QUIZ 2: 60 Minutes

Last Name:	Solutions
First Name:	
RIN:	
Section:	

Answer ALL questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

10 Questions

Circle at most one answer per question.

10 points for each correct answer

Total

100

A 3

B 5

pigconhole: 8 guarantees with 7: MTNTFSS are all possible

C 7

E Not possible

2. How many guests do you need at a party to guarantee that two will be born on a Monday?

A 3

B 5

C 7

Everyone could be born on tuesday

D 8

(E)Not possible

3. How many numbers in the set $\{1, 2, 3, \ldots, 1000\}$ are divisible by $2 \underline{or} 3$.

A 657

B 660

 $500 = \lfloor \frac{1000}{2} \rfloor$ divisible by 2 Inclusion Exclusion: $333 = \lfloor \frac{1000}{3} \rfloor$ divisible by 3 500 + 333 - 166 = 667 $166 = \lfloor \frac{1000}{6} \rfloor$ divisible by 6

D 830

E 833

4. How many different words can you get by rearranging the letters of the word BOOKKEEPER?

 $D6^{10}$

 $E 10^6$

3121211111

1:12

5. You have 11 players and must form two teams of 5 for a practice match. How many different practice matches are possible. (Be careful! TINKER: for example, try 3 players forming two teams of 1)?

B 1388

C 1390

D 2772

E 2774

 $\frac{1}{2} \begin{pmatrix} 11 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \frac{1}{2} \cdot \frac{11 \times 16 \times 9 \times 8 \times 7 \times 16}{8 \cdot 13 \cdot 12 \cdot 1} \times \frac{6}{100} = \frac{11 \times 16 \times 9 \times 8 \times 7 \times 16}{8 \cdot 13 \cdot 12 \cdot 12} \times \frac{99}{100}$ A vs B 3 same practice match $\frac{99}{100} \times \frac{1}{100} \times \frac{1$

- 6. You randomly pick an 8-bit sequence (independent bits and each bit is 1 with probability $\frac{1}{2}$). What is the probability that the sequence starts and ends in 1?
- $\begin{array}{c}
 A \frac{1}{2} \\
 B \frac{1}{4}
 \end{array}$

- 3
 - $\boxed{D} \ \tfrac{1}{16}$
 - $\mathbb{E}^{\frac{1}{32}}$
 - 7. A box contains 10 coins. 9 are *fair* and 1 has *two heads*. You pick a coin at random. You toss it three times. What is the probability of tossing three heads (HHH)?
 - $A \frac{1}{8}$
 - B 1
 - $C \frac{16}{80}$
 - $\frac{17}{80}$
 - E 18
- Total Probability

 P[HHH] = P[HHH|fair] P[fair] + P[HHH| 2-heads] P[2-heads].

 = 1. 1. 1.
 - = $\frac{9}{80} + \frac{8}{80} = \frac{17}{80}$.
- 8. A box contains 10 coins. 9 are *fair* and 1 has two heads. You pick a coin at random. You toss your coin three times and get HHH. What is the probability that the coin you picked is fair?
 - $A \frac{9}{10}$
 - $\begin{array}{|c|c|} \hline B & \frac{8}{17} \\ \hline \end{array}$
- © 9/17
- $D_{\frac{10}{17}}$
- $E_{\frac{11}{17}}$

9. A drunk leaves the bar (at position 1), and takes independent steps: left (L) with probability $\frac{2}{3}$ or right (R) with probability $\frac{1}{3}$. What is the probability the drunk reaches home (at position 0) before reaching the lockup (at position 3)?

$$A \frac{1}{2}$$

 $B \frac{2}{3}$

$$\begin{bmatrix} C \end{bmatrix} \frac{4}{5}$$

$$\begin{array}{c|c}
\hline
D & \frac{5}{6} \\
\hline
E & \frac{9}{2}
\end{array}$$

E

Total Probability: P[H] = P[H|L] P[L] + P[H|RL] P[RL] + P[H|RR] P[RP]

= \frac{2}{3} + \frac{2}{9} \cdot P[H]

= \frac{2}{3} + \frac{2}{9} \cdot P[H]

= \frac{2}{3} \times \frac{9}{7} = \frac{6}{7}

\text{Sun obteome Probabilities. outcomes leading to home are (RL) \(^2\)L.

$$= \frac{2}{3} + \frac{2}{9} \cdot P(H)$$

$$P(R)^{i}L = (\frac{3}{3}x_{3}^{i})^{i} = \frac{1}{3} \cdot (\frac{2}{9})^{2}$$

$$P(R)^{i}L = (\frac{3}{3}x_{3}^{i})^{i} = \frac{1}{3} \cdot (\frac{2}{9})^{2}$$

$$P(R)^{i}L = (\frac{3}{3}x_{3}^{i})^{i} = \frac{1}{3} \cdot (\frac{2}{9})^{2} = \frac{1}{3} \cdot (\frac{2}{9})^{2}$$

$$P(R)^{i}L = (\frac{3}{3}x_{3}^{i})^{i} = \frac{1}{3} \cdot (\frac{2}{9})^{2} = \frac{1}{3} \cdot (\frac{2}{9})^{2}$$

10. You toss 4 independent fair dice. What is the probability that you roll exactly one 2 and one 4?

$$A \frac{3}{27}$$

$$\frac{5}{27}$$

$$\boxed{\mathrm{D}} \frac{6}{27}$$

$$\boxed{\mathrm{E}} \frac{7}{27}$$

remaining 2 positions chosen in 42 ways

$$\frac{4 \cdot 3 \cdot 4^{2}}{6^{4}} = \frac{3 \times 2^{6}}{3^{4} \cdot 2^{4}} = \frac{4}{27}.$$

Multinomial:
$$\frac{4!}{1!1!2!} \frac{1}{6} \cdot \frac{6}{6} \cdot \frac{4}{6} = \frac{4}{27}$$