ2 =
√

2/q, we have

P[success] =
2m

2nq
sin2(tθ + φ), (425)

where tanφ =
√

q/(2− q). Using q = m/2n−1 completes the calculation, giving

P[success] = sin2(tθ + φ), (426)

where

tan θ =

√

q(2− q)

1− q
; (427)

tanφ =

√
q

2− q
. (428)

97

The oscillatory behavior for the success probability is now explained. Also the success probability
is maximized when tθ + φ = π/2. We can increase t until

t∗ =

⌊
π/2− φ

θ

⌋

. (429)

After this t∗, the success probability will start to decrease and begin its oscillatory behavior. When
m≪ 2n−1, q ≈ 0. This means

tan θ ≈
√

2q = 2
√

m/2n → θ ≈ 2
√

m/2n, (430)

and

t∗ ≈
π

2θ
≈ π

4

√

2n

m
. (431)

Since t∗ ≥ (π/2− φ)/θ − 1,

P[success] ≥ sin2(π/2− θ) = cos2 θ ≈ (1− θ2/2)2 ≈ 1−m/2n−2. (432)

So, the probability of success is exponentially approaching 1. The number of iterations is driven
by

√
2n. In contrast the classical approach needs 2n, a huge gain for the quantum approach.

Unfortunately, the dependence on the number of solutions is 1/
√
m in the quantum algorithm. In

the classical algorithm, the dependence on n is 1/m, so when m is large, the classical approach will
start winning. But when m is large enough for this to be true, the search problem is easy anyway,
so we only really worry about the m≪ 2n regime.

20.3 Unknown Number of Solutions

To set the number of Grover iterations, we need to know m. For the algorithm to be viable
in practice, it must handle three cases, m = 0, m ∈ o(2n/2) and m ∈ Ω(2n/2). We can use
standard algorithmic techniques to build on the algorithm with known m within a guess m and
check framework.

A better approach is to first estimate m and then use this estimate to run the appropriate
number of Grover iterations to find a solution.

98

21 Quantum Counting and Phase Estimation

The optimal number of Grover iterations depends on m, the number of solutions to f(x) = 1,
x ∈ {0, 1}n. Assume m < 2n/2, because otherwise classical search works well. With K calls to the
classical black box for f , we can find a solution with probability at least 1− 2−K when m ≥ 2n/2.
So we can always start with a classical brute force random search. If this fails to find a solution in
100 tries, it is near-certain that m < 2n/2. We can now switch over to quantum search, which runs
the optimal number of Grover iterations. To do so we need to determine m, which means we need
to analyze the Grover operator G which operates on a state |ψ〉 ⊗ (|0〉 − |1〉)/

√
2,

|ψ〉

|0〉−|1〉√
2

Uf

W |ψ′〉

|0〉−|1〉√
2

Grover Iteration

G = (W ⊗ I)Uf ,

(433)

Here, W is the unitary operator which reflects the amplitudes about the average and Uf is the
black box quantum circuit for f . In the Grover search algorithm, the initial input to this operator
is |ψ〉 = 1N/

√
N , where N = 2n. Consider a function with m = 3 ones, for example

f(000) = 0, f(001) = 1, f(010) = 0, f(011) = 0, f(100) = 1, f(101) = 1, f(110) = 0, f(111) = 0.
(434)

Define two N -dimensional orthonormal vectors |ψ1〉 and |ψ2〉,

|ψ1〉 |ψ2〉

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

1√
5















1
0
1
1
0
0
1
1















1√
3















0
1
0
0
1
1
0
0















(435)

|ψ1〉 corresponds to the pure states where f evaluates to 0 and |ψ2〉 corresponds to the pure states
where f evaluates to 1. More generally,

|ψ1〉 =
1√

N −m

∑

|x〉:f(x)=0

|x〉; (436)

|ψ2〉 =
1√
m

∑

|x〉:f(x)=1

|x〉. (437)

Note that
1 =

√
N −m · |ψ1〉+

√
m · |ψ2〉. (438)

99

Let us start with a few observations. The initial state |φ0〉 for the first Grover iteration is

|φ0〉 =
1√
N

· 1 =

√

N −m

N
· |ψ1〉+

√
m

N
· |ψ2〉. (439)

In the two dimensional subspace spanned by the two vectors {|ψ1〉, |ψ2〉}, the polar form for |φ0〉 is
(r,Ω) where r = 1 and sinΩ =

√

m/N . Let us consider the action of the Grover operator G on any
vector in the subspace spanned by {|ψ1〉, |ψ2〉}. A vector in this subspace is given by

|ψ〉 = α|ψ1〉+ β|ψ2〉. (440)

Note that

Uf (|ψ1〉 ⊗ (|0〉 − |1〉)/
√
2) = |ψ1〉 ⊗ (|0〉 − |1〉)/

√
2, and (441)

Uf (|ψ2〉 ⊗ (|0〉 − |1〉)/
√
2) = −|ψ2〉 ⊗ (|0〉 − |1〉)/

√
2. (442)

Hence,

G
[

|ψ〉 ⊗ (|0〉 − |1〉)/
√
2
]

= (W ⊗ I)Uf

[

(α|ψ1〉+ β|ψ2〉)|ψ〉 ⊗ (|0〉 − |1〉)/
√
2
]

= (W ⊗ I)
[

(α|ψ1〉 − β|ψ2〉)|ψ〉 ⊗ (|0〉 − |1〉)/
√
2
]

= (αW|ψ1〉 − βW|ψ2〉)⊗ (|0〉 − |1〉)/
√
2. (443)

Note that the (|0〉 − |1〉)/
√
2 always comes along for free in the bottom register and to simplify

notation we will just drop it and write

G|ψ〉 = αW|ψ1〉 − βW|ψ2〉. (444)

Recall that W = 2
N 11t − I. Using 1t|ψ1〉 =

√
N −m and 1t|ψ2〉 =

√
m and (438), we have

W|ψ1〉 =
2

N
11t|ψ1〉 − |ψ1〉

=
2
√
N −m

N
· 1− |ψ1〉

=
2
√
N −m

N

(√
N −m · |ψ1〉+

√
m · |ψ2〉

)

− |ψ1〉

=

(

1− 2m

N

)

· |ψ1〉+
2
√

m(N −m)

N
· |ψ2〉. (445)

Similarly,

W|ψ2〉 =
2

N
11t|ψ2〉 − |ψ2〉

=
2
√
m

N
· 1− |ψ2〉

=
2
√
m

N

(√
N −m · |ψ1〉+

√
m · |ψ2〉

)

− |ψ2〉

=
2
√

m(N −m)

N
· |ψ1〉 −

(

1− 2m

N

)

· |ψ2〉. (446)

100

Using (445) and (446) in (444) gives

G|ψ〉 =
[(

1− 2m

N

)

α− 2
√

m(N −m)

N
β

]

|ψ1〉+
[

2
√

m(N −m)

N
α+

(

1− 2m

N

)

β

]

|ψ2〉. (447)

Importantly, the Grover operator G takes a vector in this subspace to another vector in this subspace.
The subspace spanned by {|ψ1〉, |ψ2〉} is invariant under G. A vector in this subspace is represented
by the two parameters α, β, that is by a vector [αβ]. The action of G on this vector is to produce

another vector in this subspace, represented by [α
′

β′].

[
α
β

]

→
[
α′

β′

]

=






1− 2m
N −2

√
m(N−m)

N

2
√
m(N−m)

N 1− 2m
N






[
α
β

]

. (448)

That is, the Grover operator on this subspace can be represented by the matrix

Gψ1ψ2 =






1− 2m
N −2

√
m(N−m)

N

2
√
m(N−m)

N 1− 2m
N




 . (449)

Gψ1ψ2 is a real orthogonal matrix, which you can see by verifying that

(

1− 2m

N

)2

+

(

2
√

m(N −m)

N

)2

= 1. (450)

Hence, we can define an angle θ by cos θ = 1− 2m/N and sin θ = 2
√

m(N −m)/N . Then

Gψ1ψ2 =

[
cos θ − sin θ
sin θ cos θ

]

. (451)

That is, Gψ1ψ2 rotates by a positive angle θ. Recall, from (439), that the initial state has angle Ω,
where sinΩ =

√

m/N . Here is an elegant geometric view of how G operates in this subspace,

|ψ1〉

|ψ2〉

Ω

θ

θ
|φ0〉

|φ1〉
|φ2〉

G

G

(452)

101

The starting state is |φ0〉 with angle Ω. Each time G operates on the state, it adds θ to the angle.
As you can see, this gradually aligns the state with |ψ2〉. The angle after t Grover iterations is

tθ +Ω. (453)

The projection of |φt〉 = Gt|φ0〉 onto |ψ2〉 is sin(tθ +Ω), and so the probability of success is

sin2(tθ +Ω), (454)

where sinΩ =
√

m/N and sin θ = 2
√

m(N −m)/N , matching the result from the eigenvalue anal-
ysis in (426). When the state |φt〉 has angle π/2, it is perfectly aligned with |ψ2〉. The only nonzero
amplititudes are for pure states |x〉 with f(x) = 1 and measurement has success probability 1. To
get near-perfect alignment, we set the number of Grover iterations to t∗ =

⌊
(π/2− Ω)/θ

⌋
, as in

(429). When m≪ N , Ω is negligible compared to π/2 and θ ≈ sin θ ≈ 2
√

m/N , which gives

t∗ ≈
π

4

√

N

m
. (455)

21.1 Eigenvalues of the Grover Operator: Phase Estimation

The Grover operator

Gψ1ψ2 =

[
cos θ − sin θ
sin θ cos θ

]

(456)

is a rotation. The eigenvalues of any unitary operator have unit norm. Indeed, let |v〉 be an
eigenvector with eigenvalue λ. The reader should justify steps (a), (b), (c) and (d) below,

1
(a)
= 〈v|G†G|v〉 (b)

= (G|v〉)†G|v〉 (c)
= λ∗λ〈v|v〉 (d)

= ‖λ‖2. (457)

Hence, the eigenvalues are of the form λ = eiγ , where the phase γ fully specifies the eigenvalue. The
eigenvalues of Gψ1ψ2 are the solution to its characteristic equation

(cos θ − λ)2 + sin2 θ = 0. (458)

The solutions are
λ± = cos θ ± i sin θ = e±iθ. (459)

The solutions to the eigenvalue equation
[
cos θ − sin θ
sin θ cos θ

] [
α
β

]

= e±iθ
[
α
β

]

(460)

are β = ∓iα. Hence, the (normalized) eigenvectors corresponding to eigenvalues λ± = e±iθ are

|v±〉 =
1√
2

[
1
∓i

]

. (461)

The important point is that the phase of the eigenvalues are ±θ. Specifically, phase(λ+) = θ. Since
cos θ = 1− 2m/N , it follows that m = N(1− cos θ)/2, or

m =
N

2
×
[
1− cos(phase(λ+))

]
. (462)

102

If we can estimate the phase of the eigenvalue corresponding to the eigenvector |v+〉, then we can
use (462) to get an estimate of m. Estimating the phase of the eigenvalues of a unitary operator is
a path to counting the 1’s of a Boolean function.

Estimating the phase of the eigenvalues of a unitary operator is called phase estimation. One
application is to quantum counting. This is important because it allows us to estimate the optimal
number of Grover iterations in a quantum search. However, phase estimation has other important
uses such as period finding with application to quantum factoring. Hence, phase estimation is an
important tool in its own right. So, we now switch gears and discuss Quantum Phase Estimation.

There is one small detail which we need to restore. We have been analyzing the Grover operator
in (433) by analyzing what it does on the top-n qubits |ψ〉. In terms of the full Grover operator on
n+ 1 qubits, we have shown that

|v+〉

|0〉−|1〉√
2

Uf

W eiθ|v+〉

|0〉−|1〉√
2

Grover Iteration

(463)

We leave it as an easy exercise for the reader to show that |v+〉 ⊗ (|0〉 − |1〉)/
√
2 is an eigenvector

of the full Grover operator G with eigenvalue eiθ. That is,

G

(

|v+〉 ⊗
|0〉 − |1〉√

2

)

= eiθ
(

|v+〉 ⊗
|0〉 − |1〉√

2

)

. (464)

So, if we can estimate the phase of the full Grover operator G, then we can estimate m.

Defining Phase Estimation Let us formally define the phase estimation problem as:

Given a unitary operator U as a black-box quantum circuit, and
an eigenvector quantum state |v〉, estimate the phase of the eigen-
value associated to the eigenvector quantum state |v〉.

So, we know that
U|v〉 = eiθ|v〉, (465)

and we are to estimate the phase θ. In the problem statement, we are given the eigenvector |v〉.
For the Grover operator, if we knew |v+〉, we would already know m and also solutions to f(x) = 1.
So, we need to figure out how to get around this obstacle of preparing the state |v〉. As a first
step, let us solve the basic phase estimation problem, where the eigenvector is given. To do phase
estimation, we are going to need the Fourier Transform, so the next order of business is to develop
the Quantum Fourier Transform.

103

22 Quantum Fourier Transform

One of humanity’s great inventions is the Fourier transform with applicationis in physics, engineer-
ing, function analysis, to name a few. The discrete Fourier transform converts a set of complex
numbers a0, a1, . . . , aN−1 to f0, f1, . . . , fN−1, where

fk =
1√
N

N−1∑

j=0

aje
(2πi)kj/N . (466)

Let us interpret this in context of a quantum state of n qubits. A quantum state has N = 2n ampli-
tudes for each pure (classical) n-bit state. The Fourier transform gives transformed amplitudes, i.e.,
another quantum state. The starting quantum state |ψ〉 specified by the amplitudes a0, . . . , aN−1,

|ψ〉 =
N−1∑

j=0

aj |j〉, (467)

is transformed to a new quantum state

|φ〉 =
N−1∑

k=0

fk|k〉. (468)

In vector form,







a0
a1
...

aN−1







→








f0
f1
...

fN−1








(469)

Note, the indices for the basis vectors are 0, 1, . . . , N − 1. The transform in (466) is clearly linear
in a. Hence, it implements some linear operator that is represented by a matrix F,

|φ〉 = F|ψ〉. (470)

Let us consider the action of F on a basis state |j〉. Using (466), fk = e(2πi)kj/N/
√
N and

F|j〉 = 1√
N

N−1∑

k=0

e(2πi)kj/N |k〉. (471)

We can now directly read the entries in the matrix F. Defining ω = e(2πi)/N

Fkj =
1√
N
ωkj . (472)

Let us consider a concrete case n = 3, N = 8. In this case, ω = e(2πi)/8. Using ω8 = 1, we get

F =
1√
8















ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω0 ω2 ω4 ω6 ω0 ω2 ω4 ω6

ω0 ω3 ω6 ω1 ω4 ω7 ω2 ω5

ω0 ω4 ω0 ω4 ω0 ω4 ω0 ω4

ω0 ω5 ω2 ω7 ω4 ω1 ω6 ω3

ω0 ω6 ω4 ω2 ω0 ω6 ω4 ω2

ω0 ω7 ω6 ω5 ω4 ω3 ω2 ω1















(473)

104

We prove F is unitary. From (472), Fαk = e(2πi)αk/N/
√
N and

(F†)kβ = e−(2πi)βk/N/
√
N. (474)

Hence,

(FF†)αβ =
N−1∑

k=0

Fαk(F
†)kβ

=
1

N

N−1∑

k=0

e(2πi)αk/N−(2πi)βk/N

=
1

N

N−1∑

k=0

e(2πi)(α−β)k/N . (475)

There are two cases to consider. If α = β, then

(FF†)αβ =
1

N

N−1∑

k=0

1 = 1. (476)

If α 6= β, let z = e(2πi)(α−β)/N 6= 1 because α, β ∈ [0, N − 1]. Then,

(FF†)αβ =
1

N

N−1∑

k=0

zk

=
1

N
· z

N − 1

z − 1
= 0 (477)

The last equality follows because zN = e(2πi)(α−β) and (α − β) is an integer. We have proved that
(FF†)αβ = δαβ , that is FF† = I, and F is unitary. This is big news. It means there is a quantum
circuit that implements the discrete Fourier transform on an n-qubit quantum state. Denote this
circuit by Fn, which takes as input an n-qubit quantum state and produces an n-qubit output state
whose amplitudes to be in each classical state have been transformed by a Fourier transform,

Fn|ψ〉n |φ〉n
(478)

22.1 Classical DFT Algorithm

A naive computation of the Fourier transform in (466) must compute N Fourier coefficients

f1, . . . , fN−1. (479)

Each computation is a sum over N terms giving a total of O(N2) operations. One of the all time
classic algorithms on any list of top-10 best algorithms is the Fast Fourier Transform (FFT) that

105

computes all Fourier coefficients f1, . . . , fN−1 in O(N logN) operations. This is a huge speedup by
a factor of almost N = 2n and is a game changer in digital signal processing.

To develop the algorithm for the FFT, we use a more convenient representation of the Fourier
transform F defined by its action on the basis vectors in (471). The basis vector |j〉 corresponds to
an n-bit state |j1j2 · · · jn〉. The correspondence is the binary representation of the index j,

|000 · · · 00〉 ↔ |0〉
|000 · · · 01〉 ↔ |1〉
|000 · · · 10〉 ↔ |2〉
|000 · · · 11〉 ↔ |3〉

...
|111 · · · 10〉 ↔ |2n − 2〉
|111 · · · 11〉 ↔ |2n − 1〉.

(480)

The classical state |j1j2 . . . jn〉 ∈ {0, 1}n is the basis vector |j〉 ∈ {0, 1, . . . , 2n − 1}, where

j = j12
n−1 + j22

n−2 + · · · jn−12
1 + jn2

0. (481)

The sum in (471) is over all classical n-bit states |k〉 = |k1k2 · · · kn〉,

F|j〉 =
1√
N

∑

k1,k2,...,kn

e(2πi)j(k12
n−1+k22n−2+···kn−121+kn20)/N |k1k2 · · · kn〉

=
1√
N

∑

k1,k2,...,kn

exp

[

(2πi)j

(
k1
2

+
k2
22

+ · · · kn−1

2n−1
+
kn
2n

)]

|k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kn〉

=
1√
N

∑

k1,k2,...,kn

e(2πi)jk1/2|k1〉 ⊗ e(2πi)jk2/2
2 |k2〉 ⊗ · · · ⊗ e(2πi)jkn/2

2 |kn〉

=
1√
N

∑

k1

e(2πi)jk1/2|k1〉 ⊗
∑

k2

e(2πi)jk2/2
2 |k2〉 ⊗ · · · ⊗

∑

kn

e(2πi)jkn/2
2 |kn〉. (482)

In the second step, we used N = 2n. Each sum above has two terms,

1∑

kℓ=0

e(2πi)jkℓ/2
ℓ |kℓ〉 = |0〉+ e(2πi)j/2

ℓ |1〉. (483)

Using the bit representation j = j12
n−1 + · · ·+ jn2

0, for ℓ ∈ {1, 2, . . . , n}:

exp

(

(2πi)
j

2ℓ

)

= exp

(

(2πi)
j12

n−1 + · · ·+ jn2
0

2ℓ

)

= exp

(

(2πi)

[

j12
n−ℓ−1 + · · ·+ jn−ℓ2

0 +
jn+1−ℓ
21

+
jn+2−ℓ
22

+ · · ·+ jn
2ℓ

])

= exp

(

(2πi)

[
jn+1−ℓ
21

+
jn+2−ℓ
22

+ · · ·+ jn
2ℓ

])

. (484)

The last step is because any integer multiple of 2πi in the exponent can be ignored. The sum, as a
number, has a convenient binary expansion,

jn+1−ℓ
21

+
jn+2−ℓ
22

+ · · ·+ jn
2ℓ

= 0.j(n+1−ℓ)j(n+2−ℓ) · · · j(n−1)jn. (485)

106

The binary expansion on the RHS is shorthand for the sum on the LHS. Importantly, we proved:

F|j1j2 · · · jn〉 =
|0〉+ e(2πi)0.jn |1〉√

2
⊗ |0〉+ e(2πi)0.jn−1jn |1〉√

2
⊗ · · · ⊗ |0〉+ e(2πi)0.j1j2···jn |1〉√

2
. (486)

This formula is key to the quantum circuit for F. It also gives an O(n2n) classical DFT-algorithm.
We can get another useful way to write the formula in (486). Since e(2πi)k = 1 for any integer k, we
get the following useful identity.

e(2πi)2
k×0.j1j2···jn = e(2πi)0.jk+1jk+2···jn . (487)

Let ϕ = 0.j1j2 · · · jn ∈ [0, 1). Then, using (487) in (486) gives

F|j1j2 · · · jn〉 =
|0〉+ e(2πi)ϕ·2

n−1 |1〉√
2

⊗ |0〉+ e(2πi)ϕ·2
n−2 |1〉√

2
⊗ · · · ⊗ |0〉+ e(2πi)ϕ·2

0 |1〉√
2

. (488)

22.1.1 Fast Fourier Transform (FFT)

Given a0, a1, . . . , aN−1, we must compute all the Fourier coefficients f0, f1, . . . , fN−1. Equivalently,
from the starting state |ψ〉 =∑j∈{0,1}n aj |j〉, we must compute |φ〉 = F|ψ〉,

|φ〉 =
∑

j∈{0,1}n
ajF|j〉. (489)

In (486), consider the two cases j1 = 0 and j1 = 1:

F|0j2j3 · · · jn−1〉 = |0〉+e(2πi)0.jn |1〉√
2

⊗ |0〉+e(2πi)0.jn−1jn |1〉√
2

⊗ · · · ⊗ |0〉+e(2πi)0.0j2···jn |1〉√
2

= F|j2j3 · · · jn−1〉 ⊗ |0〉+e(2πi)0.0j2···jn |1〉√
2

(490)

F|1j2j3 · · · jn−1〉 = |0〉+e(2πi)0.jn |1〉√
2

⊗ |0〉+e(2πi)0.jn−1jn |1〉√
2

⊗ · · · ⊗ |0〉−e(2πi)0.0j2···jn |1〉√
2

= F|j2j3 · · · jn−1〉 ⊗ |0〉−e(2πi)0.0j2···jn |1〉√
2

. (491)

For j1 = 1, we used e(2πi)0.1j2···jn = −e(2πi)0.0j2···jn . The sum in (489) breaks into two terms,

|φ〉 =
∑

j2,...,jn

a0j2···jnF|0j2 · · · jnj〉+
∑

j2,...,jn

a1j2···jnF|1j2 · · · jnj〉. (492)

Using (490) and (491) and collecting terms, we get

|φ〉 =




∑

j2,...,jn

xj2···jnF|j2j3 · · · jn−1〉





︸ ︷︷ ︸

|φx〉

⊗|0〉+




∑

j2,...,jn

yj2···jnF|j2j3 · · · jn−1〉





︸ ︷︷ ︸

|φy〉

⊗|1〉 (493)

where

xj2···jn =
a0j2···jn + a1j2···jn√

2
; (494)

yj2···jn =
e(2πi)0.0j2···jn(a0j2···jn − a1j2···jn)√

2
. (495)

107

In (493) we have decomposed |φ〉 into two DFT’s of size N/2 that compute |φx〉 and |φy〉. The two
N/2 sized DFT’s are for the amplitudes x and y that are computed from the original amplitudes a

as given in (494) and (495). All the amplitudes in x,y can be computed in O(N) operations. A little
care is needed to compute all the e(2πi)0.0j2···jn in O(N) time, assuming complex exponentiation can
be done in O(1). Lastly, we compute |φx〉 ⊗ |0〉, which populates the even entries f0, f2, . . . , fN−2,
and |φy〉 ⊗ |1〉, which populates the odd entries f1, f3, . . . , fN−1. This takes O(N) operations.
Therefore, we have a running time t(N) which satisfise the recursion

t(N) = 2t(N/2) +O(N). (496)

Via the master theorem, t(N) is in O(N logN). A good exercise is to exactly analyze the runtime.

22.2 Quantum Circuit for DFT

The formula in (486) has a very elegant interpretation from the perspective of a quantum circuit
for DFT. If the input to the circuits is the classical state |j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jn〉, then the output
is also a tensor product. The top output-qubit state is (|0〉 + e(2πi)0.jn |1〉)/

√
2, the next is (|0〉 +

e(2πi)0.jn−1jn |1〉)/
√
2, etc. We give a quantum circuit to produce the outputs in reverse order, namely

|0〉+ e(2πi)0.j1j2···jn |1〉√
2

⊗ |0〉+ e(2πi)0.j2···jn |1〉√
2

⊗ · · · ⊗ |0〉+ e(2πi)0.jn |1〉√
2

. (497)

|jn〉 (|0〉+ e(2πi)0.jn |1〉)/
√
2

|jn−1〉 (|0〉+ e(2πi)0.jn−1jn |1〉)/
√
2

|j3〉 (|0〉+ e(2πi)0.j3···jn |1〉)/
√
2

|j2〉 (|0〉+ e(2πi)0.j2j3···jn |1〉)/
√
2

|j1〉 (|0〉+ e(2πi)0.j1j2j3···jn |1〉)/
√
2

...
...

reversed

Fn

This is not a problem, because if we operate on the output with

swap(1, n) · swap(2, n− 1) · swap(3, n− 3) · · · , (498)

the final circuit will have the desired output on each wire. This reversal of the outpus uses
⌊
n/2

⌋

swap gates, which is 3
⌊
n/2

⌋
c-nots. Consider the top output-qubit in (497). It is a superposition

of |0〉 with a phase times |1〉. The phase depends on all the input classical bits j1, . . . , jn. We will
construct a circuit that produces the top output-qubit. Let’s call this circuit topn.

|jn〉 |jn〉
|jn−1〉 |jn−1〉

|j3〉 |j3〉
|j2〉 |j2〉
|j1〉 (|0〉+ e(2πi)0.j1j2···jn |1〉)/

√
2

...
...topn

(499)

108

From (497), the phase for output from qubit |j2〉 is similar to the phase for the top qubit, except that
it only uses bits j2, . . . , jn. Indeed topn−1 applied to bits j2, . . . , jn produces exactly the desired
output for qubit |j2〉. Applying this logic recursively, we obtain the circuit for Fn,

|jn〉 (|0〉+ e(2πi)0.jn |1〉)/
√
2

|jn−1〉 (|0〉+ e(2πi)0.jn−1jn |1〉)/
√
2

|j3〉 (|0〉+ e(2πi)0.j3···jn |1〉)/
√
2

|j2〉 (|0〉+ e(2πi)0.j2···jn |1〉)/
√
2

|j1〉 (|0〉+ e(2πi)0.j1j2···jn |1〉)/
√
2

...
...

topn
topn−1

topn−2

top2
top1

· · ·
swaps

Fn

(500)

The circuit in (500) produces the correct Fourier transformed quantum state for all input pure states
|j1 · · · jn〉. The linear DFT-operator is fully specified by its action on the computational basis, so
the circuit in (500) performs the Fourier transform correctly for any input quantum state |ψ〉 with
amplitudes a0, . . . , aN−1, to produce the output state |φ〉 with amplitudes f0, . . . , fk. To complete
our construction, we need a circuit for topn. To do so, we analyze two basic quantum gates, the
Hadamard and the controlled phase gates. Specifically, for an input pure single qubit state |j1〉,

H|j1〉 =
{

(|0〉+ |1〉)/
√
2 j1 = 0;

(|0〉 − |1〉)/
√
2 j1 = 0.

(501)

Using eπi = −1, these two cases can be neatly summarized into a single equation

H|j1〉 = (|0〉+ e(2πi)0.j1 |1〉)/
√
2. (502)

Thus, the Hadamard produces the 0.j1 part of the phase for the top output-qubit in (499). To
get from here to 0.j1j2, we need to multiply the phase e(2πi)0.j1 by e(2πi)0.0j2 . That is, we need to
multiply by a phase that is conditional on the classical bit j2. The controlled phase gate does just
this. Consider the circuit that uses the controlled phase gate R(δ) with inputs as shown below,

|0〉+eiθ|1〉√
2

R(δ) =

[
1 0
0 eiδ

]

|j2〉 ⊕

(503)

|j2〉 is a pure single qubit state. We analyze this operator cR(δ). By linearity,

cR(δ)

[|0〉+ eiθ|1〉√
2

⊗ |j2〉
]

=
1√
2
cR(δ)[|0〉 ⊗ |j2〉] +

eiθ√
2
cR(δ)[|1〉 ⊗ |j2〉]. (504)

The phase operator does not affect |0〉 so the first term is (|0〉 ⊗ |j2〉)/
√
2. In the second term,

the phase gate operates on the |1〉, multiplying it by the phase eiω, if and only if j2 = 1. This

109

conditional multiplication by a phase can be neatly captured by always multiplying by the phase
eiωj2 . Collecting all this together and factoring out the |j2〉 gives

cR(δ)

[|0〉+ eiθ|1〉√
2

⊗ |j2〉
]

=
|0〉+ ei(θ+ωj2)|1〉√

2
⊗ |j2〉. (505)

The controlled phase gate multiplies the amplitude for |1〉 by the appropriate phase and leaves the
amplitude for |0〉 unaltered. Since we need to multiply by the phase e(2πi)0.0j2 = e(2πi)j2/2

2
, we set

δ = 2π/22. Thus, a circuit that multiplies the |1〉 in the superposition by e(2πi)0.j1j2 is

|j1〉 |0〉+ e(2πi)0.j1j2 |1〉√
2

H R(2π/22)

|j2〉 |j2〉⊕

|0〉+e(2πi)0.j1 |1〉√
2

(506)

By (485), the phase e(2πi)0.j1···jn is a product of phases,

e(2πi)0.j1j2j3···jn = e(2πi)j1/2e(2πi)j2/2
2
e(2πi)j3/2

3 · · · e(2πi)jn/2n . (507)

The phases in this product that depend on j2, . . . , jn are obtained by a controlled phase gate as in
(506). To multiply by the phase e(2πi)jk/2

k
for k > 1, use the classical bit |jk〉 to control the phase

gate R(2π/2k) applied on the top qubit. Let Rk = R(2π/2k). A circuit for topn is

|j1〉 |0〉+e(2πi)0.j1j2···jn |1〉√
2

|j2〉 |j2〉
|j3〉 |j3〉

|jn−1〉 |jn−1〉
|jn〉 |jn〉

H R2

⊕

R3

⊕

Rn−1

⊕

Rn

⊕

...
...

· · ·

(508)

We leave it to the reader to use the circuit for topn in (508) to construct the full circuit for
Fn using (500). The circuit for topn uses one Hadamard gate and n − 1 phase gates. Fn uses
topn,topn−1, . . . ,top1, which is a total of n Hadamards and 1 + 2 + · · · + (n − 1) phase gates.
Adding in the

⌊
n/2

⌋
swaps, the gate complexity of the quantum Fourier transform is

n Hadmards, n(n− 1)/2 phase gates, and 3 ⌊n/2 ⌋ c-nots.

The quantum Fourier transform uses O(n2) gates, which is an exponential speedup when compared
to the runtime complexity of the classical FFT. There is a catch, however. The quantum Fourier
transform stores f0, . . . , fN−1 in the amplitudes of the output quantum state |φ〉. There is no way
to access these amplitudes individually. It is also not obvious how to prepare the initial state |ψ〉.
Hence this quantum circuit, as far as we know, cannot be used to implement the classical DFT more
efficiently than the FFT. We are, however, free to use this operator in other algorithms, if some
final measurement can give us an answer to some other problem. One such application is to phase
estimation, which we discuss next.

110

Example 22.1. It is an imperative exercise to construct the inverse of the quantum Fourier trans-
form. One approach is to recall that the inverse is F†, so construct a circuit implementing F†.
Another approach is to apply (in reverse order) the inverses of each gate in our quantum circuit for
F. The inverse of a swap is the same swap. What is the inverse of the controlled phase gate? What
is the inverse of the Hadamard?

Also, for practice, it is instructive to construct the full quantum circuit for Fourier transform of
8 amplitudes, that is, the circuit for three input qubits, and also the circuit for the inverse Fourier
transform on three qubits.

111

23 Quantum Phase Estimation

The Fourier transform is critical to the general task of phase estimation. Phase estimation in turn
is a power-tool for many quantum algorithms. Our specific use case is to estimate the phase of
the Grover operator. If we know this phase, then we can estimate the optimal number of Grover
iterations and solve a search problem.

Given a unitary operator U as a black-box quantum circuit, and
an eigenvector quantum state |v〉, estimate the phase of the eigen-
value associated to the eigenvector quantum state |v〉.

Since U is unitary, for ϕ ∈ [0, 1) we have that

U|v〉 = e(2πi)ϕ|v〉. (509)

To simplify matters, let us suppose that ϕ has a finite binary expansion,

ϕ = 0.ϕ1ϕ2 · · ·ϕt =
ϕt
2t

+ · · ·+ ϕ2

22
+
ϕ1

21
, (510)

where ϕk ∈ {0, 1}. Using e(2πi)k = 1 for any integer k, we get the following useful identity.

e(2πi)ϕ·2
k
= e(2πi)0.ϕk+1ϕk+2···ϕt . (511)

Consider the pure state |ϕ1ϕ2 · · ·ϕt〉 as input to the Fourier transform. Using (511) and (497) (after
reversing the output-qubits), the Fourier transform produces

|ϕt〉 (|0〉+ e(2πi)ϕ·2
0 |1〉)/

√
2

|ϕt−1〉 (|0〉+ e(2πi)ϕ·2
1 |1〉)/

√
2

|ϕ3〉 (|0〉+ e(2πi)ϕ·2
t−3 |1〉)/

√
2

|ϕ2〉 (|0〉+ e(2πi)ϕ·2
t−2 |1〉)/

√
2

|ϕ1〉 (|0〉+ e(2πi)ϕ·2
t−1 |1〉)/

√
2

...
...Ft

(512)

We show how to get the same output state produced by Ft|ϕ1ϕ2 · · ·ϕt〉 using U and |v〉. Consider
the following circuit which uses the controlled Uk operator, cUk,

|0〉+|1〉√
2

⊕

|v〉n Uk

(513)

Using linearity and Uk|v〉 = e(2πi)ϕ·k|v〉, we have

cUk
[|0〉+ |1〉√

2
⊗ |v〉

]

=
1√
2
cUk[|0〉 ⊗ |v〉] + 1√

2
cUk[|1〉 ⊗ |v〉]

=
1√
2
|0〉 ⊗ |v〉+ 1√

2
|1〉 ⊗ e(2πi)ϕ·k|v〉

=
|0〉+ e(2πi)ϕ·k|1〉√

2
⊗ |v〉. (514)

112

The result in (514) is summarized below,

|0〉 ⊕H
|0〉+e(2πi)ϕ·k|1〉√

2

|v〉 Uk |v〉
(515)

Setting k = 2t−1, 2t−2, 2t−3, . . . , 21, 20, we recover the outputs in (512) using the following circuit,

|0〉 H (|0〉+ e(2πi)ϕ·2
t−1 |1〉)

√
2

|0〉 H (|0〉+ e(2πi)ϕ·2
t−2 |1〉)

√
2

|0〉 H (|0〉+ e(2πi)ϕ·2
t−3 |1〉)

√
2

|0〉 H (|0〉+ e(2πi)ϕ·2
1 |1〉)

√
2

|0〉 H (|0〉+ e(2πi)ϕ·2
0 |1〉)

√
2

|v〉n |v〉n

⊕

U2t−1

⊕

U2t−2

⊕

U2t−3

⊕

U21

⊕
U20

...
...

...
. . .

· · ·
(516)

Note that this circuit operates on t + n qubits. At the input, the top t qubits are set to |0〉 and
the next n qubits are in the eigen quantum state of U. At the output, the top t qubits are in the
quantum state Ft|ϕ1ϕ2 · · ·ϕt〉. If we now apply the inverse Fourier transform to the top t qubits,
we recover |ϕ1ϕ2 · · ·ϕt〉,

F
†
tFt|ϕ1ϕ2 · · ·ϕt〉 = |ϕ1ϕ2 · · ·ϕt〉. (517)

Here is the full quantum circuit for phase estimation,

|0〉 H |ϕ1〉
|0〉 H |ϕ2〉
|0〉 H |ϕ3〉

|0〉 H |ϕt−1〉
|0〉 H |ϕt〉

|v〉n |v〉n

⊕

U2t−1

⊕

U2t−2

⊕

U2t−3

⊕

U21

⊕
U20

...
...

...
. . .

· · ·

F
†
t

(518)

Measuring the top t qubits recovers ϕ. There are two loose ends. How do we know t and how do
we get the eigen quantum state |v〉?

To run the phase estimation circuit, one has to pick a value for t, without knowing ϕ. What
happens if the binary expansion for ϕ has more than t bits. So,

ϕ =
ϕ1

21
+
ϕ2

22
+ · · ·+ ϕt

2t
+
ϕt+1

2t+1
+ · · · (519)

The circuit above only measures t bits. We may ask how likely is it that the circuit in (518) correctly
measures the first k bits ϕ1, ϕ2, . . . ϕκ. That is, what is the probability that the circuit in (518)
produces an approximation that is within 2−κ of ϕ? It is an interesting exercise to show that if

t ≥ κ− 1 + log2

(

1 +
4

π2ǫ

)

. (520)

113

then the circuit in (518) gives a κ-bit approximation to ϕ with probability at least 1 − ǫ. For
example, if t ≥ κ+ 8, we get a κ-bit approximation to ϕ with probability at least 0.999.

To run the circuit in (518), we need to prepare the eigen quantum state |v〉. What happens if the
input state is not an eigen quantum state |v〉? In general the input state will be some superposition
of the eigen vectors of U. In this case, what happens. We will see an example when we tackle the
application to estimating the phase for the Grover operator, next.

23.1 Phase Estimation for the Grover Operator

The Grover operator G takes an (n+ 1)-qubit input for a function f defined on n bits. Recall that
the (|ψ1〉, |ψ2〉)-subspace is invariant under the Grover operator,

G

[

(α|ψ1〉+ β|ψ2〉)⊗
|0〉 − |1〉√

2

]

= (α′|ψ1〉+ β′|ψ2〉)⊗
|0〉 − |1〉√

2
. (521)

Ignoring the bottom qubit input to G which stays invariant, the initial input to G in the Grover
iteration is |φ0〉 = 1/

√
N , which in the (|ψ1〉, |ψ2〉)-subspace is the vector

|φ0〉 =
[√

(N −m)/N
√

m/N

]

. (522)

In this subspace, the eigenvectors and eigenvalues of G are

|v±〉 =
1√
2

[
1
∓i

]

; λ± = e(2πi)ϕ± , (523)

where cos(2πϕ+) = 1 − 2m/N and ϕ− = 1 − ϕ+. Hence, ϕ+ ∈ [0, 1/4) and ϕ− ∈ (3/4, 1] (see
(461)). We can write the input |φ0〉 as a linear combination of |v±〉,

|φ0〉 = α|v+〉+ β|v−〉, (524)

where

α =

(√

N −m

2N
+ i

√
m

2N

)

; β =

(√

N −m

2N
− i

√
m

2N

)

. (525)

Let us see what happens if we feed in |φ0〉 into the phase estimation circuit, instead of |v+〉. Let
us start small, with t = 2, and analyze this controlled-G circuit (we suppressed the (|0〉 − |1〉)/

√
2

bottom input which comes along for the ride).

|0〉+|1〉√
2

|0〉+|1〉√
2

α|v+〉+ β|v−〉

⊕

Gk

⊕

Gℓ
(526)

First, the top qubit controls Gk on the bottom n+ 1 qubits. Using linearity of tensor product and
cGk, the result on the top qubit and the bottom register of n+ 1 qubits is

cGk

[|0〉+ |1〉√
2

⊗ (α|v+〉+ β|v−〉)
]

= α · cGk |0〉+ |1〉√
2

⊗ |v+〉+ β · cGk |0〉+ |1〉√
2

⊗ |v−〉. (527)

114

Now, using the analysis in (514), evaluate each term separately to get

α · |0〉+ e(2πi)ϕ+·k|1〉√
2

⊗ |v+〉+ β · |0〉+ e(2πi)ϕ−·k|1〉√
2

⊗ |v−〉. (528)

To get the full state after the first controlled-Gk we need to tensor the above state with the state
of the middle qubit. By linearity of tensor product, this full state is

α · |0〉+ e(2πi)ϕ+·k|1〉√
2

⊗ |0〉+ |1〉√
2

⊗ |v+〉+ β · |0〉+ e(2πi)ϕ−·k|1〉√
2

⊗ |0〉+ |1〉√
2

⊗ |v−〉. (529)

We can now apply the second controlled-Gℓ. The middle qubit is controlling. By linearity, we can
apply this controlled -Gℓ to each term and add. The result is

α · |0〉+ e(2πi)ϕ+·k|1〉√
2

⊗ |0〉+ e(2πi)ϕ+·ℓ|1〉√
2

⊗ |v+〉+ β · |0〉+ e(2πi)ϕ−·k|1〉√
2

⊗ |0〉+ e(2πi)ϕ−·ℓ|1〉√
2

⊗ |v−〉.
(530)

The pattern generalizes and we can directly write down the output for the following circuit,

|0〉 H

|0〉 H

|0〉 H

|0〉 H

|0〉 H

(α|v+〉n + β|v−〉n)⊗
|0〉−|1〉√

2

⊕

G2t−1

⊕

G2t−2

⊕

G2t−3

⊕

G21

⊕
G20

...
...

. . .

· · ·
(531)

Comparing to (530), the output is

α|x〉 ⊗ |v+〉n ⊗
|0〉 − |1〉√

2
+ β|y〉 ⊗ |v−〉n ⊗

|0〉 − |1〉√
2

, (532)

where

|x〉 = |0〉+e(2πi)ϕ+2t−1 |1〉√
2

⊗ |0〉+e(2πi)ϕ+2t−2 |1〉√
2

⊗ · · · ⊗ |0〉+e(2πi)ϕ+21 |1〉√
2

⊗ |0〉+e(2πi)ϕ+20 |1〉√
2

;

|y〉 = |0〉+e(2πi)ϕ−2t−1 |1〉√
2

⊗ |0〉+e(2πi)ϕ−2t−2 |1〉√
2

⊗ · · · ⊗ |0〉+e(2πi)ϕ−21 |1〉√
2

⊗ |0〉+e(2πi)ϕ−20 |1〉√
2

. (533)

The next step in phase estimation applies F† to the top t qubits. Let ϕ± have binary expansions

ϕ+ = 0.a1 · · · at; ϕ− = 0.b1 · · · bt. (534)

For the Grover operator, it turns out that bk = 1−ak. Also, |x〉 = F|a1 · · · at〉 and |y〉 = F|b1 · · · bt〉.
Therefore F†|x〉 = |a1 · · · at〉 and F†|y〉 = |b1 · · · bt〉. Applying F† to (532) and using linearity, the
final output of phase estimation is

α|a1 · · · at〉 ⊗ |v+〉n ⊗
|0〉 − |1〉√

2
+ β|b1 · · · bt〉 ⊗ |v−〉n ⊗

|0〉 − |1〉√
2

. (535)

115

We see that the final output is in a superposition of two quantum states. The top-t qubits in each of
the states in the superposition are in pure classical state. So, measuring the top t qubits produces
|a1 · · · at〉 with probability ‖α‖2 = 1/2, or |b1 · · · bt〉 with probability ‖β‖2 = 1/2. By looking at the
top bit, we know if the measurement yielded the bits in ϕ+ or the bits in 1−ϕ+. In either case we
have ϕ+ and can compute the optimal number of Grover iterations.

Example 23.1. Here we know that the first bit of ϕ+ is 0 and we know that ϕ− = 1 − ϕ+. This
allows us to disambiguate the measurement and get ϕ+. What if we don’t these details about ϕ±?
In that case, we measure and use that measurement to compute the optimal m. If it’s the right m,
we succeed. If not, we may fail. In which case, we repeat the whole process. The probability of
getting the right measurement is ‖α‖2 = 1/2. We can boost this to as high a probability as needed
with a small (logarithmic) number of repetitions.

23.2 Binary Expansion of ϕ has more than t Bits.

We now consider the case that the phase ϕ has more than t bits in its binary expansion,

ϕ =
ϕ1

21
+
ϕ2

22
+ · · ·+ ϕt

2t
︸ ︷︷ ︸

ϕt

+
ϕt+1

2t+1
+
ϕt+2

2t+2
+ · · ·

︸ ︷︷ ︸

ρ

(536)

So, ϕ = ϕt + ρ where 0 < ρ < 1/N . Let us define kϕ = 2tϕt =
⌊
2tϕ

⌋
, 0 ≤ kϕ ≤ N − 1 and N = 2t.

The top t qubits from the first step in phase estimation in (516) is

|0〉+ e(2πi)ϕ·2
t−1 |1〉√

2
⊗ |0〉+ e(2πi)ϕ·2

t−2 |1〉√
2

⊗ · · · ⊗ |0〉+ e(2πi)ϕ·2
1 |1〉√

2
⊗ |0〉+ e(2πi)ϕ·2

0 |1〉√
2

. (537)

Let |j〉 = |j1j2 · · · jt〉 be a pure state with t bits. Let us compute its amplitude in the superposition
above. If jℓ = 0 we use the |0〉/

√
2 in the jlth term in the tensor product above. If jℓ = 1 we

use the e(2πi)ϕ·2
t−ℓ |1〉/

√
2 in the jlth term in the tensor product above. So the contribution of jℓ

to the amplitude of |j1j2 · · · jt〉 is e(2πi)ϕjℓ2
t−ℓ

. Taking the product of these amplitudes, we get the
amplitude aj for |j1j2 · · · jt〉,

aj =
t∏

ℓ=1

1√
2
e(2πi)ϕjℓ2

t−ℓ
=

1√
N
e(2πi)ϕ

∑t
ℓ=1 jℓ2

t−ℓ
=

1√
N
e(2πi)ϕj . (538)

The state in (537) can be written,

N−1∑

j=0

aj |j〉 =
1√
N

N−1∑

j=0

e(2πi)ϕj |j〉. (539)

where j = 0, . . . , N − 1. The second step in phase estimation applies F† to this state. Using (474),

F†|j〉 =
N−1∑

k=0

F
†
kj |k〉 =

1√
N

N−1∑

k=0

e−(2πi)kj/N |k〉. (540)

116

By linearity, the output state for the top t bits after applying the phase estimation circuit is

1

N

N−1∑

k=0

N−1∑

j=0

e(2πi)(ϕ−k/N)j |k〉. (541)

The geometric sum over j can be done in closed form to give the output state

1

N

N−1∑

k=0

bk|k〉, where bk =
e(2πi)(Nϕ−k) − 1

e(2πi)(ϕ−k/N) − 1
. (542)

Upon measuring the top t qubits, The probability to observe |k〉 is ‖bk‖2. Performing the requisite
algebra, one finds

P[|k〉] = 1

N2
× 1− cos(2π(Nϕ− k))

1− cos(2π(ϕ− k/N))
. (543)

The phase corresponding to the measurement |k〉 is ϕ̂ = 0.k1 · · · kt = k/N . We now analyze these
probabilities to determine how likely it is to measure a phase ϕ̂ that is close to the true phase ϕ.
Recall that Nϕ = N(ϕt + ρ) = kϕ +Nρ. Hence,

cos(2π(Nϕ− k)) = cos(2π(kϕ − k) + 2πNρ) = cos(2πNρ). (544)

Let us now consider the possibilities k = kϕ or k = kϕ+1 (mod N) (the angle only matters modulo
2π, hence k only matters modulo N). In these cases,

k = kϕ → ϕ̂ = kϕ/N and ϕ− ϕ̂ = ρ;
k = kϕ + 1 → ϕ̂ = (kϕ + 1)/N and ϕ− ϕ̂ = ρ− 1/N.

(545)

Since 1/N = 2−t, using cos(x) = cos(−x) we have P[k = kϕ or kϕ + 1] = P[|ϕ− ϕ̂| ≤ 2−t]. Hence,

P[|ϕ− ϕ̂| ≤ 2−t] =
1− cos(2πNρ)

N2

[

1

1− cos(2πρ)
+

1

1− cos(2π(1
N − ρ))

]

. (546)

This expression is minimized at ρ = 1/2N , so

P[|ϕ− ϕ̂| ≤ 2−t] ≥ 4

N2(1− cos(π/N))
. (547)

Since 1/N2(1−cos(π/N)) is decreasing in N , we can take the limit as N → ∞ to get a lower bound.
Since N2(1− cos(π/N)) → π2/2, we have that

P[|ϕ− ϕ̂| ≤ 2−t] ≥ 8

π2
≈ 0.81. (548)

There is an 81% chance that phase estimation produces ϕ̂ that is within 2−t of the true phase ϕ,
not bad. Let us generalize this discussion. Let k = kt − ℓ or k = kt + 1 + ℓ. In these cases,

k = kϕ − ℓ → ϕ̂ = (kϕ − ℓ)/N and ϕ− ϕ̂ = ρ+ ℓ/N ;
k = kϕ + 1 + ℓ → ϕ̂ = (kϕ + 1 + ℓ)/N and ϕ− ϕ̂ = ρ− 1/N − ℓ/N.

(549)

117

Using (543),

P[k = kϕ − ℓ or kϕ + 1 + ℓ] =
1− cos(2πNρ)

N2

[

1

1− cos(2π(ρ+ ℓ
N))

+
1

1− cos(2π(1
N − ρ+ ℓ

N))

]

.

(550)
The terms with ℓ = 0, 1, . . . , ℓmax give probability that |ϕ̂− ϕ| ≤ (ℓmax + 1)2−t. That is,

P

[

|ϕ̂− ϕ| ≤ ℓmax + 1

2t

]

=
1− cos(2πNρ)

N2

ℓmax∑

ℓ=0

1

1− cos(2π(ρ+ ℓ
N))

+
1

1− cos(2π(1
N − ρ+ ℓ

N))
.

(551)
The expression on the RHS is minimized when ρ = 1/2N . This is expected because when ρ→ 0 or
ρ→ 1/N , the true phase ϕ has an exact t-bit expansion and by (517) one recovers the exact phase
with probability 1. Hence, the lowest probability of success occurs when ϕ is as far away from a
t-bit expansion as possible, that is when ρ = 1/2N . Here is an example with t = 10 and ℓmax = 2.

0 1/2N 1/N
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

P
ro

b
a
b
ili

ty
 o

f
E

rr
o
r

We get a lower bound by setting ρ = 1/2N in (551),

P

[

|ϕ̂− ϕ| ≤ ℓmax + 1

2t

]

≥ 4

N2

ℓmax∑

ℓ=0

1

1− cos(π(2ℓ+ 1)/N)
. (552)

Since N2(1− cos(π(2ℓ+1)/N)) is decreasing in N , we can take the limit N → ∞ to get the bound

P

[

|ϕ̂− ϕ| ≤ ℓmax + 1

2t

]

≥ 8

π2

ℓmax∑

ℓ=0

1

(2ℓ+ 1)2
. (553)

This bound is tight. We can analyze this bound using the sum
∑∞

ℓ=1 1/ℓ
2 = π2/6 which implies

∑∞
ℓ=0 1/(2ℓ+ 1)2 = π2/8. We get

P

[

|ϕ̂− ϕ| ≤ ℓmax + 1

2t

]

=
8

π2





∞∑

ℓ=0

1

(2ℓ+ 1)2
−

∞∑

ℓ=ℓmax+1

1

(2ℓ+ 1)2





= 1− 8

π2

∞∑

ℓ=ℓmax+1

1

(2ℓ+ 1)2
. (554)

118

We can now upper bound the last sum using an integral to get

P

[

|ϕ̂− ϕ| ≤ ℓmax + 1

2t

]

≥ 1− 8

π2

∞∑

ℓ=ℓmax+1

1

(2ℓ+ 1)2

≥ 8

π2

(∞∑

ℓ=0

1

(2ℓ+ 1)2
−
∫ ∞

ℓmax

dx
1

(2x+ 1)2

)

= 1− 4

π2
· 1

2ℓmax + 1
. (555)

The reader may set ℓmax + 1 = 2t−κ to get

P
[
|ϕ̂− ϕ| ≤ 2−κ

]
≥ 1− 2

π2
· 1

2t−κ − 1/2
. (556)

Setting the RHS to 1− ǫ gives a κ-bit approximation with probability at least 1− ǫ if

t ≥ κ− 1 + log2

(

1 +
4

π2ǫ

)

. (557)

119

24 Quantum Error Correction

If the quantum state of your qubits changes during a computation, the result is corrupted. This
changing of the state is called decoherence, and it is inevitable because the quantum computer
interacts with everything. This is also true in classical computing, but it’s more benign. The in-
teractions of a classical computer with its environment are weak in comparison with the quantum
setting. Nevertheless, many weak interactions can build up to a large perturbation. Luckily, dis-
sipative processes, e.g. energy loss as heat to the environment, quickly dampen individual weak
interactions making it hard for them to buildup. Even still, we do need to worry about bit flips in
classical computers, and that is why you pay the big bucks for EC-RAM (error correcting RAM).
If a bit flips, we observe it and correct it. This can only be done if there is some redundancy which
tells us what the original bit was. Here is a simple example of the workflow,

0 000 010 000
encode observe

error
error

correct (558)

The classical bit is encoded into 3 identical bits, providing redundancy. We periodically observe the
bits at a frequency higher than the rate of bit-flips due to the environment (e.g. from cosmic rays).
The rate of observation must be high enough to ensure that at most one bit-flip will occur between
observations. When an error is observed, it is corrected to the majority bit. Can we implement the
same workflow for protecting the integrity of qubits. The first difference in the quantum setting is
that a general qubit can be in a superposition,

|ψ〉 = α|0〉+ β|1〉. (559)

This means there are a continuum of possible errors. Any change in α, β constitutes an error. A
change from (|0〉 + |1〉)/

√
2 to (|0〉 − |1〉)/

√
2 could be disastrous in a quantum algorithm, even

though it does not materially affect the state because the measurement probabilities are unchanged.
To do quantum error-correction, we aim for something like

|ψ〉 |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉 |ψ〉 ⊗ |ψ′〉 ⊗ |ψ〉 |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉encode observe
error

error

correct (560)

There are two challenges here, and these are fundamental challenges because they are at the heart of
quantum mechanics. The first step, encoding, is quantum state cloning. The last step also looks like
state cloning, because we are copying |ψ〉 onto |ψ′〉. You cannot clone quantum states. Even worse,
how do you observe the error? You won’t know that it is the middle qubit that changed. Any of
the qubits could have changed. So you have to “measure” all three qubits. When you measure, the
state collapses to one of the 8 possible pure states |000〉, . . . , |111〉. If there has been no corruption,
you will observe |000〉 with probability ‖α‖2. Suppose you do observe |000〉. Now what? You have
no idea what the original state was. All information on α, β is lost. So not only does measuring
the state to detect the error destroy the state. The result of the measurement cannot even tell us if
there was an error. Measuring |000〉, only tell us the original state had nonzero projection on |000〉.

• There are a continuum of possible errors resulting from coupling to anything in the universe.
• We cannot check for error because measuring the state destroys it.
• Even if we could check for error, we restore the original state via a copy because of no-cloning.

120

These roadblocks spell doom for quantum error correction. Here is what we need to have any chance:

• Ability to build in redundancy without cloning.
• Ability to check for errors without actually measuring the state.
• Ability to correct any errors without cloning.

For quantum computing to become reality, we need radically new breakthrough ideas.

24.1 Quantum Redundancy

Luckily some of these breakthrough ideas have been developed. Let’s begin with quantum redun-
dancy. The key idea is that instead of copying the entire state, which we cannot do because of
no-cloning, we are going to entangle the state with auxilliary qubits, to ensure that information
about the state is contained in multiple qubits. Ideally, we would like, but can’t have:

|ψ〉 → |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉. (561)

We can only clone classical bits, |0〉 → |000〉 and |1〉 → |111〉. How about a general version of this,

α|0〉+ β|1〉 → α|000〉+ β|111〉? (562)

This is a 3-qubit encoding of the original state that emphasizes the superposition by enforcing it on
all three qubits “simultaneously”. If you measure, all three bits will be the same. So, the measured
pure state is cloned. Since the output is a 3-qubit state, and quantum operators are unitary, the
input must be three qubits, the other two qubits start in state |0〉. Here is a circuit for this encoding,

α|0〉+ β|1〉

|0〉

|0〉

⊕ ⊕

not

not
(563)

One way to verify that the circuit works and produces α|000〉 + β|111〉 is to compute the unitary
operator U for this circuit by computing its action on the basis states. Apply U it to the starting
state and verify that you get the desired state. We ask you to compute U and verify















U





























α
0
0
0
β
0
0
0















=















α
0
0
0
0
0
0
β















(564)

We will reason directly from the circuit’s gates. Label the first controlled-not as cnot12 to indicate
it is qubit 1 controlling a not on qubit 2. Similarly label the second controlled-not as cnot13.
These operators are linear. By linearity of tensor product, the starting state is

(α|0〉+ β|1〉)⊗ |0〉 ⊗ |0〉 = α|0〉 ⊗ |0〉 ⊗ |0〉+ β|1〉 ⊗ |0〉 ⊗ |0〉 (565)

121

Applying the cnot12 and using linearity,

cnot12(α|0〉 ⊗ |0〉 ⊗ |0〉+ β|1〉 ⊗ |0〉 ⊗ |0〉) (566)

= αcnot12(|0〉 ⊗ |0〉 ⊗ |0〉) + βcnot12(|1〉 ⊗ |0〉 ⊗ |0〉) (567)

= α|0〉 ⊗ |0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉 ⊗ |0〉 (568)

The first term is because the controlling bit is 0 and so the cnot acts identity on the 2nd bit. The
second term is because the controlling bit is 1 so the cnot flips the 2nd bit. Now apply the cnot13

and again use linearity to get

cnot13(α|0〉 ⊗ |0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉 ⊗ |0〉) (569)

= αcnot13(|0〉 ⊗ |0〉 ⊗ |0〉) + βcnot13(|1〉 ⊗ |1〉 ⊗ |0〉) (570)

= α|0〉 ⊗ |0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉 ⊗ |1〉, (571)

as desired. We can clone the classical bits not only when they are in isolation, but also when they
are in a superposition, as is the case for a general quantum state. Since 3 qubits are used in the
encoding, this is called a 3-qubit code.

24.2 Modeling the Error

There are three types of error that can occur to a qubit’s state. This is because any single qubit
error is caused by evolution under some 2× 2 unitary matrix, E. A basis for 2× 2 matrices is

I =

[
1 0
0 1

]

, σx =

[
0 1
1 0

]

, σy =

[
0 −i
i 0

]

, σz =

[
1 0
0 −1

]

. (572)

so E can be written as a linear combination of these matrices,

E = (1− ǫ)I + ǫxσx + ǫyσy + ǫzσz (573)

The error is caused by the ǫxσx+ ǫyσy + ǫzσz term. The first of these, the σx term, is bit-flip (note
that σx = not). The third, the σz term, is a phase flip. The second, the σy term, is a combined
phase and bit flip. To keep things simple while illustrating all the main ideas, we will only focus on
the bit flip error. All the main ideas extend to the more general error, and you can read about it in
more complete treatments. The main change is that you need to increase redundancy by encoding
a qubit using more than just 3 qubits.

To model this simple bit-flip error, we will assume that to one of the qubits in our encoded state
is applied at most one not. The error operator for our setting is illustrated in the circuit below,

α|0〉+ β|1〉
|0〉
|0〉

⊕ ⊕
not

not

α|000〉+ β|111〉

Encoder

E1

E2

E3

E
(574)

122

Three 1-qubit error operators E1,E2,E3 operate independently on each qubit of the encoded state
α|000〉+ β|111〉. Each Ei is either I or not, and at most one of the Ei is not I. One of four states
can result after the error. If all Ei are I, then E = I and the resulting state is the uncorrupted state,

|ψ0〉 = α|000〉+ β|111〉. (575)

If E1 = not, then E = not ⊗ I ⊗ I. We know E’s action on pure states, it just flips the first bit.
We use linearity to get E’s action on the encoded state,

E(α|000〉+ β|111〉) = αE(|000〉) + βE(|111〉) = α|100〉+ β|011〉. (576)

Similarly, if E2 or E3 are not, the corrupted states are α|010〉+β|101〉 or α|001〉+β|110〉 respectively.
The four options for the corrupted state are

|ψ0〉 = α|000〉+ β|111〉 E = I⊗ I⊗ I

|ψ1〉 = α|100〉+ β|011〉 E = not ⊗ I⊗ I

|ψ2〉 = α|010〉+ β|101〉 E = I⊗ not ⊗ I

|ψ3〉 = α|001〉+ β|110〉 E = I⊗ I⊗ not

(577)

No pure state occurs in more than one of the corrupted states. This means these corrupted states
are pairwise orthogonal.5 So now, if you measure and (say) get |100〉, you know there has been an
error. We have a fighting chance. You even know it was a bit flip in the first qubit of the encoded
state. In contrast, if you measure the un-encoded state and get (say) |0〉, you don’t know anything.
We can at least detect the error. However, the state is destroyed, and all information on α, β is
lost. Detecting the error in this way is not going to allow for error-correction.

Out ability to detect the error crucially depends on the possible corrupted states being orthog-
onal. That way, the result of the measurement uniquely identifies not just the error, but the type
of error. This concept will generalize to other types of errors. This requirement that the possible
corrupted states should be pairwise orthogonal can only be accomplished if the encoding uses suffi-
ciently many qubits. We can see this as follows. We start with a superposition of two pure states,
so after a possible bit-flip the possible corrupted state will be a superposition of two pure states.
Orthogonality requires that no pure state be repeated in any two of the four possible corrupted
states, hence we need at least 8 pure states in the encoding. This means the encoded state must
use at least 3 qubits which provides 23 = 8 pure states.

24.3 Detecting Bit-Flip Error

To detect the error, the great idea is not to measure the state itself. Rather, entangle the state
with some ancillary qubits. Through entanglement, the state of the ancillary qubits will depend on
which of the four corrupted states emerged after the error operator. By measuring the state of the

5You can also see this from the vector representations of the corrupted states,

|ψ0〉 =









α
0
0
0
0
0
0
β









, |ψ1〉 =









0
0
0
β
α
0
0
0









, |ψ2〉 =









0
0
α
0
0
β
0
0









, |ψ3〉 =









0
α
0
0
0
0
β
0









.

123

ancillary qubits, we can reveal the error without measuring (and destroying) the state itself. Once
the great idea is revealed, it is not so hard to accomplish. To entangle qubits, use one qubit to
control an operator, for example not, on another. We give a circuit that accomplishes this with two
ancillary cubits. Why must we have at least two ancillary qubits? Because measuring the ancillary
qubits produces a pure state that must distinguish between 4 possible corrupted states. Hence,
there must be at least 4 pure states for the ancillae, which requires at least two ancillary qubits.

α|0〉+ β|1〉
|0〉
|0〉

⊕ ⊕
not

not

Encoder

E1

E2

E3

E







|ψ0〉
|ψ1〉
|ψ2〉
|ψ3〉







|0〉
|0〉

⊕
⊕ ⊕

⊕
not not

not not

Detector

(578)
In the detector, qubits 1 and 2 of the corrupted state control nots on the first ancillary. Label
these controlled nots as cnot14 and cnot24 to identify the controlling and controlled bit. Then,
qubits 2 and 3 of the corrupted state control nots on the second ancillary. Label these controlled
nots as cnot25 and cnot35. We need to examine the action of the sequence of operators

cnot14, cnot24, cnot25, cnot35 (579)

on the four possible states

|ψ0〉 ⊗ |00〉, |ψ1〉 ⊗ |00〉, |ψ2〉 ⊗ |00〉, |ψ3〉 ⊗ |00〉. (580)

By linearity of the tensor product,

|ψ0〉 ⊗ |00〉 = α|000〉 ⊗ |00〉+ β|111〉 ⊗ |00〉
|ψ1〉 ⊗ |00〉 = α|100〉 ⊗ |00〉+ β|011〉 ⊗ |00〉
|ψ2〉 ⊗ |00〉 = α|010〉 ⊗ |00〉+ β|101〉 ⊗ |00〉
|ψ3〉 ⊗ |00〉 = α|001〉 ⊗ |00〉+ β|110〉 ⊗ |00〉

(581)

Let us now use linearity of the cnot operators to perform the detector operations on |ψ0〉 ⊗ |00〉.
We apply the four cnot operators to each pure state in the superposition and add the final results.

|ψ0〉 α|000〉 ⊗ |00〉+ β|111〉 ⊗ |00〉
cnot14 α|000〉 ⊗ |00〉+ β|111〉 ⊗ |10〉
cnot24 α|000〉 ⊗ |00〉+ β|111〉 ⊗ |00〉
cnot25 α|000〉 ⊗ |00〉+ β|111〉 ⊗ |01〉
cnot35 α|000〉 ⊗ |00〉+ β|111〉 ⊗ |00〉

(α|000〉+ β|111〉)⊗ |00〉

(582)

The last step uses linearity of the tensor product. We highlighted the bits involved in each operation,
blue for controlling and red for controlled. In the first step, bit 1 controls bit 4: when bit-1 is 0,

124

bit-4 is unchanged; when bit-1 is 1, bit-4 flips. The other three steps are similar. The conclusion is,

|ψ0〉 ⊗ |00〉 → |ψ0〉 ⊗ |00〉 (583)

Let’s repeat this calculation for |ψ1〉 ⊗ |00〉,

|ψ1〉 α|100〉 ⊗ |00〉+ β|011〉 ⊗ |00〉
cnot14 α|100〉 ⊗ |10〉+ β|011〉 ⊗ |00〉
cnot24 α|100〉 ⊗ |10〉+ β|011〉 ⊗ |10〉
cnot25 α|100〉 ⊗ |10〉+ β|011〉 ⊗ |11〉
cnot35 α|100〉 ⊗ |10〉+ β|011〉 ⊗ |10〉

(α|100〉+ β|011〉)⊗ |10〉

(584)

The conclusion is
|ψ1〉 ⊗ |00〉 → |ψ1〉 ⊗ |10〉 (585)

It’s now your turn to verify these calculations for |ψ2〉 ⊗ |00〉 and |ψ3〉 ⊗ |00〉.

|ψ2〉 α|010〉 ⊗ |00〉+ β|101〉 ⊗ |00〉
cnot14 α|010〉 ⊗ |00〉+ β|101〉 ⊗ |10〉
cnot24 α|010〉 ⊗ |10〉+ β|101〉 ⊗ |10〉
cnot25 α|010〉 ⊗ |11〉+ β|101〉 ⊗ |10〉
cnot35 α|010〉 ⊗ |11〉+ β|101〉 ⊗ |11〉

(α|010〉+ β|101〉)⊗ |11〉

|ψ3〉 α|001〉 ⊗ |00〉+ β|110〉 ⊗ |00〉
cnot14 α|001〉 ⊗ |00〉+ β|110〉 ⊗ |10〉
cnot24 α|001〉 ⊗ |00〉+ β|110〉 ⊗ |00〉
cnot25 α|001〉 ⊗ |00〉+ β|110〉 ⊗ |01〉
cnot35 α|001〉 ⊗ |01〉+ β|110〉 ⊗ |01〉

(α|001〉+ β|110〉)⊗ |01〉

(586)

The four possible states after going through the detector are as follows,

|ψ0〉 → |ψ0〉 ⊗ |00〉 (587)

|ψ1〉 → |ψ1〉 ⊗ |10〉 (588)

|ψ2〉 → |ψ2〉 ⊗ |11〉 (589)

|ψ3〉 → |ψ3〉 ⊗ |01〉 (590)

The state of the ancillae is highlighted. The important fact is that the ancillae are in a different

pure state depending on the corrupted state.

24.4 Correcting Bit-Flip Error

Measuring the state of the ancillae produces a different pure state for each possibile corrupted state
of our 3-qubit encoded state. Depending on the outcome, we detect if there was an error, and if
so which bit was flipped. We can then unflip that bit. For example, if we measure the ancillae
as |11〉, we know qubit 2 in the encoded state was flipped, so we unflip it by applying not. This
recovers the uncorrupted state. We have managed detected and corrected the bit-flip error without
damaging the state. We also still do not know anything about α, β.

That could be the end of the story with respect to bit-flip errors, but there is some value in
embelishing a little. We don’t actually need to measure the ancillae. The reason is we know the

125

ancillae are in specific pure states, depending on the corrupted 3-qubit encoded state. Hence, we
can use the ancillae to appropriately control nots on the corrupted 3-qubit state. This will restore
the 3-qubit code to its uncorrupted state without the need for disruptive measuring. The logic we
need to implement is

1: if ancillae = |00〉 then
2: Do nothing
3: else if ancillae = |10〉 then
4: Apply not1

5: else if ancillae = |11〉 then
6: Apply not2

7: else if ancillae = |01〉 then
8: Apply not3

This is accomplished by the error-corrector circuit in the gray box,

α|0〉+ β|1〉
|0〉

|0〉

⊕ ⊕
not

not

Encoder

E1

E2

E3

E |0〉

|0〉

⊕
⊕ ⊕

⊕
not not

not not

Detector

not

not

not

not

not

not

⊕
⊕

⊕
⊕

⊕
⊕

Error-Corrector

(591)
The output of this circuit for any α, β is

(α|0〉+ β|1〉)⊗ |ancillae〉. (592)

The two ancillae are stored in some pure state, but we do not know what that state is. The full bit-
flip quantum error correction circuit enclosed in the dotted rectangle above is applied periodicallyto
correct bitflip error. To reuse the ancillae one has to reset them to |00〉 which is most easily done
by measuring them and applying not if needed.

24.5 Generalizing to Other Errors

126

25 Quantum Factoring

The input is an integer N > 2. The output is a non-trivial factor D of N if one exists (1 < D < N
and D divides N). If no such factor exists, then the algorithm should declare N to be prime. A
simple classical algorithm tests if any of 2, 3, . . . ,

⌊√
N
⌋

divide N . If yes, you have a factor and
if no, N is prime. Testing if i divides N is in Θ(log3N) using simple grade school algorithms, so
the total runtime is in Θ(

√
N log3N), which is an exponential algorithm. Exponential because the

input size is O(log2N), the number of bits needed to specify N .
Shor’s quantum algorithm for factoring runs in poly(logN) time. It is the one example we have

of exponential speedup against the best known classical algorithm. (Grover’s search algorithm only
gives quadratic speedup.) This does not, however, mean that quantum computing gives exponential
speedups over classical computing because we do not know if a factor can be found in poly(logN)
time on a classical computer. Factoring is a complex number theoretic task. It is not clear how a
quantum computer, by somehow using quantum parallelism, could help with factoring. We know
how to test properties of functions using quantum parallelism. The general idea is to evaluate the
function on a massive superposition, producing a state that has all the information you need to test
the given property of the function. The remaining quantum-magic is to unravel all that information
to get at the property you want. It turns out that the property of a function we will need is its
period. Given a periodic function f : N 7→ [0, N − 1], suppose

f(x+ r) = f(x), (593)

for some r ∈ [1, N − 1]. We want to identify r. A classical algorithm could compare f(x) to
f(x+1), f(x+1), . . . , f(x+N − 1) to identify r. The runtine is Θ(N) (exponential), which is even
worse than the simple classical algorithm for factoring above. The plan is

(1) Reduce factoring to finding the period of some function. [Number Theory]
(2) Build the mathematical tools for period finding. [Fourier Transform]
(3) Quantum Fourier Transform makes period finding poly-time. [QFT]

The FFT is a landmark algorithm, both as a primitive in other algorithms and also as a tool for
fast signal processing. Its impact has been immense. So, even if you have no interest in factoring
or quantum computing, you will want to learn these mathematical tools.

25.1 Factoring and Period Finding

This section uses basic number theory to reformulate the factoring problem into one of testing the
periodicity of a function defined on the natural numbers. One may skip the number theory and
focus on the algorithmic details without sacrificing the logical flow (go to Section 25.2).

Since one can test if N is even, in which case 2 is a nontrivial factor, assume N is odd. As a
working example, let N = 15. Consider an integer a > 1 and let

gcd(N, a) = D. (594)

If 1 < D < N , then D is a nontrivial factor. For example, if a = 25, then gcd(15, 25) = 5 and 5 is
a factor of 15. If D = 1, then we cannot immediately get a factor from D. For example suppose

127

a = 26. There is some progress we can make even in this case. Notice that 262 = 676 and 675 is
divisible by 15, so

262 ≡ 1 (mod 15), (595)

where b ≡ c (mod d) if and only if d divides b− c, written d|(b− c). Further, 26± 1 is not divisible
by 15, but gcd(26 ± 1, 15) > 1, and either case gives a factor of 15. Indeed, gcd(25, 15) = 5 and
gcd(27, 15) = 3. This example is not an isolated case. Indeed, consider any a > 1 for which

a2 ≡ 1 (mod N); (596)

a 6≡ ±1 (mod N). (597)

We claim that gcd(a ± 1, N) > 1. Intuitively, if N |(a2 − 1) then N |(a + 1)(a − 1) and N does
not divide either term in the product, then the nontrivial factors of N must be spread across both
terms. Let us formulate this explicitly as a lemma.

Lemma 25.1. Suppose a,N > 1 with

a2 ≡ 1 (mod N) and a 6≡ ±1 (mod N). (598)

Then 1 < gcd(a+ 1, N) < N and 1 < gcd(a− 1, N) < N .

The impact of this lemma is that if some a satisfies the conditions, then computing gcd(a−1, N)
gives a nontrivial factor of N . Using Euclid’s algorithm, one can compute the gcd in O(logN). We
assume the reader is familiar with or can look up Euclid’s algorithm.

Proof. Since a2 ≡ 1 (mod N), this means N |(a2−1), or N |(a+1)(a−1). If gcd(N, a+1) = 1, then
by Euclid’s Lemma6, N |(a − 1) which contradicts a 6≡ 1 (mod N). Therefore gcd(N, a + 1) > 1.
Similarly, if gcd(N, a − 1) = 1, then N |(a + 1) contradicting a 6≡ −1 (mod N). The upper bound
gcd(a± 1, N) < N follows because N does not divide a± 1.

The goal is to find an a satisfying the conditions in Lemma 25.1. We then get a factor efficiently
by computing gcd(a − 1, N). To find such an a, we introduce the period of a number modulo N .
Let us compute the powers of 2 modulo N = 15,

21 22 23 24 25 26 27 28 29 210 211 212

(mod 15) 2 4 8 1 2 4 8 1 2 4 8 1
(599)

Observe that 2m (mod 15) as a function of m is periodic and the period is 4. That is, 2m+4 ≡ 2m

(mod 15). This is immediate from 24 ≡ 1 (mod 15), because7,

24 ≡ 1 (mod 15)

2m ≡ 2m (mod 15)

24 × 2m ≡ 1× 2m (mod 15)

(600)

6
Euclid’s Lemma: If d|bc and gcd(d, b) = 1 then d|c. Proof: By Bezout’s identity, gcd(d, b) = 1 = xd+yb. Multiply

both sides by c to get c = xdc+ ybc. The RHS is divisible by d since d|bc, hence the LHS is divisible by d and d|c.
7The reader should verify that a ≡ b (mod d) and c ≡ d (mod d) implies ac ≡ bd (mod d).

128

Let’s play this same game with x = 3,

31 32 33 34 35 36 37 38 39 310 311 312

(mod 15) 3 9 12 6 3 9 12 6 3 9 12 6
(601)

Again, the function 3m (mod 15) is periodic, and again with period 4. The crucial difference between
2m and 3m is that 2m is congruent to 1 modulo 15 for some m ≥ 1 but 3m is never congruent to 1
modulo 15. This is because gcd(3, 15) = 3 > 1.8 We say that the order of 2 modulo 15 is 4,

order(2) = 4 (mod 15). (602)

For a general a with 1 < a < N , the order of a modulo N is the smallest number r ≥ 1 for which

ar ≡ 1 (mod N). (603)

Let’s compute the orders of 2, 3, . . . , 14 modulo N = 15. The reader should verify,

a 2 3 4 5 6 7 8 9 10 11 12 13 14

order(a) 4 ✓ 2 ✓ ✓ 4 4 ✓ ✓ 2 ✓ 4 2
(604)

The order does not exist when gcd(a,N) > 1, which we already proved. The ✓-marks indicate these
cases. Why a checkmark will become clear soon.

• When gcd(a,N) = 1 the order always exists and is less than N .
• The order appears to be always even.

The first claim is true. The second claim is almost true. Here is an example of odd order,

order(2) = 3 (mod 7), (605)

because 23 ≡ 1 (mod 7). To prove the first claim, consider thr first N powers of z modulo N ,

a1, a2, a3, . . . , aN (mod N). (606)

None of these are congruent to 0 because gcd(a,N) = 1. Therefore 1 ≤ ai (mod N) ≤ N − 1. By
pigeonhole, two of these powers are congruent to each other modulo N , that is for i < j,

aj ≡ ai (mod N). (607)

This means N |(aj − ai), or N |ai(aj−i − 1). Since9 Since gcd(ai, N) = 1, by Euclid’s Lemma
N |(aj−i − 1). This means

aj−i ≡ 1 (mod N) → order(a) ≤ j − i (mod N). (608)

We have proved the following lemma,

8As an exercise, prove that gcd(x,N) = D > 1 implies gcd(xm, N) ≥ D > 1. Also prove that if xm ≡ 1 (mod N)
then gcd(xm, N) = 1 (use Bezout’s identity). Therefore if gcd(x,N) > 1 then xm 6≡ 1 (mod N) for any m ≥ 1.

9gcd(a,N) = 1 implies gcd(ai, N) = 1, which the reader can prove by induction or directly using Bezout’s identity.

129

Lemma 25.2. If gcd(a,N) = 1 then r = order(a) mod N exists and r < N .

We went out of our way to highlight that the order was even, a fact which we conceded was not
always true. An even order is useful. Indeed, if a has even order r, that is ar ≡ 1 (mod N), then
z = ar/2 is an integer. Then,

z2 = ar ≡ 1 (mod N). (609)

We have found a z that satisfies the first condition in Lemma 25.1. We also know that z 6≡ 1
(mod N) because r is the order of a, that is the smallest power congruent to 1. If it also the case
that z 6≡ −1 (mod N), then all the conditions of Lemma 25.1 are satisfied, and we can find a factor
of N using gcd(z − 1, N). Let’s work through another example, N = 21,

a 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

order, r 6 ✓ 3 6 ✓ ✓ 2 ✓ 6 6 ✓ 2 ✓ ✓ 3 6 ✓ 6 2

z = ar/2 8 ✘ 125 8 1000 1331 13 ✘ 4913 6859 20

z 6≡ −1? ✓ ✘ ✘ ✓ ✓ ✓ ✓ ✘ ✘ ✓ ✘

factor? ✓ ✓ ✘ ✘ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✘ ✘ ✓ ✓ ✘

(610)

The first row shows that of the 19 possibilities for a, eight of them immediately give a factor by
computing gcd(a,N) > 1. The other 11 give gcd(a,N) = 1 and one can find the order. The third
row shows that in 6 of those cases where gcd(a,N) = 1, the order is even and ar/2 6≡ −1 (mod N).
The conclusion is shown in the last row. Of the 19 possibilities for z, five of them cannot be used
to conveniently get a factor for N = 21. The other 14 possibilities for a give a nontrivial factor in
one of two ways:

• gcd(a,N) > 1 in which case gcd(a,N) is a nontrivial factor.
• gcd(a,N) = 1, the order r of a is even and ar/2 6≡ −1 (mod N), in which case gcd(ar/2−1, N)

gives a nontrivial factor.

For N = 21, the chances are 14/19 ≈ 74% that a random a ∈ [2, N−1] produces a nontrivial factor.
This situation is not isolated. More generally, the probability is at least 1

2 .

Lemma 25.3. Given an odd composite N , let GN ⊆ [1, N−1] be those numbers less than N which
are coprime with N . Pick an a ∈ GN randomly. Let r = order(a) (mod N). Then,

P

[

r is even and ar/2 6≡ −1 (mod N)
]

≥ 1/2. (611)

Lemma 25.3 implies the following result which leads to the algorithm in the next section. Pick
an a randomly from [2, N − 1] and let p = P[gcd(a,N) > 1]. Success occurs if either gcd(a,N) > 1
or a has even order r, with ar/2 6≡ −1 (mod N). Then,

P[Success] = P[Success | gcd(a,N) > 1]
︸ ︷︷ ︸

1

×p+ P[Success | gcd(a,N) = 1]
︸ ︷︷ ︸

≥ 1
2

by Lemma 25.3

×(1− p) (612)

≥ 1 + p

2
. (613)

The chance of failure is at most 1/2, so by repeatedly trying k independent a ∈ [2, N −1], we fail to
get a factor with probability at most 1/2k. The most intense number theory of this section is about
to come in the proof of Lemma 25.3. This proof is essential for the algorithm but not instructive.
On a first reading you may skip it and focus on the algorithm in Section 25.2.

130

25.2 Algorithm for Factoring

The previous section suggests the following algorithm to get a factor of N . Generate a random
a ∈ [2, N − 1]. If gcd(a,N) > 1, you have a nontrivial factor. If not, but r = order(a) mod N is
even, then gcd(ar/2 − 1, N) may give a nontrivial factor. If all this fails, with probability at most
1/2, you have to repeat the whole process. Here is the algorithm.

1: Input: N > 1.
2: Test if N is prime (AKS or Miller-Rabin primality test). If so, return N is prime.
3: Test if 2 divides N . If so, return 2.
4: Test if N is a perfect power, N = ak, a ≥ 3, k ≤

⌊
log3N

⌋
. If so, return a.

5: Continue if N is odd having at least two distinct prime factors.
6: repeat

7: Pick a random a ∈ [2, N − 1].
8: Compute D = gcd(a,N).
9: if D = 1 then

10: Compute r = order(a) mod N .
11: if r is even then

12: Compute D = gcd(ar/2 − 1, N)
13: until 1 < D < N
14: return D.

(614)

Steps 2,3,4 are efficient. In step 4, one has to compute O(logN) k-th roots, and computing k-
th roots of N can be done efficiently with classical algorithms. The algorithm makes it into the
randomized loop if N is odd and has at least two distinct prime factors. The output is D. Each
repetition fails with probability at most 1/2 so the expected number of repetitions to success is 2.
The only potentially inefficient steps in the algorithm are steps 7 and 9. Step 9 can be implemented
as follows. First compute q ∈ [0, N − 1] such that

ar/2 ≡ q (mod N). (615)

This can be done efficiently using fast modular exponentiation that uses squaring. The number of
squaring steps needed is O(log2(r/2)) ∈ O(log2N). In each step one performs a constant number
of multiplications of log2N -bit numbers, so the runtime is O(log32N). Finally one can compute
gcd(q−1, N) to complete step 9. So, the full algorithm is polynomial if step 7, finding the period of
a number, can be performed in O(poly(log2N)) time. On a classical computer, we do not know how
to do it. The entire contribution of quantum computing to factoring is to efficiently solve the period
finding problem in step 7. The solution involves the Quantum Fourier Transform., We discuss these
details in the next section. We also mention that period finding can be used to directly crack the
RSA cryptosystem, as opposed to indirectly doing so via factoring. Also note that period finding
is a special case of the general problem of “phase estimation”, that is to find the eigenvalue of a
unitary matrix for a given eigenvector.10

25.3 Proof of Lemma 25.3

10Since a unitary matrix preserves the norm, all eigenvalues are phases.

131

26 Quantum Period Finding

We reduced factoring to finding the order of an a modulo the number to be factored N , where
gcd(a,N) = 1. The order r is the smallest power such that ar ≡ 1 (mod N). Define a function

f(x) ≡ ax (mod N). (616)

Note that
f(x+ r) ≡ ax+r ≡ axar ≡ ax ≡ f(x) (mod N). (617)

Hence, the order r is the period of the periodic function f . We consider a general periodic function
f(x) with period r. The task is to find the period r, given a quantum black box access to Uf .
Even though several optimizations are possible for the specific f in (616), for example the circuit
that implements Uf can be optimized for (616), the general problem is not harder than the specific
case in (616). This is because the function in (616) is quite erratic. Also, period finding is worth
studying in general as it is of interest, independent of factoring.

In the general setup of period finding, f : {0, 1, 2, . . .} 7→ [0, 2m − 1] is a periodic function with
period r0 ≤ r ≤ 2m − 1. This means f(x+ y) = f(x) if and only if y is an integer multiple of r. In
particular this means

(f(0), . . . , f(r − 1)) (618)

are all distinct and the entire sequence of f(x) is just repetitions of the r-sequence above. We are
to find the period r. Note that the assumption r0 ≤ r is at the expense of a constant amount

of classical overhead, for we can simply test the periods 1, 2, . . . , r0 by checking f(0)
?
=f(r) for

r ∈ [1, r0]. For factoring, f(x) = ax (mod N) and m = 1 +
⌊
log2N

⌋
. In the classical setting, a

brute force approach is to compute

f(0), f(1), f(2), f(3), . . . , f(r), (619)

and in this way discover r, but the runtime is O(2m), since r can be as large as 2m− 1. This, in the
factoring problem, is already exponential in the number of bits required to specify N . No polynomial
classical algorithm is known, nor is any algorithm that is substantially better than exponential
known. The big bang from quantum computing is to somehow compute all f(i) simultaneously in a
superposition. Of course we do not have access to those values, but we don’t need all those values.
We just need to infer r. By skillful untangling of the superposition, we can indeed recover r. Magic!

26.1 Quantum Black Box for f , Uf

Our function f is not Boolean, but rather the output has m bits, since it is in the range [0, 2m− 1].
The quantum black box Uf is a straightforward generalization of (210) on page 54. The definition
of the quantum black box unitary operator Uf for computational basis vectors is given by

|x〉n

|z〉m

|x〉n

|z ⊕ f(x)〉m
Uf

(620)

As usual, once you have specified the action of Uf on the computational basis, the full unitary
operator is known. In the above representation, z⊕ f(x) is bitwise xor. The reader may show that
the definition of Uf gives a unitary operator and indeed its inverse is itself.

132

The input registers are the top n qubits. The output registers are the bottom m qubits, which
store the information about f . One interesting thing to note is that the quantum black box Uf
takes an input x of n-qubits while the function f is defined for all x ∈ N. This means that the
quantum blackbox can only compute f for inputs x = 0, 1, 2, . . . , 2n−1. That is we build the circuit
for Uf assuming an upper bound on the x that we need to evaluate. This is related to how much
information about f the quantum algorithm needs to compute the period. As we will see, we can
set n = 2m, so the quantum circuit to determine the period of an m-bit function uses 3m qubits
in total, in the general case. For the specific function in (616), this requirement can be optimized
down to 2m qubits, which can make a difference in practice.

26.2 Period Finding Algorithm

To begin, let us encode global information about f in a superposition, in the usual way. Specifically,
consider the circuit

|0〉n

|0〉m
Uf

Hn

(621)

The input to Uf is
(

1

2n/2

2n−1∑

x=0

|x〉n

)

⊗ |0〉m =
1

2n/2

2n−1∑

x=0

|x〉n ⊗ |0〉m. (622)

We leave the reader to use the usual maneuvers (linearity and the definition of Uf) and show that
the output from Uf is the quatnum state

1

2n/2

2n−1∑

x=0

|x〉n ⊗ |f(x)〉m. (623)

We have produced the requisite superposition that contains global information about f . Now comes
the trick which is not strictly necessary, but it makes the derivation simpler. Measure the bottom m
qubits in the output registers. You will measure some value f0, and the state collapses to a uniform
superposition of all the pure states |x〉|f0〉 that are consistent with this measurement, that is where
f(x) = f0. Let x0 < r be the first state satisfying this condition. There are L pure x-states in this
superposition:

|x0〉, |x0 + r〉, |x0 + 2r〉, |x0 + 3r〉, . . . , |x0 + (L− 1)r〉, (624)

where L is the largest integer that satisfies x0 + (L− 1)r ≤ 2n − 1, that is

L = 1 +

⌊
2n − 1− x0

r

⌋

. (625)

The normalized state after the measurement is

|ψ〉n+m =
1√
L

L−1∑

k=0

|x0 + kr〉n ⊗ |f0〉m. (626)

The bottom m qubits now become irrelevant to the algorithm, so we just focus on the top n-qubit
state. If you measure the top n qubits you will measure x0 + kr for some random k ∈ [0, L − 1].

133

This is of not much help because we don’t know x0 so we can’t infer r. If we could replicate this
state and then make multiple measurements, by subtracting two measurements we get rid of the x0
and can find (k−k′)r, an integer multiple of r. We can then infer r as the gcd of all this differences
between pairs. But, by no cloning, we can replicate |ψ〉. What we need is some way to get rid of
the x0, and the Fourier Transform does exactly that, by converting it into a phase. We are going
to apply the Quantum Fourier Transform to the top n-qubits, and then measure the top n-qubits.
Here is the full period finding circuit.

|0〉n

|0〉m

|ℓ〉

|f0〉
Uf

Hn

?

F ?

|f0〉
(627)

The rest of the discussion is to compute the quantum state of the top n qubits after applying the
Quantum Fourier transform, analyze what happens when you then measure, and finally to show
how to use the result of the measurement to identify period r.

26.3 Applying the Quantum Fourier Transform

Let us recall the action of the Fourier Transform on a computational basis state |j〉 from (471),

F|j〉 = 1

2n/2

2n−1∑

ℓ=0

e(2πi)ℓj/2
n |ℓ〉. (628)

Applying F to the state in (626) using linearity gives (we dropped the bottom m qubits)

F|ψ〉 =
1√
L

L−1∑

k=0

F|x0 + kr〉

=
1√
L

L−1∑

k=0

1

2n/2

2n−1∑

ℓ=0

e(2πi)ℓ(x0+kr)/2
n |ℓ〉

=
2n−1∑

ℓ=0

|ℓ〉 e
(2πi)ℓx0/2n

√
2nL

L−1∑

k=0

e(2πi)ℓkr/2
n

︸ ︷︷ ︸

amplitude to measure |l〉

. (629)

Notice that x0 appears as a phase in the amplitude to measure |ℓ〉. This phase will disappear when
we compute the probability to measure |ℓ〉. Further, the sum over k in the amplitude is a geometric
sum which we can do in closed form. Therefore,

P[ℓ] =
1

2nL

∣
∣
∣
∣
∣

e(2πi)ℓrL/2
n − 1

e(2πi)ℓr/2n − 1

∣
∣
∣
∣
∣

2

. (630)

Let us now see what happens when we measure. To simplify the analysis, let us consider the
fortuitious case where 2n happens to be a multiple of the period r. Of course, this cannot be
expected in general, but this simpler case will give all the main ideas on what is going on. The

134

general case follows a similar but more complicated analysis. When a whole number of periods of f
are contained in the measurement window [0, 2n− 1], it means that L, the number of states making
up the superposition in (624), is precisely 2n/r. That is rL = 2n. Let us analyze the state in (629).
The normalizing constant is

√
2nL = L

√
r. When ℓr/2n = j for some integer j,

2(2πi)ℓkr/2
n
= 1, (631)

and the amplitude for ℓ, up to a phase, is 1/
√
r. When ℓr/2n is not an integer, then the phase is zero,

as can be verified by looking at the numerator of the probability in (630). Therefore, the possible
measurements with nonzero probability are of the form j2n/r for an integer j. Since 2n/r = L, the
possible measurements for ℓ are jL. The maximum possible value for ℓ is 2n − 1, hence

jL ≤ 2n − 1 < 2n = rL. (632)

This means j ≤ (r − 1) and the possible values of j are 0, 1, 2, . . . , (r − 1). Hence, the possible
measurements for ℓ are

ℓ = 0, L, 2L, 3L, . . . , (r − 1)L, (633)

where L = 2n/r. Each of these measurements has equal probability 1/r. The measurement gives us
an integer multiple of L, that is, it gives us some information about L. Knowing L, we can compute
r = 2n/L, so the measurement gives us some information about r. The game plan is to make many
measurements, say T measurements. Each measurement gives a little information about r, and
presumably after some detective work, we can infer r with probability close to 1 as T gets large.

Let’s put this plan into action. Run the circuit in (627) independently T times and each time
measure the top n qubits, producing measurements

ℓ1, . . . , ℓT , (634)

where each ℓi is a multiple of L, ℓi = diL with di ∈ [0, r − 1]. The gcd of the ℓi is

D = gcd(ℓ1, . . . , ℓT) = L gcd(d1, . . . , dT), (635)

which is a multiple of L. Let us write D = dL, where d ≥ 1 is the gcd of the di,

d = gcd(d1, . . . , dT). (636)

If all the ℓi = 0, we will set d = ∞. Since r = 2n/L we have that r = d2n/D. We observe D.
Suppose that D ≤ ∞. Let us assume that d = 1 and estimate r by

r̂ = 2n/D. (637)

If d > 1, then our estimate r̂ is too small. That is okay, we can test r̂ to see if it works by checking

f(0)
?
=f(r̂). (638)

If the test works, then d = 1 and r̂ = r. If the test fails, we set d = 2 and test r̂ = 2 × 2n/D. At
the expense of a constant classical overhead, we can continue testing in this way up to some value
d0 − 1, e.g. d0 = 4 suffices. If all these (d0 − 1) tests fail, then we know d ≥ d0.

135

Our algorithm is as follows.

1: Input: Black Box quantum circuit Uf and Black box classical function f .

2: Classically test f(0)
?
=f(r̂) for r̂ ∈ [1, r0]. Stop and return the smallest period if it

is found. Otherwise continue.
3: Run the circuit in (627) T times. Each run involves one n-qubit Hadamard, one call

to Uf and one n-qubit Quantum Fourier Transform. The result is T measurements

ℓ1, . . . , ℓT .

4: Let D = gcd(ℓ1, . . . , ℓT).
5: Test periods

r̂ =
2n

D
,
2× 2n

D
,
3× 2n

D
, . . . ,

(d0 − 1)× 2n

D
.

6: return The smallest r̂ that works or NULL if none of the r̂ work.

(639)

The algorithm fails if d ≥ d0. Let us compute the probability of failure. The reader may verify that

d ≥ d0 if and only if some integer q ≥ d0 divides d1, . . . , dT .

Fix q ≥ d0. By independence of the di, the probability that q divides each of d1, . . . , dT is

P[q divides d1, . . . , dT] =
T∏

i=1

P[di ∈ {0, q, 2q, . . . , κq}], (640)

where κ is the largest integer such that κq ≤ (r − 1). That means κ =
⌊
(r − 1)/q

⌋
and there are

κ+ 1 choices for di. Since di are randomly picked uniformly from [0, r − 1],

P[q divides d1, . . . , dT] =

(
κ+ 1

r

)T

≤
(
1 + (r − 1)/q

r

)T

≤
(
1

q
+

1

r

)T

≤
(

1

d0
+

1

r0

)T

.

≤ 2−T , (641)

where the last step follows by choosing d0, r0 ≥ 4. Since d0 ≤ q ≤ (r − 1), there are at most r
possible choices for q. By a union bound,

P[some q ∈ [d0, r − 1] divides d1, . . . , dT] ≤ r2−T ≤ 2m−T , (642)

where the last step follows because r ≤ 2m− 1. by choosing T = 2m, the probability of failure is at
most 2−m. In a factoring application, for example to factorize the public key in RSA, m ∼ 1500, so
the probability of failure is less than 2−1500. We can live with that.

136

Let us summarize the runtime, assuming T = 2m. There are r0+Td0 ∈ O(m) classical function
evaluations. We run the circuit in (627) T times so the total quantum computation is

O(m) n-qubit Hadamards, O(m) calls to Uf and O(m) n-qubit QFTs. (643)

There is one more classical step which computes the gcd of O(m) n-bit numbers, which is an O(mn3)
classical computation, which is in O(m4) assuming n ∈ O(m), which for the factoring application
is polynomial in logN . What remains to be done?

1. The simple case 2n = rL gives all the intuition but we can’t make this assumption in general.
More generally, 2n = rL+ρ. The fact that a whole number of periods does not neatly fall into
2n produces some aliasing which produces small amplitudes to measure states other than the
ones in (633). This is okay, because the states in (633) are vastly more probable when ρ≪ 2n

and the hangover piece is relatively speaking small. This requires us to choose n large enough
and n = 2m suffices. So we basically run the algorithm as is and there is a small additional
failure probability due to the aliasing. Failure can be detected because any estimated period
can be tested, in which event the entire algorithm is run again. A logarithmic number of
repeats suffices to boost the success probability arbitrarily high. So, all the intuition basically
holds, but the math gets a bit hairy. Nevertheless, we can do it.

2. The period estimation circuit requires the application of the QFT, which as you recall uses
phase gates. The phases required are of the form (integer)/2n and with n ∼ 3000, this requires
very high precision phase gates, bordering on infeasible. Luckily, the algorithm is robust to
small errors in the phase gates, in the sense that it does not deteriorate the probability of
failure drastically. There is an added benefit. This robustness to phase errors allows us to
use a linear number of gates in the construction of the QFT instead of the quadratic number
required for the exact QFT, making the quantum computation significantly more efficient and
feasible.

3. We need to efficiently construct the quatnum black box circuit for the the factoring application
where f(x) = ax (mod N).

4. It turns out that period finding is a special case of phase estimation, so for intellectual com-
pleteness it behoves us to show how phase estimation can be used for period finding.

26.4 Application to Factoring

We wish to find the period r of f(x) = ax (mod N), where gcd(a,N) = 1 and N is an m bit integer,
m = 1 +

⌊
log2N

⌋
. Let us consider the case N = pq, a product of two primes. 11

26.4.1 Quantum Black Box Circuit for f(x) = ax (mod N)

26.5 General Case: 2n = αr + ρ, where α, ρ ∈ N and 0 < ρ < r

Let us recap the situation when the the number of possible measurements is not a multiple of the
period. After measurement of the bottom m qubits, the top n qubits are in a superposition of L
pure states (624), repeated here:

|x0〉, |x0 + r〉, |x0 + 2r〉, |x0 + 3r〉, . . . , |x0 + (L− 1)r〉. (644)

11The number of possible a is (p− 1)(q− 1), the order of the group GN = {x|0 ≤ x ≤ N − 1, gcd(x,N) = 1}. Since
a, a2, . . . , ar is a subgroup of GN with order r, it follows that r divides (p− 1)(q − 1) by Lagrange’s Theorem.

137

Depending on x0, L = α or L = α+ 1. After the QFT on the top n qubits, their state becomes

2n−1∑

ℓ=0

a(ℓ)|ℓ〉, (645)

where, up to a phase,

a(ℓ) =
1√
2nL

L−1∑

k=0

e(2πi)ℓkr/2
n
. (646)

The reader can verify by computing |a(ℓ)|2 that

P[ℓ] =







L/2n ℓr/2n is an integer;

1

2nL

sin2(πℓrL/2n)

sin2(πℓr/2n)
otherwise.

(647)

We now measure ℓ according to the probabilities in (647) and need to perform some detective work
to infer r. This detective work requires some number theory. Recall that in the ideal case when
2n = rL, the measured value ℓ is an integer multiple of 2n/r (see (633)). In the general case, let us
assume that ℓ is close to some integer multiple of 2n/r and write

ℓ = k
2n

r
+ δk. (648)

Naturally, we can choose k to make δk as small as possible. Then,

∣
∣
∣
∣

ℓ

2n
− k

r

∣
∣
∣
∣
=

|δk|
2n

. (649)

That is, when δk is small, ℓ/2n is a good estimate for k/r. The plan is to use a rational approximation
of ℓ/2n to extract k/r and hence r. The question is, when can this be done. Recall that r < N = 2m,
where m is the number of qubits in the lower output register that computes Uf . The next theorem
shows that if the approximation error is small enough, then the rationial approximant achieving
that error is essentially unique.

Theorem 26.1. Let x ∈ (0, 1) be approximated by a rational number a/b satisfying b ≤ N and

∣
∣
∣x− a

b

∣
∣
∣ <

1

2N2
. (650)

Then, up to a constant factor, a and b are unique. Specifically, if another rational number a′/b′

with denominator b′ ≤ N has an approximation error less than 1/2N2, then a′/b′ = a/b.

Proof. Define the integer z = a′b− b′a. Then,

1

2N2
>

∣
∣
∣
∣
x− a′

b′

∣
∣
∣
∣
=

∣
∣
∣
∣
x− a

b
+
a

b
− a′

b′

∣
∣
∣
∣
≥
∣
∣
∣
∣

a

b
− a′

b′

∣
∣
∣
∣
−
∣
∣
∣x− a

b

∣
∣
∣ ≥ |z|

bb′
− 1

2N2
≥ 2 |z| − 1

2N2
. (651)

The last step uses b, b′ ≤ N . Since z is an integer, z must be 0.

138

Theorem 26.1 is useful for estimating r. Suppose that for some k,

∣
∣
∣
∣

ℓ

2n
− k

r

∣
∣
∣
∣
≤ 1

2N2
. (652)

Let a/b be the rational with smallest denominator (reduced to lowest form) that approximates ℓ/2n

to within 1/2N2. So b ≤ r < N and gcd(a, b) = 1. By Theorem 26.1, a/b = k/r, or

ar = bk. (653)

Since b divides the RHS, this means b|ar and since gcd(a, b) = 1, by Euclid’s Lemma, b|r. That is,
we have found a divisor of r. Our plan is coming together. Two remaining questions are:

1. How likely is it that ℓ/2n is close enough to an integer multiple of 1/r. That is, what is

P

[

min
k∈[1,r−1]

∣
∣
∣
∣

ℓ

2n
− k

r

∣
∣
∣
∣
≤ 1

2N2

]

? (654)

2. To get b, a divisor of r, we need to find the appropriate rational approximation a/b of ℓ/2n.
How? If we search all rational approximations with denominator less than N until we find
one, the runtime would be quadratic in N . We need O(m) runtime, where m = log2(N).

The answers are technical. The probability in (654) can be made close to 1 by choosing n, the
number of qubits in the input registers to be large enough. It suffices to choose n = 2m + q for
some small constant q. To efficiently compute an optimal rational approximation with smallest
denominator, we need to appeal to the theory of continued fractions. This is a beautiful theory
that is not at the forefront of application today, but does come in to save us here. Alas, you never
know when and where pure mathematics will save the day, so learn it all. We will discuss these
technicalities shortly.

For the moment, assume that with high probability we identify a divisor d1 of r. Let us assume
we run this process T times, so we obtain divisors d1, . . . , dT . Their least common multiple r̂ =
lcm(d1, . . . , dT) is also a divisor of r. Since the di are random (each di comes from a random
measurement ℓ on each run), with high probability, r̂ = r. So we can test r̂, 2r̂, 3r̂, 4r̂, . . ., for a
small number of multiples of r̂. If all these tests fail, the entire process failed and we repeat it. Since
the probability of success is high, only a few repeats of the entire process will yield the period. Let
us now fill in the technical details.

26.5.1 Probability ℓ Yields a Divisor of r

Let us consider the r − 1 integer multiples of 2n/r which are less than 2n, yk = k × 2n/r for
r ∈ [1, r − 1]:

y1, y2, y3, . . . yr−1 =
2n

r
, 2× 2n

r
, 3× 2n

r
, · · · , (r − 1)× 2n

r
. (655)

Let uk =
⌊
yk
⌋

and vk = uk +1. Note, uk, vk are possible values of ℓ that could be measured. Also,

uk = yk − δk,

vk = yk + (1− δk), (656)

139

where 0 ≤ δk < 1. Let z ≥ 0 be an integer and ℓ = uk − z. Then ℓ/2n = k/r − (δk + z)/2n and

∣
∣
∣
∣

ℓ

2n
− k

r

∣
∣
∣
∣
=
δk + z

2n
≤ 1 + z

2n
(657)

Similarly, if ℓ = vk + z ∣
∣
∣
∣

ℓ

2n
− k

r

∣
∣
∣
∣
=

1− δk + z

2n
≤ 1 + z

2n
. (658)

Let us pick n = 2m+ q+1. Then 2n = 2q+122m = 2q+1N2. If z ≤ 2q− 1, then (1+ z)/2n ≤ 1/2N2.
Further, if ℓ = uk − z or ℓ = vk + z for any k ∈ [1, r − 1] and any z ∈ [0, 2q − 1], then ℓ/2n

satisfies (652), and indeed these are the only choices of ℓ that satisfy (652). We can now compute
the probability in (654),

P

[

min
k∈[1,r−1]

∣
∣
∣
∣

ℓ

2n
− k

r

∣
∣
∣
∣
≤ 1

2N2

]

=
2q−1∑

z=0

r−1∑

k=1

(P[ℓ = uk − z] + P[ℓ = vk + z]). (659)

This is the probability that a rational approximant to ℓ/2n in lowest terms which achieves an
approximation error at most 1/2N2 gives a divisor of r. Since yk is an integer multiple of 2n/r and
uk − z = yk − (δk + z), using (647) we have that

P[ℓ = uk − z] =
1

2nL

sin2(π(uk − z)rL/2n)

sin2(π(uk − z)r/2n)

=
1

2nL

sin2(π(yk − (δk + z))rL/2n)

sin2(π(yk − (δk + z))r/2n)

=
1

2nL

sin2(π(δk + z)rL/2n)

sin2(π(δk + z)r/2n)
. (660)

Similarly,

P[ℓ = vk + z] =
1

2nL

sin2(π(1− δk + z)rL/2n)

sin2(π(1− δk + z)r/2n)
. (661)

Therefore the probability of success in (659) becomes

P[success] =
1

2nL

r−1∑

k=1

2q−1∑

z=0

sin2(π(z + δk)rL/2
n)

sin2(π(z + δk)r/2n)
+

sin2(π(z + 1− δk)rL/2
n)

sin2(π(z + 1− δk)r/2n)
. (662)

Note that L is either α or α+ 1. The inner sum over z is minimized when δk = 1/2. Thus,

P[success] ≥ 2(r − 1)

2nL

2q−1∑

z=0

sin2(π(z + 1
2)rL/2

n)

sin2(π(z + 1
2)r/2

n)
. (663)

The analysis of the sum is technically challenging, but we can approximate it. Since rL ≈ 2n, the
numerator in the sum is approximately 1. Let us assume that zr ≪ 2n, in which case the argument

140

of the sine in the denominator is small and so,

P[success] ≥ 2(r − 1)

2nL

2q−1∑

z=0

sin2(π(z + 1
2)rL/2

n)

sin2(π(z + 1
2)r/2

n)

≈ 2(r − 1)

2nL

2q−1∑

z=0

1

(π(z + 1
2)r/2

n)2

=
r − 1

r
× 2n

rL
× 8

π2

2q−1∑

z=0

1

(1 + 2z)2
. (664)

Using, again, rL ≈ 2n and the fact that the sum converges rapidly to π2/8 even for small q, e.g.
q = 5, we have that

P[success] ≈ r − 1

r
. (665)

Since r ≥ r0 and r0 can be made large using a small constant amount of classical overhead (testing
periods up to r0), the probability of success can be made arbitrarily close to 1.

Example 26.2. As an example we consider r = 127. It is an instructive exercise for the reader to
write a program to evaluate the true probability of success in (662) as a function of q, and compare
that with the lower bound in (663) as well as the approximations in (664) and (665).

26.5.2 Rational Approximation Via Continued Fractions

We now discuss finding a and b so that a/b is a rational approximation to ℓ/2n to within 1/2N2.
The resulting b is a divisor of r. We want the smallest b and a corresponding a such that

∣
∣
∣
∣

ℓ

2n
− a

b

∣
∣
∣
∣
≤ 1

2N2
. (666)

We use the theory of simple continued fractions. Let us begin with some examples. Let x ∈ (0, 1)
be a real number, for example x = π − 3,

x = 0.1415926535897932384626433832795028841971 · · · (667)

We iteratively use continued fractions to get rational estimates for x. Let x1 = x, 0 < x1 < 1.
Write 1/x1 =

⌊
1/x1

⌋
+ x2, where 0 ≤ x2 < 1. Let a1 =

⌊
1/x1

⌋
, then

x1 =
1

a1 + x2
, (668)

where a1 ≥ 1 is an integer. For x = π− 3, a1 = 7. Let r1 be our first rational approximation to x1.
To get r1, ignore the small term x2 giving

r1 =
1

a1
=

1

7
, (669)

which corresponds to the famous approximation π ≈ 22/7. The important fact is that π− 3 has no
better rational approximation with a denominator at most 7. To see this, note that x1 < 1/a1, so
any better rational approximation β/α has to be smaller than 1/a1. That is, β/α < 1/a1 or

β <
α

a1
. (670)

141

Since α ≤ a1, it follows that β < 1 which is not possible. We can now apply the same logic to x2.
Write 1/x2 =

⌊
1/x2

⌋
+ x3, where 0 ≤ x3 < 1. With a2 =

⌊
1/x2

⌋
, x2 = 1/(a2 + x3) and

x1 =
1

a1 + x2
=

1

a1 +
1

a2 + x3

. (671)

Here, x2 = 1/(π − 3) −
⌊
1/(π − 3)

⌋
and the reader can verify that a2 = 15. Our next rational

approximation given by [a1, a2] is

r2 =
1

a1 +
1

a2

=
15

106
. (672)

This corresponds to approximation π ≈ 333/106. The next rational approximant comes from writing
1/x3 = a3 + x4, where a3 =

⌊
1/x3

⌋
= 1. This gives

r3 =
1

a1 +
1

a2 +
1

a3

=
1

7 +
1

15 +
1

1

=
16

113
. (673)

This gives the famous approximation π ≈ 355/113. The algorithm for constructing continued
fraction approximations should now be clear. Define two sequences recursively,

x1, x2, x3, x4, x5, . . .
a1, a2, a3, a4, a5, . . .

(674)

where x1 = x and for i > 1
xi+1 = 1/xi − ⌊ 1/xi ⌋ , (675)

and for i ≥ 1
ai = ⌊ 1/xi ⌋ . (676)

Note that if at some point xi = 0, then the process stops, with ai = ∞. From a1, . . . , ak, we then
obtain the rational approximation rk, called the kth convergent,

rk =
1

a1 +
1

a2 +
1

a3 +
1

· · ·+ 1

ak−1 +
1
ak

. (677)

Note that by definition of xk in the continued fraction algorithm,

x =
1

a1 +
1

a2 +
1

a3 +
1

· · ·+ 1

ak−1 + xk

=
1

a1 +
1

a2 +
1

a3 +
1

· · ·+ 1

ak−1 +
1
αk

, (678)

where αk = 1/xk and ak is the integer part of αk.

142

26.5.3 Computing The Rational Approximation

The simple continued fraction defined by n positive numbers [α1, α2, . . . , αn] is

[α1, α2, . . . , αn] =
1

α1 +
1

α2 +
1

α3 +
1

· · ·+ 1

αn−1 +
1
αn

. (679)

In (677), each αi is the positive integer ai. The expression on the right is some ratio pn/qn. We
will need to efficiently compute this ratio for all the convergents, [α1], [α1, α2], . . . , [α1, α2, . . . , αn].
That is, for k = 1, . . . , n, we need to find pk and qk such that

[α1, α2, . . . , αk] =
pk
qk
. (680)

Luckily there is a recursive algorithm that computes pk and qk. Let us define p0 = 0, q0 = 1. For a
single positive number, [α1] = 1/α1 and we can choose

p1 = 1 and q1 = α1. (681)

Also,

[α1, α2] =
α2

α1α2 + 1
, (682)

so
p2 = α2 and q2 = α1α2 + 1. (683)

We show by induction that for any choice of α1, α2, . . . , αk, with the initial conditions

p0 = 0
q0 = 1

p1 = 1
q1 = α1

, (684)

for all k ≥ 2,

pk = αkpk−1 + pk−2

qk = αkqk−1 + qk−2. (685)

That is,

[α1, α2, . . . , αk−1, αk] =
pk
qk

=
αkpk−1 + pk−2

αkqk−1 + qk−2
. (686)

The base case can be verified from (683). For the induction, assume (685) for k = 2, . . . ,K. Then,

[α1, α2, . . . , αK−1, αK , αK+1] = [α1, α2, . . . , αK−1, αK +
1

αK+1
]

(∗)
=

(

αK + 1
αK+1

)

pK−1 + pK−2
(

αK + 1
αK+1

)

qK−1 + qK−2

.

=
αK+1(αKpK−1 + pK−2) + pK−1

αK+1(αKqK−1 + qK−2) + qK−1
(687)

(∗)
=

αK+1pK + pK−1

αK+1qK + qK−1
. (688)

143

In (∗), we used the induction hypothesis. The last step proves (685) holds for K + 1, concluding
the induction. For the simple continued fraction in (677), the ai are all positive integers. Applying
(684) and (685) to [a1, a2, a3, . . .] you can show by induction that pk and qk are positive integers.
Further, all the convergents give rational approximations

rk =
pk
qk

(689)

that are fractions in their lowest terms. That is,

gcd(pk, qk) = 1. (690)

To prove this, let us compute pkqk−1 − pk−1qk. You can verify from (683) and (684) that

p1q0 − q1p0 = 1

p2q1 − q2p1 = −1. (691)

In general, as we will show by induction,

pkqk−1 − pk−1qk = (−1)k+1. (692)

In the inductive step, using the recursions for pk+1 and qk+1 from (685),

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= −(pkqk−1 − pk−1qk)

= (−1)k+2. (693)

The last step uses the inductive hypothesis. Suppose D > 1 divides pk and qk. Then D divides the
LHS in (692), so it divides the RHS, which is ±1. This can’t be, hence gcd(pk, qk) = 1.

Another important consequence of (692) is that it gives an estimate of the accuracy for each
convergent. Indeed, dividing (692) by qkqk−1 gives

∣
∣
∣
∣

pk
qk

− pk−1

qk−1

∣
∣
∣
∣
=

1

qkqk−1
. (694)

That is, |rk − rk−1| = 1/qkqk−1. The reader may show by induction that qk ≥ k and therefore for
k ≥ 2, |rk − rk−1| ≤ 1/k(k − 1).

26.5.4 Optimality of the Continued Fraction Convergents

Let us begin with the motonicity of the convergents r1, r2, r3, Recall that

x = x1 =
1

a1 + x2
. (695)

Ignoring the x2 term and setting r1 = 1/a1, we have that x ≤ r1. This is true of the first convergent
for any 0 < x < 1. Since 1/a2 is the first convergent for x2, it follows that x2 < 1/a2. Therefore,

r2 =
1

a1 +
1

a2

≤ 1

a1 + x2
= x. (696)

144

We have therefore proved that
r2 ≤ x ≤ r1. (697)

Indeed, much more is true. The even convergents are increasing and all at most x. The odd
convergents are decreasing and all at least x. For k ≥ 1,

r2k−2 < r2k ≤ x and x ≤ r2k+1 < r2k−1. (698)

The proof is by induction. The reader may verify the base cases for small k, e.g. k = 1, 2. For the
induction, assume the above for k ≤ K and consider and consider K + 1.

r2K = [a1, a2, . . . , a2K] =
1

a1 + [a2, . . . , a2K]

r2K+2 = [a1, a2, . . . , a2K+2] =
1

a1 + [a2, . . . , a2K+2]
(699)

Note that [a2, . . . , a2K] is the 2K−1 convergent for x2 and [a2, . . . , a2K+2] is the 2K+1 convergent
for x2. So, by the induction hypothesis,

x2 ≤ [a2, . . . , a2K+2] < [a2, . . . , a2K]. (700)

Since x = 1/(a1 + x2), it follows that

r2K < r2K+2 ≤ x. (701)

For the odd convergent r2K+3, we have

r2K+1 = [a1, a2, . . . , a2K+1] =
1

a1 + [a2, . . . , a2K+1]

r2K+3 = [a1, a2, . . . , a2K+3] =
1

a1 + [a2, . . . , a2K+3]
(702)

Now, [a2, . . . , a2K+1] is the 2K convergent for x2 and [a2, . . . , a2K+3] is the 2K + 2 convergent for
x2. So, by (701)

[a2, . . . , a2K+1] < [a2, . . . , a2K+3] ≤ x2, (703)

and now it follows that
x ≤ r2K+3 < r2K+1. (704)

This proves monotonicity for K + 1 and concludes the induction. Therefore, for any k ≥ 1,

r2 < r4 < r6 < · · · < r2k ≤ x ≤ r2k−1 < · · · < r5 < r3 < r1. (705)

Let k be odd (a similar argument holds if k is even). Then [rk−1, rk] contains x, and rk is a rational
approximant to x with denominator qk. Let us estimate the approximation error of rk. Define
ǫk = |x− pk/qk|. By definition of xk+1 in the continued fraction algorithm, see (678),

x = [a1, a2, . . . , ak, 1/xk+1] =

1
xk+1

pk + pk−1

1
xk+1

qk + qk−1

. (706)

145

In the last step we used (686).

ǫk =

∣
∣
∣
∣
x− pk

qk

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
xk+1

pk + pk−1

1
xk+1

qk + qk−1

− pk
qk

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

pk−1qk − pkqk−1

qk(
1

xk+1
qk + qk−1)

∣
∣
∣
∣
∣

=
1

qk(
1

xk+1
qk + qk−1)

(707)

In the last step we used pkqk−1 − pk−1qk = (−1)k+1. Since ak+1 =
⌊
1/xk+1

⌋
≤ 1/xk+1,

ǫk =

∣
∣
∣
∣
x− pk

qk

∣
∣
∣
∣
≤ 1

qk(ak+1qk + qk−1)
=

1

qkqk+1
. (708)

As long as xk 6= 0, it should be no surprise that the approximation error strictly decreases, ǫk < ǫk−1.
To see this, look at the denominator in (707). This denominator can be written

qk(ak+1qk + qk−1) +

(
1

xk+1
− ak+1

)

q2k = qkqk+1 + xk+2q
2
k, (709)

where we have used the recursion for the qk and by definition xk+2 = 1/xk+1 − ak+1. Using (707)
for ǫk and (709) for ǫk−1 gives

ǫk =
1

qkqk−1 +
1

xk+1
q2k

; ǫk−1 =
1

qkqk−1 + xk+1q
2
k−1

. (710)

Since xk+1 < 1/xk+1 and qk−1 < qk, it follows that

ǫk < ǫk−1. (711)

Indeed, we have a proved a stronger result,

qkǫk =
1

qk−1 +
1

xk+1
qk

; qk−1ǫk−1 =
1

qk + xk+1qk−1
. (712)

Since xk+1 < 1, we have that qkǫk < qk−1ǫk−1, or

ǫk <
qk−1

qk
ǫk−1. (713)

Iteratively applying this formula gives ǫk < (qk−t/qk)ǫk−t for t ≥ 1.

Optimality. After all this effort, we are ready for the main result, that rk is the best rational
approximation to x with denominator at most qk. To see this, suppose some other estimator p/q is
better. Since rk−1 < x < rk and rk−1 is a rational estimator with denominator qk−1 < qk, it follows
that p/q lies in (rk−1, rk). Note that p/q 6= rk−1 because we know that ǫk−1 is worse than ǫk.

pk−1

qk−1
<
p

q
<
pk
qk
. (714)

146

We have that
p

q
− pk−1

qk−1
=
pqk−1 − pk−1q

qqk−1
≥ 1

qqk−1
. (715)

The last step follows because the numerator is positive and an integer. Because p/q < pk/qk,

p

q
− pk−1

qk−1
<
pk
qk

− pk−1

qk−1
=

1

qkqk−1
. (716)

We have proved that 1/qqk−1 < 1/qkqk−1 or q > qk, a contradiction. Therefore, such a p/q does
not exist and so pk/qk is the best approximator to x with denominator at most qk. Note, that since
pk/qk is in its lowest terms, it is unique.

A stronger result is true. Let q be any denominator that lies between two consecutive convergent
denominators, qk−1 < q < qk, and let p/q be a rational approximation to x. Assuming x 6= pk/qk,

q

∣
∣
∣
∣
x− p

q

∣
∣
∣
∣
> qk−1

∣
∣
∣
∣
x− pk−1

qk−1

∣
∣
∣
∣
> qk

∣
∣
∣
∣
x− pk

qk

∣
∣
∣
∣
. (717)

The second inequality is just (713). Suppose k is odd (k even is similar). We prove

|qx− p| > |qk−1x− pk−1| . (718)

When k is odd, pkqk−1 − pk−1qk = (−1)k+1 = 1 and pk−1/qk−1 < x < pk/qk. If p/q ≤ pk−1/qk−1,
then (718) follows from q > qk−1 and

x− p

q
≥ x− pk−1

qk−1
≥ 0. (719)

So, we may assume p/q > pk−1/qk−1, in which case the integer pqk−1 − pk−1q is positive,

pqk−1 − pk−1q ≥ 1. (720)

The reader can verify, that p and and q are the linear combinations

p = (pqk−1 − pk−1q)pk − (pqk − pkq)pk−1

q = (pqk−1 − pk−1q)qk − (pqk − pkq)qk−1. (721)

Since q < qk and pqk−1 − pk−1q ≥ 1, it must be that pqk − pkq ≥ 1. Using (721),

qx− p = (pqk−1 − pk−1q)(xqk − pk)− (pqk − pkq)(xqk−1 − pk−1)

= −(pqk−1 − pk−1q) |xqk − pk| − (pqk − pkq) |xqk−1 − pk−1| , (722)

where the last step follows because pk−1/qk−1 < x < pk/qk. Since both (pqk−1 − pk−1q) and
(pqk − pkq) are at least 1 (positive), we have

|qx− p| = (pqk−1 − pk−1q) |xqk − pk|+ (pqk − pkq) |xqk−1 − pk−1|
≥ |xqk−1 − pk−1| . (723)

The last step follows because pqk−pkq ≥ 1. When x 6= pk/qk, the inequality becomes strict because
pqk−1 − pk−1q ≥ 1, hence the first term is positive.

A corollary of this optimality result is that if x = a/b is rational, then the continued fraction
must be finite. This is because once qk exceeds b, the optimal approximator is x itself, this means
the xk+1 will be zero. The reader can fill in the details. There are other ways to prove that then
continued fraction of a rational number is finite, including directly from Euclid’s GCD algorithm.
We end with an application of the previous results that is relevant to our period finding setting.

147

Theorem 26.3. Let x ∈ (0, 1) have a rationial approximant p/q satisfying

∣
∣
∣
∣
x− p

q

∣
∣
∣
∣
<

1

2q2
. (724)

Then p/q = pk/qk for some convergent pk/qk of x, with qk ≤ q.

Proof. Suppose q is some convergent denominator, q = qk. Then pk/qk is a better approximant
than p/q, by the optimality of pk/qk. By Theorem 26.1 p/q = pk/qk implying p = pk.

So, suppose q lies strictly between two consecutive convergent denominators, qk−1 < q < qk,
and p/q 6= pk−1/qk−1. Using (723) and (724),

∣
∣
∣
∣
x− pk−1

qk−1

∣
∣
∣
∣
≤ q

qk−1

∣
∣
∣
∣
x− p

q

∣
∣
∣
∣
<

1

2qqk−1
, (725)

Therefore, by the triangle inequality,

∣
∣
∣
∣

p

q
− pk−1

qk−1

∣
∣
∣
∣
≤
∣
∣
∣
∣

p

q
− x

∣
∣
∣
∣
+

∣
∣
∣
∣
x− pk−1

qk−1

∣
∣
∣
∣
≤< 1

2q2
+

1

2qqk−1
<

1

qqk−1
. (726)

The last step is because qk−1 < q. But, this is a cotradiction because

∣
∣
∣
∣

p

q
− pk−1

qk−1

∣
∣
∣
∣
=

∣
∣
∣
∣

pqk−1 − pk−1q

qqk−1

∣
∣
∣
∣
≥ 1

qqk−1
. (727)

The last step uses p/q 6= pk−1/qk−1, hence pqk−1 − pk−1q is a non-zero integer.

26.5.5 Full Algorithm

The period finding algorithm produces a measurement ℓ from which we compute x = ℓ/2n. We
know that with high probability a rational k/r is within 1/2N2 of x. Since r < N , by Theorem 26.3
k/r = pk/qk for some convergent of x with qk ≤ r < N . We start by computing the convergents

r1, r2, r3, . . . , (728)

where rk = pk/qk. One of two things happens.

1. We get to a first qk < N for which pk/qk is within 1/2N2 of x. In this case, we output qk as
a divisor of r.

2. Case 1 never happens and we get to the first qk ≥ N . In this case, the sampled ℓ/2n failed to
be withing 1/2N2 of k/r. We start over and sample again.

26.6 Sensitivity to Phase Errors in the QFT

26.7 Period Finding Via Phase Estimation

148

27 Secure Communication – Cryptography

The setup is that Alice wishes to send a message M to Bob over a public channel. For example,
M could be the location of Charlie’s surprise party. Since the channel is public, anyone could be
eavesdropping, in particular Charlie. Can Alice use the public channel to communicate with Bob
so that Bob can understand the message but no eavesdroppers can. Clearly Alice cannot send the
message M , as anyone can see it. So the only alternative is for Alice to send some other message
M∗, which again everyone can see. It should be possible for Bob to recover the intended message
M from M∗, but noone else should be able to do so. As far as we are concerned, M is just some
large prime number. The setup is as follows.

Alice must send M to Bob.

Charlie eavesdrops.

Alice sends M∗ instead.

Bob and Charlie see M∗.

Bob recovers M . Charlie can’t.

M

M∗ = E(M,K) M∗

M = D(M∗,K)

M∗

M∗

The original message M is called plain text and the encrypted message M∗ is called cyphertext.
Alice uses some side information KE , called a key to encode M into M∗,

M∗ = E(M,KE). (729)

The function E(·, ·) is the encoding function. Bob can recover the plain text M from M∗ because
Bob has some side information KD, that is related to KE , the side information that Alice used to
encode M (often KE = KD, that is the side information used by Bob and Alice are the same). Bob
decodes using a decoding function D,

M = D(M∗,KD). (730)

The decoding function D(·, ·) is a sort-of inverse of the encoding function E(·, ·). The side infor-
mation Bob needs, KD, depends on E,D and KE . Assuming Alice and Bob have agreed on the
cryptographic protocol, the encoding and decoding functions E and D are known to everyone, in-
cluding Charlie. THe keys KE ,KD are private. However, KD depends on KE . That is, the side
information Bob needs to decode the message depends on the side information Alice uses to encode
the message. So, at some point, KE ,KD were created together by Bob and then sent KE to Alice;
or, KE ,KD were created together by Alice and then Alice sent KD to Bob. This sending of side
information from one party to another is called key exchange.

Is the information secure. No. Suppose the decoding key is ℓ bits long. Here is what Charlie
can do. Try all possible keys in lexicographic order,

{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, . . .}. (731)

For each possible key Kguess compute decode the message M∗ to get

Mguess = D(M∗,Kguess). (732)

With probability essentially 1, if the guessed key does not match KD, the guessed message will be
gibberish. Assuming Charlie can recognize gibberish, Charlie continues guessing in this lexicographic

149

order until he gets a non-gibberish message, at which point Charlie has deciphered M . The point
is that it takes Charlie at least

1 + 2 + 4 + · · ·+ 2ℓ−1 + 1 = 2ℓ (733)

guesses and at most
1 + 2 + 4 + · · ·+ 2ℓ−1 + 2ℓ = 2ℓ+1 − 1 (734)

guesses. So it takes Charlie Θ(2ℓ) time to decode the message. By this time the message is stale,
if ℓ is large enough. It is also possible to thwart such a gibberish attack by Charlie by carefully
inserting gibberish into the message M . The question is whether there is a faster way for Charlie
to guess the message. This is one goal of cryptography. To create the functions E,D so that there
is provably no way to guess the message other than by using this brute force approach. In some
cases we are satisfied with no known approach to guess the message other than brute force. There
exist such pairs of functions E,D, called one-way or trap-door functions. One-way because there is
no efficient way to invert E without knowing the side information.

The sense in which the communication is secure is computational. It is only secure if Charlie
has bounded computing capability, because it would take Charlie an inordinate amount of time
to decipher. However, if the side information is ever made available to Charlie, in particular KD,
then all communication is open to Charlie. This becomes an issue because at some point a key
exchange occured. The problem is the key exchange cannot be encrypted, otherwise you have a
chicken and egg problem. In the good old days, this key exchange happened in a private meeting of
Alice and Bob, say in the supermarket. Today, the key exchange needs to happen on a regular basis
between often unknown parties like you and your online bank. Here are some examples of secure
communication protocols, together with their pitfalls.

27.1 Classical Protocols

The Caesar Cipher is the earliest known systematic use of a cryptographic protocol to accomplish
secure communication between military generals. In those days the channel was a rider on a horse
with a message written on paper. If the rider gets captures, the enemy would know (say) your
troops movements. The Caesar Cipher was an attempt to obfuscate the message by fairly simple
letter substitution (reflection and translation).

A B C D E F G H I J K LM N O P Q R S T U V W X Y Z

l l
N M LK J I H G F E D C B A Z Y X W V U T S R Q P 0

(735)
The brute force attack on this encoding will succeed very quickly. There are only 26 possibilities.

150

27.1.1 One Time Pad

The one-time pad is a simple robust secure communication protocol. Suppose the message

M = 0 1 1 0 1 0 1 1 . (736)

Assume that Alice and Bob have exchanged a random string of 8 bits, the key

K = 0 0 0 1 0 1 0 1 . (737)

In this case, the side information used by Alice and Bob to encode and decode are the same,
KE = KD = K. Alice computes the bitwise xor of her message M and the key K to get

M∗ =M ⊕K (738)

M 0 1 1 0 1 0 1 1

K 0 0 0 1 0 1 0 1

M∗ 0 1 1 1 1 1 1 0

(739)

Bob, who also has K decodes using bitwise xor of the cyphertext M∗ with the key K to get

M =M∗ ⊕K (740)

M∗ 0 1 1 1 1 1 1 0

K 0 0 0 1 0 1 0 1

M 0 1 1 0 1 0 1 1

(741)

This always decodes correctly because

M∗ ⊕K = (M ⊕K)⊕K =M ⊕ (K ⊕K) =M ⊕ 0 =M. (742)

The encrytped message is information-theoretically secure because each bit of M∗ is independently
random, assuming the bits of K are independently random,

P[M∗[i] = 1] = P[M [i] 6= K[i]] =
1

2
. (743)

The only way for Charlie to recover the message M is to try all 2|M∗| possible keys checking for
gibberish each time.

The security of the communication relies on Alice and Bob having privately shared the key K.
There is a problem with the one time pad. As the name indicates, Alice can only send one message
to Charlie using the key K. That is, the key cannot be reused. The reason is that if Alice
sends two encrypted messages, M1∗,M2∗, then Charlie who sees both encrypted messages can learn
something about the original messages M1,M2. In particular, Charlie can learn M1 ⊕M2. For the
communication to be secure, Charlie must learn nothing about M1 and M2. Charlie learns M1⊕M2

by computing M1∗ ⊕M2∗,

M1∗ ⊕M2∗ = (M1 ⊕K)⊕ (M2 ⊕K)

= M1 ⊕M2 ⊕K ⊕K

= M1 ⊕M2 ⊕ 0

= M1 ⊕M2. (744)

151

What does Charlie gain by knowing M1 ⊕ M2? Here is a striking visual example to illustrate
this attack, called a prior information attack12. Suppose M1 and M2 are the images and they are
encoded using the same one time pad K,

M1 M1∗ M2 M2∗

K K

(745)

As you can see, each encoded image is just random noise. On their own, the encoded messages M1∗
and M2∗ are secure. But if Charlie has both M1∗ and M2∗, here is what happens,

M1∗ M2∗ M1∗ ⊕M2∗

⊕

To the eye, having the “prior” informationM1⊕M2 virtually reveals the individual messages M1,M2.

27.1.2 RSA

Rivest, Shamir and Adleman made a breakthrough in 1977 developing the RSA secure communi-
cation protocol which addressed the need to share the key. Here is the high-level idea without any
details. Bob randomly picks two huge, comparably sized primes p and q and computes n = pq. bob
also computes a public encoding key e and a decoding key d from p, q. Bob publishes to the world,
including Alice and Charlie KE = (n, e). Alice encodes using

M∗ ≡M e (mod n). (746)

Bob decodes using
M ≡Md

∗ (mod n). (747)

e and d are chosen carefully to ensure that Bob always decodes correctly. The fact that Charlie
has KE means that Charlie can encode and send messages to Bob. So what? The important thing
is that Charlie should not be able to recover the decoding key d from (n, e). Bob has to keep d
secret. Hence, e is called the public key and d the private key. RSA has remarkably arranged for
the exchange of the key KE over a public channel.

There are two problems with RSA. The first is computational. Encoding a message requires
a heavy modular exponentionation calculation, which becomes an issue when M,n, e are all huge,
which is the case in practice, and this only gets amplified by the need to send many messages. The
second main problem is that if Charlie get hold of the original primes p, q, then Charlie can compute

12You can think of M1 ⊕M2 being given prior information and you are now trying to guess M1 and M2.

152

d, given (n, e). This means Charlie can decode just as easily as Bob can. Charlie can find p, q by
factoring n. We don’t know if factoring can be done efficiently on a classical computer. We do
know it can be done efficiently on a Quantum computer (see Sections ?? and ??). In conclusion, we
don’t really know if RSA is secure on a classical computer. We know it is not secure on a quantum
computer. We don’t have quantum computers yet, so for the moment we are safe, or are we?

The upshot of all this discussion is that RSA is inefficient and may or may not be secure. We
would rather use more trusted encoding and decoding functions as they are provably secure and
efficient, but these methods need key exchange. Hence, the professionals use a hybrid solution. RSA
to share the keys (KE ,KD) once and then encoding and decoding functions based on (KE ,KD).
The only weak-spot is now in the key sharing, which is just a single communication.

27.2 Quantum Protocols

Fundamentally, we see that the secure communication is solved down to one key step, namely key
exchange. Quantum computing gives a quantum mechanically protected means for key exchange.
Once the keys are exchanged, we can use them in classical encoding and decoding protocols. Specif-
ically, we will see that by sending qubits on a public channel, it is possible to privately share a key
of random bits. At a high-level let us see how quantum computing helps.

When Alice sends qubits to Bob, what can Charlie do? Well, he might try to copy them and
store them, for later analysis. This is prevented by the no-cloning theorem. Charlie might measure
the qubits, which essentially destroys them because their state collapses. This looks like a problem
for key exchange, because while Charlie can’t discover the qubits, he can certainly sabotage the
key-exchange process. This is tantamount to Charlie preventing communication between Alice and
Bob. This is always possible. Charlie can simply cut the wire. We assume that Charlie does not
want to prevent Alice and Bob from communicating. Charlie just wants in on the conversation.
So it will turn out that Charlies inability to measure the state without destroying it will turn into
an opportunity for us. This is because, in addition to key-exchange, there are other challenges to
secure communication. Here are three important problems:

• Key exchange.
• Intrusion detection. Can one detect if there is an eavesdropper like Charlie?
• Robustness to impersonation. Charlie intercepts the communication from Alice to Bob, and

sends his own message to Bob, impersonating Alice. This is called a man-in-the-middle attack.

We will see that quantum protocols can help with all these challenges. Before we proceed, it is
worth mentioning a quantum-mechanical solution to key exchange that is based on entanglement.
The basic idea is that Alice creates a pair of entangled cubits in the state

1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |1〉. (748)

This is done from the pure state |0〉|0〉 by applying a Hadamard to the first qubit and using it to
control a not on the second qubit,

|0〉

|0〉

H ⊕

not

1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |1〉

(749)

153

The reader should verify using that

1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |1〉 = cnot12(H ⊗ I2)|0〉 ⊗ |0〉.

Alice keeps one qubit and sends the other to Bob. For example, Alice could create a pair of entangled
photons, sending one to Bob. When Bob gets his qubit, both Alice and Bob measures their qubit
(it does not matter who measures first). By state collapse, they both have the same (random) bit.
This basic idea needs further embelishing because if Charlie intercepts the qubit, measures it and
sends it to Bob, all three will have the same qubit. In the next section we will see a quantum
computing approach to key exchange that does not rely on such entanglement.

27.3 Bell States

We digress to mention the four possible entangled states that can be obtained using the unitary oper-
ator cnot12(H⊗ I2). Since the operator is unitary, applying the operator to any orthonormal basis
produces another orthonormal basis. Applying the operator to the standard basis |00〉, |01〉, |10〉, |11〉
produces the maximally entangled orthonormal basis known as the Bell basis:

cnot12(H ⊗ I2)|0〉 ⊗ |0〉 =
1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |1〉 (750)

cnot12(H ⊗ I2)|0〉 ⊗ |1〉 =
1√
2
|0〉 ⊗ |1〉+ 1√

2
|1〉 ⊗ |0〉 (751)

cnot12(H ⊗ I2)|1〉 ⊗ |0〉 =
1√
2
|0〉 ⊗ |0〉 − 1√

2
|1〉 ⊗ |1〉 (752)

cnot12(H ⊗ I2)|1〉 ⊗ |1〉 =
1√
2
|0〉 ⊗ |1〉 − 1√

2
|1〉 ⊗ |0〉 (753)

in principle, any of these entangled states could be used to exchange a bit. The Bell basis is also
useful in superdense coding and teleportation.

154

28 Quantum Key Exchange

We discuss the BB84 protocol for quantum key exchange, named after its inventors Bennett &
Brassard and the year of invention 1984. There have since been improvements, but all the basic
ideas are in the simple protocol. Let us first be careful to about stating what we can do. Ideally,
we would like to use quantum computing to let Alice securely send a specific message to Bob, for
example the decoding key KD,

Alice Bob.
KD

(754)

We don’t know how to do this securely using quantum computing. The problem is that KD is a
fixed string, known to Alice. What we can do is arrange for Alice and Bob to securely share an
arbitrarily long random string of bits,

Alice Bob.
random string of bits

(755)

Appreciate the subtle difference between these two tasks. For the task we can achieve above, the
string shared is not apriori known to either party until the end. It turns out that this suffices
because the shared random bits can be used as a one time pad to securely share KD.

The basic idea is that Alice sends Bob a random pure state |0〉 or |1〉 in one of two bases.

e1

e2

u1

u2

(756)

Bob now guesses the basis and measures. If Bob guesses the basis correctly, he recovers the bit.
Alice now calls Bob over a public channel and tells Bob which basis she picked. If Bob guessed
right, he tells Alice and now both parties know they share the same random bit. The bit shared
is random because Alice picked a random pure state to start with. An eavesdropper on the public
channel can tell whether or not Bob guessed the correct basis, and also what that basis was, but
cannot ascertain what bit measured was. There are some physical challenges with implementing
this basic idea. How does Alice send the qubit to Bob. It is very difficult to store and transport
qubits. One could use photons. In this case the standard e1, e2 basis can be vertical or horizontal
polarization. The other basis can be diagonal-up and diagonal-down polarization. There is still
the challenge of Bob receiving the qubit, i.e. “catching” the photon possibly applying some unitary
operation to it and then measuring. Notwithstanding these practical issues, we can still proceed
with the theory.

28.1 Sending a Random Pure State in a Random Basis

Let us go through the mathematics using our familiar language. Alice starts with |0〉 and randomly
decides whether to apply not to get a random pure state |0〉 or |1〉. Now Alice decides, again

155

randomly, whether or not to apply a Hadamard to the pure state. Alice then sends the qubit over
a public channel to Bob. If Alice did apply the Hadamard, we call the qubit sent an H-qubit (H
for Hadamard-qubit). Otherwise we call the qubit sent an N -qubit (N for Normal-qubit). Here are
the possible outcomes for the qubit Alice sends Bob,

Alice

N -qubit

|0〉

|1〉

H-qubit

H|0〉

H|1〉

Probability

1
4

1
4

1
4

1
4 (757)

The stage now shifts to Bob. If Bob can guess which kind of qubit was sent, Bob can recover
the qubit. If an N -qubit was sent, Bob can simply measure it. If an H-qubit was sent, Bob must
first apply a Hadamard to undo Alice’s Hadamard, then he can measure. If Bob measures the
qubit directly, we call this an N -measurement. If Bob applies a Hadamard before measuring, it
is an H-measurement. The problem is that Bob does not know which type of qubit was sent. So
Bob guesses randomly which type of measurement to make. Let us consider what happens in a
measurement. Suppose Alice sends the N -qubit |1〉. In an N -measurement, Bob recovers |1〉. In an
H-measurement Bob applies a Hadamard first and then measures the state

H|1〉 = 1√
2
|0〉 − 1√

2
|1〉. (758)

Bob measures |0〉 or |1〉 with equal probability and so cannot guarantee recovering Alice’s state |1〉.
Now suppose Alice sends the H-qubit

H|0〉 = 1√
2
|0〉+ 1√

2
|1〉. (759)

In an N -measurement, Bob measures |0〉 or |1〉 with equal probability and so cannot guarantee
recovering Alice’s state |0〉. In an H-measurement Bob applies a Hadamard first to H|0〉. Since
H2 = I, Bob measures the state

H ·H|0〉 = |0〉. (760)

In an H-measurement of an H-qubit, Bob always recovers the pure state Alice sent. If Bob guesses
the type of qubit, N or H, then he always recovers Alices pure state. The last step of the algorithm
is that Bob calls Alice on a public channel after measuring and Alice reveals the type of qubit sent
and Bob reveals the type of measurement he made. If the type of qubit and type of measurement
match, Alice and Bob know they agree on the pure qubit and they have successfully privately shared
one random bit. If they type of qubit and measurement mismatch, they cannot guarantee matching
pure states. They just throw away the qubit and start again. The process is summarized below. In
four out of the 8 cases, Alice and Bob do not agree on a pure state. These four cases are highlighted

156

in red. In the other four cases, Alice and Bob agree on a pure state.

Alice

N -qubit

|0〉

|1〉

|0〉

|0〉 or |1〉 (random)

|1〉

|0〉 or |1〉 (random)

H-qubit

H|0〉

H|1〉

|0〉 or |1〉 (random)

|0〉

|0〉 or |1〉 (random)

|1〉

Probability

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
2

1
2

1
2

1
2

1
2

1
2

N -measurement

H-measurement

N -measurement

H-measurement

N -measurement

H-measurement

N -measurement

H-measurement

(761)
The probability that Alice and Bob can guarantee agreeing on a pure state is

P[Alice and Bob agree] =
1

8
+

1

8
+

1

8
+

1

8
=

1

2
. (762)

If Alice and Bob repeat this entire process 2ℓ times, they will expect to have shared a one time pad
of ℓ bits. Ofcourse Bob does not need to call Alice for each time the process is repeated. Alice can
send all her 2ℓ qubits at once, approximately half will be N -qubits and the rest H-qubits. Then
Bob can do all his measuring. When Bob is done, he calls Alice, and provided they can be indexed,
Alice can announce the sequence types and Bob can announce the sequence of measurement types.
Or they can just exchange this information in a file by email (insecure).

28.2 Attacking the Quantum Key Exchange Protocol

Assuming Charlie (the eavesdropper) can intercept the qubit sent by Alice, Charlie cannot clone
it and store it for later processing (no cloning theorem). So whatever Charlie does has to be done
right then and there and then a qubit has to be forwarded on to Bob. Charlies two main options
are to measure the qubit or do something more sophisticated like entangle the qubit with his own
local qubit before sending.

28.2.1 Measure and Send

28.3 Entangle and Send

28.4 Bit Commitment

157

29 Quantum Teleportation

To set up the teleportation problem, we introduce two players, Alice and Bob. Alice is in control of
some qubits and Bob is in control of some other qubits. We will use |ψ〉a and |ψ〉b to indicate the
quantum state on Alice’s and Bob’s qubits respectively. So, for example, the quantum state

1√
2
|001〉a|00〉b +

1√
2
|000〉a|11〉b (763)

is a superposition of two classical states |00100〉 and |00011〉. The notation in (763) indicates that
Alice is in possession of the first 3 qubits and Bob has the last 2 qubits. Let us focus on a single
qubit teleportation. We want to transfer a quantum state from Alice to Bob,

|ψ〉a|0〉b → |ψ〉a|ψ〉b, (764)

but this is forbidden by no-cloning. An alternative is

|ψ〉a|0〉b → |0〉a|ψ〉b, (765)

which is basically a swap operation and we have a circuit for swap (3 c-nots). A swap gate can only
be used if Alice and Bob are colocated and a quantum gate can be implemented on their qubits.
But in this case, Alice can just give her qubit to Bob. The goal of teleportation is to perform (765)
when Alice and Bob are physically separated and a quantum circuit cannot be applied to their joint
qubits simultaneously. We don’t know a way to do this. Here is what we can do.

1. Build a quantum link from Alice to Bob that will allow instantaneous transfer of a quantum
state, no matter how far Bob is from Alice.

• This link formation requires Alice and Bob to have been together at some point.

• The link entangles Alice and Bob together.

• The link (entanglement) is created between qubits Alice owns and qubits Bob owns.

2. Bob now takes his qubits and goes far away from Alice.

3. Alice at some later time gets a quantum state |ψ〉 = α|0〉+ β|1〉. Alice could call up Bob and
tell him α and β. The problem is Alice does not know α, β. Even if Alice knew α, β and sent
them to Bob, how would Bob create the state |ψ〉.

4. Instead, Alice applies a quantum circuit to her qubits and makes a measurement of the result.
The measurement produces a pure state.

5. Alice sends the measured pure state (bits) to Bob far away. This communication is on a
classical channel (email or phone).

6. Upon getting the classical bits, Bob applies a quantum circuit to his qubits from step 1.

7. Miraculously, Bob recieves the quantum state |ψ〉 “instantaneously”.

158

This teleportation protocol communicates the information in |ψ〉 (potentially infinitely many bits
of information because the amplitudes are complex numbers), but it requires a communication of
classical bits over a classical channel for Bob to actually receive the information. So there is no
violation of the speed of light here. The classical bits can be copied and sent via email. Even if an
eavesdropper receives the classical information, there is nothing they can do with it.

What is the usecase for teleportation? The Star-Trek usecase is to beam Captain Kirk down
to a planet below the enterprise. In one sense Star Trek got it right. When Kirk appears on the
planet below, the version of Kirk on the enterprise must be deleted due to no-cloning. This use case
is a bit far fetched, or at least far into the future. A more likely use case is that Alice is working
on a quantum computation on her quantum computer and arrives at state |ψ〉. Bob, who has more
powerful quantum circuits, must continue the computation so Alice needs to send her state to Bob.

The first step in the teleportation protocol is to build a quantum link between Alice and Bob.
To do this we create an entangled state with two qubits and give one qubit to Alice and one to Bob.
This is done when Alice and Bob are colocated. Here is the circuit,

|0〉a ⊕H

|0〉b not

(766)

The controlled-not operates on

|0〉a + |1〉a√
2

⊗ |0〉b =
1√
2
|0〉a ⊗ |0〉b +

1√
2
|1〉a ⊗ |0〉b. (767)

The a and b subscripts simply indicates who “owns” the respective qubits. The actual quantum state
is a standard superposition of |00〉 and |10〉. The controlled-not being a linear operator operates
separately on each pure state in the superposition to give

c-not

(
1√
2
|0〉a ⊗ |0〉b +

1√
2
|1〉a ⊗ |0〉b

)

=
1√
2
|0〉a ⊗ |0〉b +

1√
2
|1〉a ⊗ |1〉b. (768)

The qubits at Alice and Bob are now correlated. A measurement collapses the state to either |00〉
or |11〉. This means that if Alice measures |0〉 the state collapses to the pure state |00〉. Now if
Bob measures, he must see |0〉. Bob takes his qubit and moves far away from Alice. This benign
operation requires some finesse. How does Bob store and transport his qubit. This is a challenge.
One alternative is that the two qubits are created using photons. Two photons are created in this
entagled quantum state with one photon being shot toward Alice and one toward Bob. But how
do Alice and Bob “catch” exactly the right photon and then store it. Quantum states are fragile.
These practical considerations not withstanding, we continue with the theory. Now Alice gets the
quantum state |ψ〉 = α|0〉a + β|1〉a. The full quantum state of the three qubits is

(α|0〉a + β|1〉a)⊗
(

1√
2
|0〉a ⊗ |0〉b +

1√
2
|1〉a ⊗ |1〉b

)

. (769)

The goal is to apply some operator to this 3-qubit state and convert it to something of the form

|φ〉a ⊗ (α|0〉b + β|1〉b). (770)

159

|φ〉 is some 2-qubit state at Alice, and Bob now has the original state |ψ〉. The constraint is that
whatever operators we apply must either be applied by Alice on her two qubits or by Bob on his
single qubit. An operator cannot be applied simultaneously to all three qubits because the qubits
are not colocated. Let us label the qubits q1, q2, q3. The qubits q1 and q2 are with Alice, while qubit
q3 is with Bob. The full quantum state, ignoring who owns which qubit is

α√
2
(|000〉+ |011〉) + β√

2
(|100〉+ |111〉). (771)

Alice first applies cnot12 on her two qubits. The full 3-qubit operator is cnot12 ⊗ I.

cnot12

(
α√
2
(|000〉+ |011〉) + β√

2
(|100〉+ |111〉)

)

=
α√
2
(|000〉+ |011〉)+ β√

2
(|110〉+ |101〉). (772)

Alice now applies a Hadamard on her qubit q1. The full operator is H⊗ I⊗ I, applied on the state

α√
2
(|0〉a|0〉a|0〉b + |0〉a|1〉a|1〉b) +

β√
2
(|1〉a|1〉a|0〉b + |1〉a|0〉a|1〉b). (773)

By linearity and using H|0〉a = (|0〉a + |1〉a)/
√
2, H|1〉a = (|0〉a − |1〉a)/

√
2, we get

α

2
(|0〉a|0〉a|0〉b + |1〉a|0〉a|0〉b + |0〉a|1〉a|1〉b + |1〉a|1〉a|1〉b)

+
β

2
(|0〉a|1〉a|0〉b − |1〉a|1〉a|0〉b + |0〉a|0〉a|1〉b − |1〉a|0〉a|1〉b). (774)

Collecting terms, we get the 3-qubit quantum state

1

2
|00〉a ⊗ (α|0〉b + β|1〉b)

+
1

2
|01〉a ⊗ (β|0〉b + α|1〉b)

+
1

2
|10〉a ⊗ (α|0〉b − β|1〉b)

+
1

2
|11〉a ⊗ (−β|0〉b + α|1〉b). (775)

The information about α and β has been transferred to the third qubit. If Alice measures her
qubits, the full 3-qubit state collapses to a pure state at Alice and a superposition at Bob.

Alice sees Bob Has Bob Applies

|00〉 α|0〉b + β|1〉b√
2

I

|01〉 β|0〉b + α|1〉b√
2

not

|10〉 α|0〉b − β|1〉b√
2

σ3 =

[
1 0
0 −1

]

|11〉 −β|0〉b + α|1〉b√
2

σ3 · not

(776)

In each case, depending on what Alice sees, Bob can apply a standard unitary gate to his qubit
and recover |ψ〉. Alice, therefore, needs to tell Bob her measurement, which is where the classical

160

channel comes in. However, Alice only needs to classically communicate two bits of information to
transfer infinitely many bits “instantaneously”. The full circuit is

|ψ〉a

|0〉a ⊕H

|0〉b not |ψ〉b

⊕

not

H
?=|00〉/|01〉/|10〉/|11〉

I/not/σz/σz · not

(777)

The only part of this circuit that requires colocation is the first controlled not. In a futuristic world
where objects are being “beamed” to different places, to teleport from Alice’s location to Bob’s
location, Alice and Bob must have been colocated at some time. Imagine a syncing station where
Alice and Bob come, they each pickup their respective entangled qubits and move on. Now Alice
can teleport to Bob. Alice cannot teleport to some random location, e.g. some random plannet
below the Enterprise. That random point and Alice must have at some point been colocated. So,
Star Trek got that part wrong.

161

30 Primer On Machine Learning

162

31 Kernel Methods

31.1 PCA

31.2 Support Vector Machine (SVM)

31.3 What can Quantum Do For Machine Learning

163

32 Encoding Data into Quantum Circuits

164

33 Quantum Kernels

165

34 Quantum Machine Learning

34.1 Quantum PCA

34.2 Quantum SVM

166

35 Quantum Variational Encoder

167

36 Optimization

36.1 The Ising Hamiltonian

36.2 Binary Programming and The Ising Hamiltonion

36.3 Application to Max-Cut

168

37 Quantum Computing For Optimization

37.1 Optimization as Finding the Ground State of the Hamiltonian

37.2 Quantum Computing for Estimating the Ground State

37.3 Ising Hamiltonian: Quantum Approximate Optimization Algorithm (QAOA)

169

38 A Truly Quantum Support Vector Machine

170

References

Magdon-Ismail, M. (2020). Discrete Mathematics and Computing: A Set of Lectures. dmc-book.com.

171

