QUIZ 1: 60 Minutes

Last Name:	Solutions	
First Name:		
RIN:		
Section:		

Answer ALL questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

Circle at most one answer per question.

10 points for each correct answer.

You **MUST** show work to get full credit.

When in doubt, TINKER.

Total

200

A A natural number.		
B A rational number.		
CAn irrational number.		
D An integer.		
E None of the above.		
2. The set $S = \{n \mid n = (k-1)(-1)^k, \text{ where } k \in \mathbb{N}\}$	$\}$. Which of these sets could be S ?	
\boxed{A} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,}	S= {0,1,-2,3,	
$\boxed{\mathbf{B}}$ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,}	3= 20/1/2/9/	
$(0, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, \dots)$		
$\boxed{\mathbb{E}}$ {0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10,}		
3. A and B are sets. Which answer is another way t	so represent $\overline{A \cap B}$.	
$\boxed{\mathbb{A}} A \cup B$.		100 is everything
$BA\cap B$.	(A (B)	not in ANB, so it
$(\overline{\mathbf{A}})\overline{\mathbf{A}}\cup\overline{\mathbf{B}}.$		5 everything out !
$\boxed{\mathbb{D}} \overline{A} \cap \overline{B}$.		A OR outide B
E None of the above.	AUB	ANB is everything outsing A OF outside B. That is A VB Heat is A VB
4. An integer $n \in \mathbb{Z}$ has an even square, that is n^2 is		
$oxed{A} n$ is odd.	n^2 is even \rightarrow $n=2K$	is even
$\boxed{\mathbb{B}}$ n is positive.	m=2K-	ni=4k
$(C)^{2}$ is divisible by 4.	,	div 67 4
D n is divisible by 4.		NIV 39 1
E None of the above claims are true.		
5. How many rows are there in the truth table of the	compound proposition $((p \rightarrow q) \lor (p \rightarrow$	$r)) \rightarrow (q \rightarrow r)?$
A 2.		
B 4.	3 variables -	> 2×2×2 =8.
(C)	,	
D 12.		
E 16.		

1. $\sqrt{2}$ is what kind of number?

٥.	honked. Later, Sue was behind you and didn't honk. What would be a valid inference?	
	A Joe loves FOCS. We don't know about Sue.	ンナ
	B Sue loves FOCS. We don't know about Joe	r
	C Joe does not love FOCS. We don't know about Sue.	· i
	D sue does not love FOCS. We don't know about Joe	
	A Joe loves FOCS. We don't know about Sue. B Sue loves FOCS. We don't know about Joe C Joe does not love FOCS. We don't know about Sue. D Sue does not love FOCS. We don't know about Joe E Joe loves FOCS and Sue does not love FOCS. E Joe loves FOCS and Sue does not love FOCS. What would be a valid inference? Joe howked > he may be expected to the sum of t	
7.	7. For $x,y\in\mathbb{N}=\{1,2,3,\ldots\}$, determine T or F for the proposition $\forall y:(\exists x:x^2=y)$.	
	A Can't be done because p is not a valid proposition which is either T or F. if $y=2$	
	B It depends on x . C It depends on y . D. not true for all y .	JE 1
	C It depends on y .	,
	int the for all y.	
	E T.	
8.	3. What method of proof did we use to prove that $\sqrt{2} \notin \mathbb{Q}$?	
	A Direct proof	
	B Contraposition proof.	
	C Proof by induction.	
(Proof by contradiction.	
	E None of the above.	
9.	What method would you use to prove that $1^3 + 2^3 + 3^3 + 4^3 + \cdots + n^3 = (\frac{1}{2}n(n+1))^2$ for all $n \ge 1$?	
	A Direct proof	
	B Contraposition proof.	
	$\overline{\mathbb{C}}$ Show that the formula is true for $n=1$ up to $n=1000$.	
(D Proof by induction.	
`	E Proof by contradiction.	
10	0. You must prove $P(n)$ for $n \geq 3$. You proved $P(n) \to P(n+3)$ for $n \geq 3$. What base cases do you need?	
	lacksquare A $P(1)$	
	$\begin{array}{c c} \hline B P(3) \\ \hline \end{array}$	-
	C P(1), P(2) and P(3)	
1		
	(D) (3) , $P(4)$ and $P(5)(B)$ None of the above.	

	hich statement is a contract $x = 2$ $y = 10$	diction (cannot pos	sibly be true)?			
$\begin{bmatrix} \mathbf{A} \mid x & < y. \\ \end{bmatrix} x^2 = y/2$	x=2 y=8					
$ \begin{array}{c} \boxed{C} x^2 - y^2 \le 1 \\ \boxed{D} x^2 + y^2 \le 1 \end{array} $			-y² ≥ 2 · s	io de	it be	tme
<u> </u>	above. That is, each staten					LOW.
12. Which gives a v	valid way to prove the impl	lication $p \to q$.		0 - T	9.=F	can't

- 13. What is the difference between using Induction versus Strong Induction to prove P(n) for n ≥ 1?
 A The base cases are different.
 B Induction is usually easier than Strong Induction.
 C In Induction you prove P(n + 1). In Strong Induction you prove P(n + 2).
 D In Induction you assume P(n). In Strong Induction you assume P(1) ∧ P(2) ∧ · · · ∧ P(n).
 E There is no difference between the two methods.
- 14. Compute the value of $(1 \frac{1}{2}) \times (1 \frac{1}{3}) \times (1 \frac{1}{4}) \times (1 \frac{1}{5}) \times \cdots \times (1 \frac{1}{100})$.

 A 1/5B 1/10C 1/50D 1/100E None of the above.
- 15. We wish to break a group of n students into project-teams. Each team must have either 4 or 6 students.
 - A IF $n \ge 4$, THEN it can be done. B IF $n \ge 6$, THEN it can be done.
 - $\boxed{\mathbf{C}}$ IF $n \geq 10$, THEN it can be done.
 - (D) If $n \geq 4$ and n is even, THEN it can be done.
 - E None of the above.

- 16. What are the first four terms A_0, A_1, A_2, A_3 in the the recurrence
- $A_n = \begin{cases} 1 & n = 0; \\ 2A_{n-1} + 1 & n \ge 1. \end{cases}$

- A 1, 2, 3, 4.
- B 1, 2, 4, 8.

- C 1, 3, 6, 12.
- D), 3, 7, 15.
- E None of the above.
- 17. For $n \geq 0$, what is a formula for A_n , where A_n satisfies the recurrence
- $A_n = \begin{cases} 1 & n = 0; \\ 2A_{n-1} + 1 & n \ge 1. \end{cases}$

- A $A_n = 1 + 2n \text{ for } n > 0.$

- $\begin{array}{l} \boxed{\textbf{A}} \ A_n = 1 + 2n \ \text{for} \ n \geq 0. \\ \hline \ \textbf{B} \ A_n = 1 + n + n^2 \ \text{for} \ n \geq 0. \\ \hline \ \textbf{C} \ A_n = 1 + \frac{1}{3}(5n + n^3) \ \text{for} \ n \geq 0. \\ \hline \ \textbf{D} \ A_n = 2^{n+1} 1 \ \text{for} \ n \geq 0. \\ \hline \ \textbf{E} \ \text{None of the above.} \end{array} \qquad \begin{array}{l} A_n = 2^{n+1} 1 \\ A_n = 2^{n+1} 1 \ \text{for} \ n \geq 0. \\ \hline \ \textbf{A}_n = 2^{n+1} 1 \ \text{$
- 18. String x is a palindrome, that is $x = x^R$ where x^R is the reversal of x. Which statement about x is false?
 - A x could be the string 1001.
 - B The reversal of x must be a palindrome, that is x^{R} is a palindrome.
 - The concatenation of x with itself is a palindrome, that is $x \cdot x$ is a palindrome.
 - D | p must have even length.
 - E The concatenation of x with its reversal is a palindrome, that is $x \cdot x^R$ is a palindrome.
- 19. Rooted binary trees (RBTs) are recursively defined below. How many RBTs have 3 vertices?
 - A 2
 - B 3

- Recursive Definition of RBT
- ① The empty tree ε is an RBT.
- ② If T_1, T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a new root r gives a new RBT with root r.
- 3 Nothing else is an RBT.

- 20. A rooted binary tree (RBT) has 8 vertices. How many links (edges) does the RBT have?
 - A There is not enough information to determine the number of links.
 - B 5

- # links = # vertices 1

 8

 # links = 8-1 = 7.