Discovering Hidden Groups in
Communication NetworKks

Jeff BAUMES?, Mark K. GOLDBERG 22, Malik MAGDON-ISMAIL 2,
William A. WALLACE P

aCS Department, Rensselaer Polytechnic Institute, Troyl ABO.
bDSES Department, Rensselaer Polytechnic Institute, W®y]12180.

Abstract. This chapter presents statistical and algorithmic appresdo discov-
ering groups of actors that hide their communications withie myriad of back-
ground communications in a large communication network: &aproach to dis-
covering hidden groups is based on the observation thatterpaif communica-
tions exhibited by actors in a social group pursuing a comoigective is different
from that of a randomly selected set of actors. We distifgtie types of hid-
den groupstempora) which exhibits repeated communication patterns;spatial
which exhibits correlations within a snapshot of commutiices aggregated over
some time interval. We present models and algorithms, hegetith experiments
showing the performance of our algorithms on simulated aatidata inputs.

Keywords. statistical communication analysis, terrorist netwodtaph clustering,
temporal correlation

1. Introduction
1.1. Motivation

Modern communication networks (telephone, email, Inteah@troom, etc.) facilitate
rapid information exchange among millions of users arotmedvtorld. This vast com-
munication activity provides the ideal environment forgps to plan their activity unde-
tected: the related communications are embedded (hidd#ripwhe myriad of random
background communications, making them difficult to dismoWhen a number of indi-
viduals in a network exchange communications related tavanoon goal, or a common
activity, they form a group; usually, the presence of theeteht communication activ-
ity imposes a certain structure of the communications ors#ieof actors, as a group.
A group of actors may communicate in a structured way whileb&ing forthright in
exposing its existence and membership. This chapter devstatistical and algorithmic
approaches to discovering such hidden groups.

IThis article is a reproduction of the article “Identificatiof Hidden Groups in Communications,” by J.
Baumes, M. Goldberg, M. Magdon-Ismail, and W. Walladendbook in Information Systemélume 2, pp.
209 - 242; 2007 Elsevier B. V.

2Corresponding Author: Rensselaer Polytechnic Institut#) 8th street, Troy, N.Y., 12180; USA;
Email,goldberg@cs.rpi.edu.

Finding hidden groups on the Internet has become espedmafigrtant since the
September 11, 2001 attacks. The tragic event underlinesabe for a tool (a software
system) which facilitates the discovery of hidden (malisipgroups during theplan-
ning stage, before they move to implement their plans. A geneag of discovering
such groups is based on discoveraayrelationsamong the communications of the ac-
tors of the communication network. Tkemmunication grapbf the network is defined
by the set of its actors, as the vertices of the graph, andeghef£ommunications, as
the graph’s edges. Note that the content of the communitaitonot used in the defini-
tion of the graph. Although the content of the messages canfbenative and natural
language processing may be brought to bear in its analysib,an analysis is generally
time consuming and intractable for large data-sets. Theareh presented in this chapter
makes use of only three properties of a message: its timeame of the sender and the
name of the recipient of the message.

Our approach to discovering hidden groups is based on thengdi®on that a pat-
tern of communications exhibited by actors in a social grpupsuing a common ob-
jective is different from that of a randomly selected setaibes. Thus, we focus on the
discovery of such groups of actors whose communicationsgdine observation time
period exhibit statisticatorrelations We will differentiate betweespatialandtemporal
correlations, which as we shall see, lead to two differetiobng of hidden groups.

1.2. Temporal Correlation

One possible instance of temporal correlation is an ocoog®f arepeated communi-
cation patternTemporal correlation may emerge as a group of actors ara@ipigusome
future activity. This planning stage may last for a numbetimfe cycles, and, during
each of them, the members of the group need to exchange resssdajed to the future
activity. These message exchanges imply that, with highadsiity, the subgraph of the
communication graph formed by the vertices correspondinip¢ active members of
the group is connected. If thinnectivityproperty of the subgraph is repeated during
a sufficiently long sequence of cycles, longer thamxpectedor a randomly formed
subgraph of the same size, then one can discovershipiger-than-averagéemporal
correlation, and hence identify the hidden group.

Thus, in order to detect hidden groups exhibiting tempovaledations, we exploit
the non-random nature of their communications as conttastth the general back-
ground communications. We describe efficient algorithmst, dippearing in [4,5], which,
under certain conditions on the density of the backgrourmdroanications, can effi-
ciently detect such hidden groups. We differentiate betvie® types of temporally cor-
related hidden groups trusting, or non-secretivhidden group, whose members are
willing to convey their messages to other hidden group membia actors that are not
hidden group members, using these non-hidden group membénsessengers”; and, a
non-trusting, or secretiveidden group, where all the “sensitive” information thaéds
to be conveyed among hidden group members uses only ottearhgtoup members as
messengers.

Our results reveal those properties of the background nktectivity and hidden
group communication dynamics that make detection of thedridyroup easy, as well as
those that make it difficult. We find that if the background coumications are dense or
more structured, then the hidden group is harder to detegbriSingly, we also find that

when the hidden group is non-trusting (secretive), it isexds detect than if it is trusting
(non-secretive). Thus, a hidden group which tries to pretrencontent of its messages
from reaching third parties undermines its operations lmpheng easier to detect!

1.3. Spatial Correlation

We use spatial correlation to refer to correlations in th@gnications of a single com-
munication graph, which represents a snapshot of the corneations aggregated over
some time interval (in contrast to temporal correlationahhiefers correlation in the
communications over multiple communication graphs whegresent successive snap-
shots of the communications). Spatial correlation of mgssanitiated by a group of
actors in a social network can be identified blgigher-than-averagétal communica-
tion levelwithin this group. This property does not rely on the content of tlessages
and is adequately described by the communication graptedbe densitpf the corre-
sponding set of vertices of the graph is higher than that efatverage set. To be able
to address a wide variety of applications, we consider amgénetion of edge density,
which compares the intensity of communications betweemthers within a particular
set and that between the set and the “outside world.” The ddgsity may be defined
in numerous ways depending on the desired characteristioe discovered groups; our
algorithms for discovering groups of higher density (ptigdmidden groups) are generic
with respect to the definition of density. Furthermore, wel famly groups which are
more dense than any group sufficiently close, which refléetptinciple of locality in a
social network.

For our numerical experiments, we use two main ideas in aefidensity: one is
the proportion of the number of actual communications tottit@ number of possible
communications; and the other is the ratio of the number ofroanications within the
group to the total number of group communications, inclgdimessages to individuals
outside the group.

In graph-theoretical terminology, the problem we studglistering An important
implication of our approach is that our algorithms condtielasters that may overlap,
i.e., some actors may be assigned to more than one group. Whitish@uch literature
in the area of graph clustering, up until very recent workai$ Imainly focused on a spe-
cific sub-case of the problem: graph-partitioning. As ogab® partitioning algorithms,
which decompose the network intlisjoint groups of actors, general clustering allows
groups to extend to their natural boundaries by allowinglape We discuss prior work
in the area opartitioning, and present three genecdisteringheuristics, originally de-
scribed in [2,3]. We refer to these procedures by the naneeatite Scan (IS), Rank
Removal (RaRe) and Link Aggregate (LA). We present expariadelata that illustrate
the efficiency, flexibility, and accuracy of these heursstic

Searching for both spatial and temporal correlation maydmhined to produce a
more effective algorithm for the identification of hiddergps. The temporal algorithms
may indicate that a large group of individuals are involvedlanning some activity. The
spatially-correlated algorithm may then be used to clusiierlarge group into overlap-
ping subgroups, which would correspond to smaller workingqugs within the larger
group.

We present results from the testing of our spatial-hiddengrlgorithms on a num-
ber of real-world graphs, such as newsgroups and email. \AMlyznthe quality of the

groups produced by the clustering algorithms. We also testatgorithms on random
graph models in order to determine trends in both runtime agwliracy. One of the
interesting experimental discoveries that different iempéntations of the Iterative Scan
algorithm are optimized for different domains of applicatibased on the sparseness
(density) of the communication network.

2. Discovering Temporal Correlation
2.1. Literature Review

Identifying temporally correlated hidden groups was atgd in [30] using Hidden
Markov models. Here, our underlying methodology is basezhupe theory of random
graphs [7,22]. We also incorporate some of the prevailimipéscience theories, such as
homophily [32], by incorporating group structure into ounael. A more comprehensive
model of societal evolution can be found in [20,37]. Othemdation work in the field
of computational analysis of social and organizationatesys [9,10,36] primarily deals
with dynamic models for social network infrastructureheatthan the dynamics of the
actual communication behavior, which is the focus of thigptkr.

One of the first works analyzing hidden groups is found in [H@gre, the author
studies a number of secret societies, such as a resistateethformed among prisoners
at Auschwitz during the Second World War. The focus, as mihis paper, was on the
structure of such societies, and not on the content of conmations. An understanding
of a hidden network comes through determining its genettéépaand not the details of
its specific ties.

The September 11, 2001 terrorist plot spurred much reséatble area of discov-
ering hidden groups. Specifically, the research was aimeddgrstanding the terrorist
cells that organized the hijacking. Work has been done teate the structure of that
network and to analyze it to provide insights on general erogs that terrorist groups
have. Analyzing their communication structure providaslemce that Mohammed Atta
was central to the planning, but that a large percent of ttiithuals would have needed
to be removed in order to render the network inoperable [BB]Uncloaking Terror-
ist Networks” [29], Krebs uses social network measures sischetweenness to iden-
tify which individuals were most central to the planning aerdination of the attacks.
Krebs has also observed that the network that planned Sbptetit attempted to hide
by making their communications sparse. While these astiplevide interesting infor-
mation on the history of a hidden group, our research usgsepties of hidden groups
to discover their structure before a planned attack canroccu

There is also work being done in analyzing the theory of neted groups, and
how technology is enabling them to become more flexible aadlaiging to deal with.
The hierarchical structure of terrorist groups in the pagjiving way to more effective
and less organized network structure [35]. Of course, tedtep to understanding de-
centralized groups is to discover them. What follows are esstrategies to solve this
problem.

2.2. Methodology

Atemporally hidden group is a different kind of group frone thormally functioning so-
cial groups in the society that engage in “random” commuidca. We define gempo-

cyclel cycle2 cycle3 cycle4

Figure 1. Cyclic representation of the communication.

rally hidden group or in this section labeledladden groupas some subset of the actors
who are planning or coordinating some activity over times thdden group members
may also be engaging in other non-planning related comratiaits. The hidden group
may be malicious (for example some kind of terrorist grougnping a terror attack) or
benign (for example a foursome planning their Sunday af@nrgolf game). So in this
sense, a hidden group is not assumed to be intentionallpdniut the group activity
is initially unknown and masked by the background commuidoa. The hidden group
is attempting to coordinate some activity, using the comication network to facilitate
the communications between its members. Our task now ig @igéover specific prop-
erties that can be used to find hidden groups; and (2) congffizient algorithms that
utilize those properties. The next steps such as formulafiempirically precise models
and further investigation of the properties of hidden goispbeyond the scope of this
methodology.

Whether intentional or not, in a normal society, commundcet will, in general,
camouflage the planning related activity of the hidden grdups could occur in any
public forum such as a newsgroup or chatrooms, or in privaencunications such as
email messages or phone conversations. However, the ptarglated activity is exactly
the Achilles heel that we will exploit to discover the hiddgmoup: on account of the
planning activity, the hidden group members need to stayriected” with each other
during each “communication cycle.” To illustrate the gexiédea, consider the follow-
ing time evolution of a communication graph for a hypothatgociety; here, communi-
cations among the hidden group are in bold, and each comationiccycle graph rep-
resents the communications that took place during an etirtire interval. We assume
that information must be communicated amaiighidden group members during one
communication cycle (see Figure 1).

Note that the hidden group is connected in each of the conwation cycle figures
above. We interpret this requirement that the communinagidbgraph for the hidden
group be connected as the requirement that during a singiencmication cycle, infor-
mation must have passed (directly or indirectly) from sorigielén group member to all
the others. If the hidden group subgraph is disconnected,ttiere is no way that infor-
mation could have been passed from a member in one of the ¢@nfmoto a member
in the other, which makes the planning impossible during tiyale. The information
need not pass from one hidden group member to every othetlglird& message could
be passed fronA to C via B, where A, B, C are all hidden group members. Strictly
speaking,A and C are hidden group members, howe\gmeed not be one. We will
address this issue more formally in the next section. A mdgleup may try to hide its
existence by changing its connectivity pattern, or by thngwn “random” communica-
tions to non-hidden group members. For example, at somes tineehidden group may

(1) Internally Connected (2) Externally Connected (3) Disconnected

Figure 2. Types of connectivity.

be connected by a tree, and at other times by a cycle. Nonesé ttlisguises changes
the fact that the hidden group is connected, a property weewgloit in our algorithms.

We make the assumption here that the hidden group remaitis at@r the time
period when communications are collected. The algorithesedbed here would still
be useful, however, as long as a significant subset of thepgemains the same. The
algorithms would likely not detect members that joined dt tke group, but would
discover a “core” group of members.

2.2.1. Trusting vs. Non-Trusting Hidden Groups

Hidden group members may have to pass information to eaeh ottlirectly. Suppose
that A needs to communicate witB. They may use a number of third parties to do this:
A —> C; —» --- - Cx — B. Trustinghidden groups are distinguished framon-
trustingones by who the third parti€s may be. In a trusting (or non-secretive) hidden
group, the third parties used in a communication may be ator acthe society; thus,
the hidden group membera(B) trust some third-party couriers to deliver a message for
them. In doing so, the hidden group is taking the risk thatibre-hidden group members
C; have access to the information. For a malicious hidden greupgh as a terrorist
group, this could be too large a risk, and so we expect thatimas hidden groups will
tend to be non-trusting (or secretive). In a non-trustirgystive) hidden grougll the
third parties used to deliver a communicationstthemselves be members of the hidden
group,i.e., no one else is trusted. The more malicious a hidden grotipasnore likely

it is to be non-trusting.

Hidden groups that are non-trusting (vs. trusting) needdmtain a higher level of
connectivity. We define three notions of connectivity assitated by the shaded groups
in Figure 2. A group isnternally connectedf a message may be passed between any
two group members without the use of outside third partiethé terminology of Graph
Theory, this means that the subgraph induced by the grogmisacted. A group isxter-
nally connectedf a message may be passed between any two group membemspperh
with the use of outside third parties. In Graph Theory tewtagy, this means that the
group is a subset of a connected set of vertices in the conuatimm graph. For example,
in Figure 2 (2) above, a message fréxio B would have to use the outside third party
C. A group isdisconnectedf it is not externally connected. The following observaiso
are the basis for our algorithms for detecting hidden groups

(i) Trusting hidden groups arexternally connected in every communication cycle.

Figure3. Internally persistent, externally persistent and norsigégnt groups. The communication graph dur-
ing 4 communication cycles is shown. Three groups are fygtéd, | P, EP, D. One can easily verify that

| P is internally persistent during these 4 communication &ychnd so is a candidate non-trusting hidden
group. E P is only internally persistent only for time periods 1 and 2wk only observed data during this
time period, therE P would also be a candidate non-trusting hidden group. Howév® is only externally
persistent for all the communication cycles, and hence canle a candidate for a trusting hidden grolp.
becomes disconnected during communication cycle 4, ancehismot a candidate hidden group.

(i) Non-trusting hidden groups armternally connected in every communication
cycle.

We can now state the idea behind our algorithm for detectihgdden group: a
group of actors igersistentover communication cycles, 1.., T if it is connected in
each of the communication graphs corresponding to eack.click two variations of the
connectivity notion, internal or external, depend on wketle are looking for a non-
trusting or trusting hidden group. Our algorithm is inteddie discover potential hidden
groups by detecting groups that are persistent over a lomg pieriod. An example is
illustrated in Figure 3.

A hidden group can be hidden from view if, by chance, therexaaay other persis-
tent subgroups in the society. In fact, it is likely that #nevill be many persistent sub-
groups in the societgiuring any given short time periotHowever, these groups will be
short-lived on account of the randomness of the society comication graph. Thus we
expect our algorithm performance to improve as the observaeriod increases.

2.2.2. Detecting The Hidden Group

Our ability to detect the hidden group hinges on two thinggstFwe need an efficient al-
gorithm for identifying maximally persistent component®pa time periodI. Second,

we need to ensure, with high probability, that over this tpeeiod there are no persistent
components that arise, by chance, due to the backgrounetabcommunications. We
will construct algorithms to efficiently identify maximabmponents that are persistent
over a time periodl. Given a model for the random background communications, we
can determine (through simulation) how long a time periodaup of a particular size
must be persistentin order to ensure that, with high prdibabhis persistent component
did not arise by chance, due to background communications.

(a) Externally persistent components (b) Internally persistent components
1: Int_Persistent({Gt}{_;. V)
1: Ext_Persistent({Gt}{_y, V) 2: llinput: Graphs{Gt = (Et, V)}{_;.
2: llinput: Graphs{Gt = (Et, V)}{_;. 3: /lOutput: A partition P = {Vj} of V.
3: //Output: A partition? = {Vj} of V. 4 |V }iK—l — Ext_Persistent({Gt}tT_l, V)
4: UseDFS to get the connected componeqts | 5. if K = 1, then -
of everyGt; 6 P ={V1};
5: SetPy =CypandPy = {} fort > 1; 7: dse
6: fort=2toT do 8 P =ULInt Persistent({Gt(Up)}_;. vk);|
7. for Every setA € P;_1 do 9: endif
8: Obtain a partitiorP” of A by intersecting| 10: return P:
A with every set irCt;
9: PlaceP’ into P;
10: end for
11: end for
12: return Py;

Figure 4. Algorithms for detecting persistent components.

2.3. Algorithms

SelectA to be the smallest time-interval during which it is expectiealt information
is passed amonall group members. Index the communication cycles (which are co

secutive time periods of duratioh) byt = 1,2, ..., T. Thus, the duration over which
data is collected i1 = A - T. The communication data is represented by a series of
communication graph&; fort = 1,2,..., T. The vertex set for each communication

graph is the se¥ of all actors.

The input to the algorithm is the collection of communicatgraphs{G;} with a
common set of actorg. The algorithm splitd/ into persistent components, i.e., compo-
nents that are connected in ev&y. The notion of connected could be either external or
internal, and so we develop two algorithrist Persistent andint_Persistent.

Each algorithm develops the partition in an iterative waye have only one com-
munication graplGs, then both the externally and internally persistent congpdsare
simply the connected components®f. Suppose now that we have one more graph,
G2. The key observation is that two verticésj are in the same external component if
and only if they are connected in boBy andGy, i.e., they are in the same component
in bothG1 andGa. Thus, the externally persistent components for the @airG, are
exactly the intersections of the connected componer@s iwith those inG». This argu-
ment clearly generalizes to more than two graphs, and refi¢ése fundamental property
that any subset of an externally connected set is also etlgoonnected. Unfortunately,
the same property does not hold for internal connectivigy,a subset of an internally
connected set is not guaranteed to be internally connedtagever, a minor modifica-
tion of the externally connected algorithm where one goe& bhad checks any sets that
get decomposed leads to the algorithm for detecting inligrparsistent components.
(Figure 4(b)). The formal details of the algorithms are giue[5].

2.3.1. Analysis

The correctness and computational complexity resultsetorithms given in Figure

4 are stated here. For full detail see [5]. We say that aAdsta maximalpersistent set
(internal or external) if it is persistent, and any otherspgent set that contains at least
one element ofA is a subset ofA. Clearly, any two maximal persistent sets must be
disjoint, which also follows from the following lemma.

Lemmal If A and B are non-disjoint externally (resp. internally)rpistent sets then
AU B is also externally (resp. internally) persistent.

Theorem 1 (Correctness of Ext_Persistent) AlgorithmExt_Persistent correctly par-
titions the vertex set V into maximal externally connectechgonents for the input
graphs{G}/_;.

Let E; denote the number of edges®, and letE denote the total number of edges
in the input,E = Zthl E:. The size of the inputis then given liy+ V - T.

Theorem 2 (Complexity of Ext_Persistent) The computational complexity of Algo-
rithm Ext_Persistent is in O(E 4+ V T) (linear in the input size).

Theorem 3 (Correctness of Int_Persistent) AlgorithmInt_Persistent correctly parti-
tions the vertex set V into maximal internally connectedpaments.

Theorem 4 (Complexity of Int_Persistent) The computational complexity of Algo-
rithm Int_Persistentis in O(V - E + V2. T).

2.3.2. Statistical Significance of Persistent Components

Leth be the size of the hidden group we wish to detect. Supposathfihd a persistent
component of size- h overT communication cycles. A natural question is to ask how
sure we can be that this is really a hidden group versus aspamsicomponent that
happened to arise by chance due to the random backgroundwuinations.

Let X(t) denote the size of the largest persistent component oveothenunication
cycles 1...,t that arises due to normal societal communicatiofg.) is a random
variable with some probability distribution, since the aommication graph of the society
follows a random process. Given a confidence threshkolde define the detection time
7 (h) as the time at which, with probability-le, the largest persistent component arising
by chance in the background is smaller ttmane.,

ze(h) = min{t PX(t) <h>1—e¢}. (1)

Then, if afterz. (h) cycles we observe a persistent component of site we can claim,
with a confidence % ¢, that this did not arise due to the normal functioning of the
society, and hence must contain a hidden grayfh) indicates how long we have to
wait in order to detect hidden groups of sizeAnother useful function i (t), which

is an upper bound foX (t), with high probability (1— ¢€), i.e,,

he(t) = min(h PX(t) <h>1—¢).)

If, after a given timet, we observe a persistent component with sizé, (t), then
with confidence at least4 ¢, we can claim it to contain a hidden groum(t) indicates
what sizes hidden group we can detect with angycles of observation. The previous
approaches to detecting a hidden group assume that welkoofix a timet at which to
make a determination. By slightly modifying the definitiohiq (t), we can get an even
stronger hypothesis test for a hidden group. For any fiked0, define

He(t) = minth PX(t) <h > 1- e}, ©)

Then one can show that X(t) > Hc(t) at any time, we have a hidden group with
confidence - ¢.

Note that the computation af (h) andh,(t) constitute a pre-processing of the-
ciety’s communicatiodynamics. This can be done either from a model (such as the ran
dom graph models we have described) or from the true, obdea@munications over
some time period. More importantly, this can be done ofélifor a given realization of
the society dynamics, 1&t(h) = min{t X(t) < h}. Some useful heuristics that aid in
the computation of, (h) andh,(t) by simulation can be obtained by assuming thét)
and X (t) are approximately normally distributed, in which case,

Confidence levé! e () he (1)
50% ET(h) EX(D) @
8413% | ET(h)+ JVarT(h) | EX(t) + VVarxX@
97.72% |ET(h) + 2yVarT(M|EX(t) + 2J/VarX(t)

2.4. Random Graphs as Communication Models

Social and information communication networksj, the Internet and WWW, are usu-
ally modeled by graphs [33] [9] [10] [36], where the actorstioé networks (people,
IP-addresses, etc.) are represented by the vertices ofdpa,gand the connections be-
tween the actors are represented by the graph edges. Sirftave@oa priori knowl-
edge regarding who communicates with wham, how the edges are distributed, it is
appropriate to model the communications using a randomrhgiaghis paper, we study
hidden group detection in the context of two random graphet®fbr the communi-
cation network: uniform random graphs and random graphis @itbedded groups. In
describing these models, we will use standard graph theomyinology [40], and its ex-
tension tohypergraphg6]. In a hypergraph, the concept of an edge is generalized to
hyperedgavhich may join more than two vertices. In addition to these models, there
are other models of random networks, such as the small warttehand the preferential
attachment model [1]. However, in this work we limited ouperiments to the following
models, which are also illustrated in Figure 5.

Random Model A simple communication model is one where communicatioppka
at random uniformly among all pairs of actors. Such a comeation model can be
represented by the random graph model developed and esdBnstudied by Erds
and Rényi, [11,12,13,7]. In this model, the graph is gemerély a random process in
which an edge between every pair of vertices is generategpartiently with a given
probability p.

The probability space of graphs generated by such a randooesgs is denoted
G(n, p), or sometimes are called the Bernoulli Graphs. We will usgxfn, p) notation
throughout this paper.

Random Model Group Model

—_— o, :,'/\ \:
AN N
SN || CESRERE

Figure5. Two random graph models.

Group Model TheG(n, p) random graph model may not be a suitable model for large
communication networks. Actors tend to communicate motenofvith certain actors
and less frequently with others. In a more realistic modefors will belong to one
or more social groups where communication among group mesnigenore frequent
than communication among actors that do not belong to the gaoup. This leads us
to the hypergraph model of the communication network, incltthe actors associate
themselves into groups. In this paper, we assume that eacip ¢g static and contains
m actors. While this is a simplification, it serves to illuserall the essential ideas and
results without undue complication. A group of actors isrespnted by a hyperedge in
the graph, and an actor may belong to zero or more hyperetigeset of all hyperedges
represents the structure of the communication networlceSgmoups tend to be small,
it is appropriate to model the communications within a grag@G(m, pg), wherepg

is the probability within the group. We also allow communigca between two actors
that do not share a group in common; we denote such commiarisats external. The
probability of an external communicationpg; we further assume thak <« pg because
intra-group communications are much more likely than egn@p communications.

Connectivity of Random GraphsThe key idea of our algorithms is based on the fol-
lowing observation. For any subset of actors in a random hoetevork, it is very un-
likely that this subset is connected during a “long” consizeuperiod of time cycles,
while a hidden group must stay connected (for its operatiassong as it functions as a
group. Thus, we summarize here some results from randonh ¢gin@pry regarding how
the connectivity of &(n, p) depends om andp, [11,12,13,7]. These results are mostly
asymptotic in nature (with respect), however, we use them as a guide that remains
accurate even for moderately sized

Given a graphG = {V, E}, a subsetS C V of the vertices is connected if there
exists a path irG between every pair of vertices i G can be partitioned into disjoint
connected componensgsich that every pair of vertices from the same connected com-
ponent is connected and every pair of vertices in differenhected components is not
connected. The size of a component is the number of its esttibe size of the largest
connected component is denotedlbiG).

The remarkable discovery by Kigl and Rényi, usually termethe Double Jump
deals with the size of the largest component, and essgnstdtes that (G) goes
through two phase transitions asincreases beyond a critical threshold value. All the
results hold asymptotically, with high probability., with probability tending to 1 when
n— oo:

p=2¢ p="104 X x>0

O(nn) 0O<c<1 (5
L(G(n, p) = {0(n¥3) c=1 L(G(n, p)) = n with prob.e~€
g)n c>1p0c <1

Note that wherx — oo, the graph is connected with probability 1. Since our apgnoa
is based on the tenet that a hidden group will display a hitgwet of connectivity than
the background communications, we will only be able to detee hidden group if the
background is not maximally connectea,., if L(G) # n. Thus we expect our ability
to detect the hidden group to undergo a phase transitiortigxalcen the background
connectivity undergoes a phase transition. pet constantop = dInn/nwithd > 1,
the graph is asymptotically connected which will make itthtardetect the hidden group.
However, whenp = constant, connectivity is exponentially more probablenttdnen

p = dInn/n, which will have implications on our algorithms.

2.5. Experiments and Results

In these tests, we simulate societies of sizes 1000 and 2000. The results for both the
random background communication model and the group baakgrcommunication
model are presented in parallel. For each model, multipie 8eries of graphs are gener-
ated for communication cycldés= 1,2, ..., T, whereT = 200. Experiments were run
on multiple time series (between five and thirty), and avedag order to obtain more
statistically reliable results. In order to estimatdt), we estimateE X(t) by taking the
sample average of the largest persistent component ovenaoioation cycles 1 . ., t.
Givenh, the time at which the plot of X(t) drops belowh indicates the time at which
we can identify a hidden group of sizeh.

We first describe the experiments with the random m@&iel, p). The presence of
persistently connected components depends on the coviteofithe communication
graphs over periods, 2, ..., T. When the societal communication graph is connected
for almost all cycles, we expect the society to generate ntame persistent compo-
nents. By the results of Eéd and Rényi described in Section 2.4, a phase transitiom fro
short-lived to long-lived persistent components will ocatip = 1/nandp = Inn/n.
Accordingly, we present the results of the simulations with= 1/n, p = cInn/n for
c=09,10,1.1,andp = 1/10 forn = 1000. The rate of decrease BiX(t) is shown
in Figure 6. Forp = 1/n, we expect exponential or super-exponential decaly X(t)
(Figure 6, thin dashed line). This is expected becdu&®) is at most a fraction af. An
abrupt phase transition occurspat= Inn/n (Figure 6 dot-dashed line). At this point the
detection time begins to become large. For congtetherep does not depend am in
this case 110), the graph is connected with probability tending to I &becomes es-
sentially impossible to detect a hidden group using our @ggt without any additional
information (Figure 6 thick dashed line). This will occur By choice of a constant as
becomes large. That is, for any constant 0, there is an integeX such that ifn > N
thenG(n, p) is connected with high probability, tending to 1.

The parameters of the experiments with the group model arasito that of the
G(n, p)-model. We pick the group siz@a to be equal to 20. Each group is selected in-
dependently and uniformly from the entire set of actors;ghmups may overlap; and
each actor may be a member of zero or more groups. If two menaverin the same

Largest Persistent Internally Connected Component, G(1000,p)

—p=1/n
—p=09Inn/n
—-p=10Inn/n
—p=11lnn/n
- p=0.1

Largest Component Size as Fraction of n

150 200

Largest Persistent Internally Connected Component, G(2000,p)

n
o
©

mponent Size as Fraction of

s034 T -
[}

—==p=1/n
I | —p=09inn/n

—-p=10Inn/n
%01 ! ! —p=1llnn/n
| | l=p=01

0 50 100 150 200

Figure 6. The largest internally persistent componeftX(t) for the G(n, p) model with

n = 100Q 2000. The five lines represem = 1/n, p = clnn/n forc = 0.9,1.0, 1.1, and

p = 1/10. Note the transition gt = Inn/n. This transition becomes more apparent at 2000.
When p is a constant (i.e. does not dependmrhere we used /110), the graph is almost always
connected. The results were averaged over a number of rhesstiarp jumps indicate where the
largest component quickly jumped from abow@®to zero in different runs.

group together, the probability that they communicaterua cycle ispg, otherwise
the probability equalpe. It is intuitive that pg is significantly bigger thampe, we picked
pe = 1/n, so each actor has about one external communication pectiote. The val-
ues ofpg that we use for the experiments are chosen to achieve arcaviaiage number
of communications per actor, thus the effect of a changedstiucture of the communi-
cation graph may be investigated while keeping the averagsity of communications
constant. The average number of communications per atterdggree of the actor in
the communication graph) is set to six in the experiments. fBisults do change quali-
tatively for different choices of average degree. The nunalbgroupsg is chosen from
{50, 100, 200}. These cases are compared to @, p) structure with an average of
six communications per actor. For the selected valuag ech actor is, on average, in
1, 2 and 4 groups, respectively. Wheiis 50, an actor is, on average, in approximately
one group, and the overlaps of groups are small. Howevemwhe 200, each actor,

Largest Persistent Internally Connected Component, degav =6

— Uniform G(n,p)

-+ 50 Groups Size 20
— - 100 Groups Size 20
= 200 Groups Size 20

Largest Component Size as Fraction of n

10 20 30 40 50 60 70 80 920 100

Time
Group Model Random Model
g (#ofgroups)|| 50 | 100] 200 G, 2
T@) || >100| 63 | 36 32

Figure 7. Times of hidden group discovery for various amounts of gretrpcture; each group is indepen-
dently generated at random and has 20 actors. In all cases,000,deg,, = 6, and the group sizen = 20.
Note how, as the number of groups becomes large, the betanids toward th& (n, p) case.

on average, is in about 4 groups, so there is a significant anodwverlap between the
groups. The goal of our experiments is to see the impagtaf finding hidden groups.
Note that agy increases, any given pair of actors tends to belong to at ézesgroup
together, so the communication graph tends towaedra pg) graph.

We give a detailed comparison between the society withstra¢group model) and
the one without (random model) in Figure 7. The table sh@wk), which is the time
after which the size of the largest internally persistembponent has dropped to 1. This
is the time at which any hidden group would be noticed, siheegroup would persist
beyond the time expected in our model.

We have also run similar experiments for detecting trustiraups. The results are
shown in Figure 2.5. As the table shows, for the correspandon-trusting communi-
cation model, the trusting group is much harder to detect.

3. Discovering Spatial Correlation
3.1. Literature Review

While an informal definition of the goal of clustering algtwins is straightforward, dif-
ficulty arises when formalizing this goal. There are two megiproaches to clustering:
partitioning and general clustering.

Largest Persistent Connected Component, deg, =2 Largest Persistent Connected Component, deg,, = 6

— Internally Connected

1 - - Externally Connected — Internally Connected

- Externally Connected

Largest Component Size as Fraction of n
Largest Component Size as Fraction of n

5 10 15 20 25 30 10 20 3 40 50 60 70 8 9 100
Time Time

degy, | T(2) for trusting groups| T (1) for non-trusting groupg
2 28 2
6 > 100 32

Figure 8. Times of hidden group discovery for non-trusting (intelpnabnnected) hidden groups and trusting
(externally connected) hidden groups. In all cases the camization graphs ar€(n, p) with n = 1000.

Partitioning, or hierarchical clustering, is the traditéd method of performing clus-
tering. In some circles, clustering and partitioning are@ymous. For example, Kan-
nan, Vempala, and Vetta define clustering as “partitionirig dissimilar groups of sim-
ilar items” [23]. However, the partitioning approach foseavery cluster to be either en-
tirely contained within or entirely disjoint from every @hcluster. Partitioning algo-
rithms are useful when the set of objects needs to be broken o disjoint categories.
These categories simplify the network and may be treatedrate entities. Partition-
ing is used in the fields of VLSI design, finite element methaasl transportation [24].

Many partitioning algorithms attempt to minimize the numbé connections be-
tween clusters, also called tleat sizeof the partition [27] [26] [21] [24] [25]. Thep-
separatometric attempts to balance the sizes of the clusters, whiterainimizing the
cut size [15]. Thébetweennessetric is used to find a small cut by removing edges that
are likely to split the network into components [17,19]. khd&@ion to trying to mini-
mize the cut size, some algorithms attempt to maximize tladitgjiof each cluster. Two
metrics used in partitioning which define cluster quality @xpansiorandconductance
[16,23]. A final metric relates to how well the members of thee cluster are related to
the values in eigenvectors of the adjacency matrix of thevowt[8].

Groups in social networks do not conform to this partitignapproach. For exam-
ple, in a social network, an individual may belong to numeargtoups €.g, occupa-
tional, religious, political, activity). A general clusteg algorithm may put the individ-
ual into all these clusters, while a partitioning algorititl only place the individual
into one cluster. Classifying an individual as belonging gngle cluster or social group
will often miss the full picture of the societal structures Apposed to partitioning, gen-
eral clustering allows individuals to belong to many groapsnce. General clustering
algorithms determine the zero, one or more groups that ectoh ldelongs to, without
enforcing a partition structure on the clusters. This camgtructure may more directly
correspond to real-world clusters. However, permittingrtapping groups is a more
complex problem, since each cluster may not be treated gmaade entity. See Figure 9
for a comparison of partitioning and general clustering.

Figure 9. A comparison of a partitioning (a) and a general clusterlgpf the same network.

When clustering a network, there needs to be a definition adtwbnstitutes a
“good” cluster. In some sense, members of a cluster need‘@dme” to each other, and
“far” from the other objects in the network. There are manysvep define the criterion
for a valid cluster.

The general clustering problem has been less widely stutied the partitioning
problem, however there are some algorithms that exist &adiering a general cluster-
ing of a network.

Some algorithms of this type are well suited for web netwd&&18,31]. These
algorithms all attempt to find clusters by optimizing a metgferred to abicliqueness
Though often used for partitioning, eigenvector correlatinay also be used to discover
overlapping clusters [38].ocal optimalityis a generic technique which can optimize
many of the previously mentioned metrics, even metricsiogity developed for parti-
tioning. These algorithms have been applied to social né®v®,3]. We present these
algorithms in more detail in the following sections.

3.2. Methodology

Let G = (V, E) be a graph whose nodes represent individuals, web pagesaett
whose edges represent communications, links, etc. Théngnay be directed or undi-
rected. We present the definitions for directed graphs, tigérected case being similar.
A graph cluster Cis a set of vertices which can be viewed as a binary vectorngjtke
|V | that indicates which nodes are member€ofhe set of all graph clusters, is the
power set oiV.

A weight functionor metricis a functionW C — R that assigns a weightto a graph
cluster. Associated to clust€r, we define three edge sets(C), the edges induced by
C; E(C, C), the edges irE from Cto its complementE(C, C), the edges irE to C
from its complement. LeEq,(C) = E(C, C) + E(C, C). We define thénternal and
external edge intensities

E(C) Eout(C)
craci-n 9= 3ern-on ©
(pex = 1 when|C| = |V|[). We will consider three weight functions: tirgernal edge-
probability Wp; theedge ratio W; and, theintensity ratio W,

E©) in(C)
- WWC= —M—M.
EC) + Eonr©) M=) + pex©)

pin(c) =

Wp(C) = pin(C), We(C) = @)

These metrics are measures of how intense the communiaatibim the cluster is, relative to
that outside the cluster; they can be efficiently updatedllgci.e. the metric may be updated
by knowing only the connectivity of the one node that is addecemoved (which improves the
efficiency of the algorithms). Aet-differencdunction d is a metric that measures the difference
between two cluster§4, C,. Two useful set-difference functions are themming or edit distance
Jh, and thepercentage non-overlafy:

|C1NCyl

9h(C1,Co) = (CLNC U (C1NCy)|, p(C,Co)=1— L 2
h(C1, C2) 1M C2) 1N C2) p(C1,C2) ICLUCy]

®)

Thee-neighborhoodbf a cIusterBf(C) is the set of clusters that are withirof C with respect to
J,i.e,BY(C) = {C'|6(C, C) < €. For weight functionW, we say that a cluste®* is e-locally
optimalif W(C*) > W(C) for all C e B(C*).

We are now ready to formally state our abstraction of the lprabof finding overlapping
communities in a communication network. The input is a gr@hthe communication graph,
along with the functiondV, 6 ande. The output is a set of cluste@@ C C such thatC € O iff
C is e-locally optimal. While our heuristic approaches are gaadapted to different weight and
set-difference functions, we will focus on the choit#s= We, d = d, ande = 1, referring to the
output clusters as locally optimal.

As stated, the problem NP-hard. In fact, the restriction & = J,, ande = |V| asks to find
all the globally optimal clusters according to an arbitrasight functionW, which is well known
to beNP-hard. Thus, we present heuristic, efficient (low-orderypomial time) algorithms that
output candidate (overlapping) clusters, and then ewalilngt quality of the output.

3.3. Algorithms

3.3.1. k-Neighborhood (k N)

k — N is a trivial algorithm that yields overlapping clusters.€eThlusters are simply thk-
neighborhoods of a randomly selected Setdf cluster centers. The inputs to this algorithm kre
and|S).

3.3.2. Rank RemovaR@Re)

Algorithm RaRe is based on the assumption that within a communication néfwbere is a
subset of “important” or high-ranking nodes, which do a gigant amount of communication.
RaRe attempts to identify these nodes and remove them from thghgia order to disconnect the
graph into smaller connected components. The removed s)oale added to a sS& This process

is repeated, until the sizes of the resulting connected comts are within a specified range.
These connected components can be considerecbtieef each cluster. Next, the vertices i
are considered for addition into one or more of these cofesvértex fromR is added to more
than one cluster, then these clusters now overlap. NotegVewthat the cores of each cluster are
disjoint, and only communicate with each other throughigestinR.

“Important” or high-ranking nodes are determined by a ragkiunction¢. These are the
nodes which are removed at each iteration. We wish to remadesithat will result in disconnect-
ing the graph as much as possible. One choice is to removeagrtith high degree, correspond-
ing to the choicepy(v) = deg(w). Another approach that we have found to be experimentally
better is to rank nodes according to their Page R¥hkp () [34]. The Page RarlR!of a node
is defined implicitly as the solution to the following equatj

¢p(u) (1-0
dpv) =c¢ + 9)
P ;; deg(v) n

Table 1. User specified inputs for AlgorithrRaRe.

Input Description
W Weight function.
1] Ranking function.

min, max | Minimum and maximum core sizes.

t Number of high-ranking vertices to remove.

wheren is the number of nodes in the gragheg (v) is the out degree of vertex andc is a
decay factor between 0 and 1. An iterative algorithm to campy (v) for all the nodes converges
rapidly to the correct value.

Once we have obtained the cores, we must add the vertidedack into the cores to build
up the clusters. Intuitively, a vertexe R should be part of any cluster to which it is immediately
adjacent, as it would have been part of the core if it were @wioved at some step. Also, if we do
not take this approach, we run the riskvohot being added to any cluster, which seems counter-
intuitive, asv was deemed “important” by the fact that it was at one time dddeR. This is
therefore the approach which we take. We also add vertic&tmany cluster for which doing
so increases the metriv. The algorithm is summarized in Figure 10, and all the usecifipd
inputs are summarized in Table 1.

It is important to note that the initial procedure of remayivertices, though not explicitly
attempting to optimize any single metric, does produce sdmaeintuitive clusters. The cores that
result are mutually disjoint and non-adjacent. Considermected componefit at iteration . If C
has more vertices than our maximum desired coreraiag we remove a seR; of vertices, where
|R;| = t. If the removal ofR; results in disconnectin@ into two or more connected components
C1, Cy...Ck, we have decreased the diameteCaf Co...Cy with respect taC, resulting in more
compact connected components. If the removaRofloes not disconnect the graph, we simply
repeat the procedure on the remaining graph until it eiteeoimes disconnected or its size is less
thanmax

As an added performance boost, the ranks may be computéallynibut not recomputed
after each iteration. The idea is that if the &iis being removed, the rank of a vertexn G will
be close to the rank of in G — R'.

3.3.3. The Link Aggregate AlgorithrhX)

ThelS algorithm performs well at discovering communities givegoad initial guess, for example
when its initial “guesses” are the outputs of another chisgealgorithm such aRaRe as opposed
to random edges in the communication network. We discussferetit, efficient initialization
algorithm here.

RaRe begins by ranking all nodes according to some criterionh assPage Radk![34].
Highly ranked nodes are then removed in groups until smalheoted components are formed
(called the cluster cores). These cores are then expandedding each removed node to any
cluster whose density is improved by adding it.

While this approach was successful in discovering clusiessmain disadvantage was its
inefficiency. This was due in part to the fact that the ranks$ @mnected components need to be
recomputed each time a portion of the nodes are removed.Urttiene of RaRe is significantly
improved when the ranks are computed only once. For the reteaof this papeiRaRe refers to
the Rank Removal algorithm with this improvement, unle$entise stated.

Since the clusters are to be refined I8y the seed algorithm needs only to find approxi-
mate clusters. ThES algorithm will “clean up” the clusters. With this in mind,eémew seed al-
gorithm Link Aggregatd A focuses on efficiency, while still capturing good initialisters. The
pseudocode is given in Figure 10. The nodes are ordereddiegdo some criterion, for example

decreasing Page RaH%, and then processed sequentially according to this omlefimode is
added to any cluster if adding it improves the cluster dgni§ithe node is not added to any cluster,
it creates a new cluster. Note, every node is in at least arsterl Clusters that are too small to be
relevant to the particular application can now be droppér flintime may be bounded in terms
of the number of output cluste as follows

Theorem 5 The runtime of A is O(|C||E| + |V]).

Proof: Let C; be the set of clusters just before ttik iteration of the loop. The time it takes for
theith iteration isO(|Cj|ded(j)), wheredeg(v;) is the number of edges adjacentuo Each
edge adjacent to; must be put into two classes for every clusteCin either the other endpoint
of the edge is in the cluster or outside it. With this inforioaf the density of the cluster with
added may be computed quickl (1)) and compared to the current densityddg(v;) = 0O, the
iteration takeD (1) time. Therefore the total runtime is asymptotically on theeo of

VI VI
Y. [Cildegu)+ > 1< [Cildegwi)+ D 1 (10)
deg(vi)>0 deg(vi)=0 i=1 i=1
VI
< > ICIdegwi) + V| = 2ICI[E| + V| = O(CIIE| + V). (11)
i=1

Q.ED

3.3.4. lterative Scan§)

Algorithm IS explicitly constructs a clusters that is a local maximumtwa density metric by
starting at a “seed” candidate cluster and updating it byraddr deleting one vertex at a time
as long as the metric strictly improves. The algorithm stappen no further improvement can
be obtained with a single change. This algorithm is givensaygo-code format in Figure 10.
Different local maxima can be obtained by restarting thestlgm at a different seed, or changing
the order in which vertices are examined for cluster updatirhe algorithm terminates if the
addition toC or deletion fromC of a single vertex does not increase the weight. During the
course of the algorithm, the clusté€rfollows some sequenc€s, Co, ..., with the property that
W(Cy) < W(C»y) < ---, where all the inequalities are strict. Since the numbelosEjble clusters
is finite, the algorithm must terminate when startedamy seed, and the cluster output will a
locally optimal cluster.

The cluster size may be enforced heuristically by incortyagathis criterion into the weight
function. This is done by adding a penalty for clusters witle ®utside the desired range. Such an
approach will not impose hard boundaries on the cluster Hilge desired range i€min, Cmax
then a simple penalty functioRen(C), that linearly penalizes deviations from this range is

Cmin — IC|
Cmin—1 '

1CI = Cmax
V] = Cmax

Pen(C) = maxj0, h - ho (12)
whereCnin, Cmax h1, ho are user specified parameters. All the user specified inpaisueanma-
rized in Table 2.

We emphasize that algoritht8 can be used to improve any seed cluster to a locally optimal
one. Instead of building clusters from random edges as tirgfqooint, we can refine clusters, that
are output by some other algorithm — these input clustersinhig good “starting points”, but they
may not be locally optimalS then refines them to a set of locally optimal clusters.

The original process folS consisted of iterating through the entire list of nodes caed
over until the cluster density cannot be improved. In ordedécrease the runtime ¢8, we

Table 2. User specified inputs to Algorithis.

Parameter Description

W Weight function.

0 Set-difference functiond(= Jy, in our implementation).

€ Size of set neighborhood & 1 in our implementation).
max_fail Number of unsuccessful restarts to satisfy stopping cimmdit
Cmin. Cmax | Desired range for cluster size.

hq, hy Penalty for a cluster of size 1 afd|.

Table 3. Algorithm performance on real-world graphs. The first eniryeach cell is the average value of
Wag. The two entries in parentheses are the average number siéidufound and the average number of
nodes per cluster. The fourth entry is the runtime of therétlym in seconds. The e-mail graph represents e-
mails among the RPI community on a single day (16,355 nodé&g) web graph is a network representing the
domainwww.cs.rpi.edu/~magdon (701 nodes). In the newsgroup graph, edges represent sesptinposts
on thealt.conspiracy newsgroup (4,526 nodes). The Fortune 500 graph is the netemnecting companies
to members of their board of directors (4,262 nodes).

Algorithm E-mail Web
RaRe — IS | 1.96 (234,9); 148| 6.10(5,8);0.14
LA - IS2 | 2.94(19,25); 305| 5.41(6,19); 0.24
Algorithm Newsgroup Fortune 500
RaRe — IS | 12.39 (5,33); 213| 2.30 (104,23); 4.8
LA — IS2 17.94 (6,40); 28 | 2.37 (288,27); 4.4

make the following observation. The only nodes capable @&asing the cluster’s density are the
members of the cluster itself (which could be removed) or e of the cluster's immediate

neighborhood, defined by those nodes connected to a nodke itie cluster. Thus, rather than
visiting each node on every iteration, we may skip over adleswexcept for those belonging to one
of these two groups. If the neighborhood of a cluster is muchller than the entire graph, this

could significantly improve the runtime of the algorithm.

This algorithm provides both a potential decrease and &seé runtime. A decrease occurs
when the cluster and its neighborhood are small comparde tatmber of nodes in the graph. This
is the likely case in a sparse graph. In this case, buildiagi#tighborhood sét takes a relatively
short time compared to the time savings of skipping nodesideithe neighborhood. An increase
in runtime may occur when the cluster neighborhood is largge, finding the neighborhood is
expensive, plus the time savings could be small since fewsack absent frold. A large cluster
in a dense graph could have this property. In this case,rmgaal nodes irN is preferable.

Taking into account the density of the graph, we may constdua either of the two methods
described here, in order to maximize efficiency in all casfethe graph is dense, all nodes are
placed inN, but if the graph is sparse, the algorithm computess the neighborhood of the
cluster.

In the experiments that follow, the behavior I& for sparse graphs is denoté&sl, and the
behavior for dense graphs is denot&d.

3.4. Experiments and Results

A series of experiments were run in order to compare bothuhtme and performance of the new
algorithm with its predecessor. In all cases, a seed algontas run to obtain initial clusters, then
a refinement algorithm was run to obtain the final clusterg Baseline was the seed algorithm

procedure RaRe(G, W)
global R « ¢;
{H;} are connected components@)
for all H; do
ClusterComponent(H;);
end for
Initial clusters{C;} are cluster cores;
for all v € Rdo
for all ClustersC; do
Add v to clusterC; if v is adjacent toC; or
W UCj) > W(Cj);
end for
end for

procedure ClusterComponent(H)

if [V(H)| > maxthen
{vj } aret highest rank nodes iHl;
R« RU{vj}; H < H\ {vj};
{F;} are connected componentshh
for all Fj do

ClusterComponent(F;);

end for

elseif min < |V(H)| < maxthen
mark H as a cluster core;

end if

procedure LA(G, W)
C « @
Order the verticesq, vy, ..
fori =1to|V|do
added « false;
for al Dj € Cdo
if W(Dj Uvj) > W(Dj) then
Dj < Dj Uoj; added « true;
end if
end for
if added= false then
C e« CuU{{nilh
end if
end for
return C;

SOV

procedurelS(seed,G, W)
C « seed; w « W(C);
increased <« true;
whileincreased do
if G is densdhen
N « All nodes adjacent t€;
ese
N « All nodes inG;
end if
for all v € N do
if o € Cthen
C' « C\ {v};
else
C' «CuU{v};
end if
if W(C’) > W(C) then
C«C;
end if
end for
if W(C) = w then
increased « false;
ese
w «— W(C);,
end if
end while
return C;

Figure 10. Algorithms Rank RemovalRaRe), Link Aggregate [LA), and Iterative Scan$).

RaRe followed by IS. The proposed improvement consists of the seed algoritAnfollowed
by IS2. The algorithms were first run on a series of random graphis avierage degrees 5, 10,
and 15, where the number of nodes range from 1,000 to 45,0Q0id simple model, all pairs of
communication are equally likely.

All the algorithms take as input a density metvié, and attempt to optimize that metric. In
these experiments, the density metric was choseW.ag called theaverage degreewhich is

Runtime (s) (5 Edges Per Node) Runtime (s) (5 Edges Per Node)

500p 8001
o ¢ Original RaRe o IS
O RaRe 700} x 182
400t © X LA o
600 (]
o
o
300" o 5001 OOOO
o 400 o
o
L o
200 o 300 oOOO
(0¢] XXX
100 o o® 200 oo” oo
t e x
o QQW o xX
o QR 100f 0007 xxx
o QR xx X %%
0 0.5 1 15 2 25 3 35 4 4.5 0 0.5 1 15 2 25 3 35 4 4.5
Number of Nodes x 10 Number of Nodes x 10°
Runtime (s) (10 Edges Per Node) Runtime (s) (10 Edges Per Node)
10007 600r
x LA
5001
800 ©
[eXe)
o0 400
L O o
600) o) x
[eo8] 00 O Xx x
3001 0% x x* x
o % R O Xy
400F O O XXX X R Rx x
OO 200} ><><><>< go X
O, o
00~0 X X o)
200} > X ooP
o200 wxx 100f x oo
= xxXXX x* o
000 Xxxxxxxxxx x o
o Qirsoopocoocooc 0T T lgon® e
0 0.5 1 15 2 25 3 3.5 4 4.5 0 0.5 1 15 2 25 3 3.5 4 4.5
Number of Nodes x10° Number of Nodes x 10
Runtime (s) (15 Edges Per Node) Runtime (s) (15 Edges Per Node)
15001 25001
O RaRe o Is
x LA WX 1s?
O L X
2000 X x
oO X x
x
1000f o oo 1500 Lox
[e) I X xX
o "o xx
o x
oo xX
0 1000 *x (eXe}
5001 0o° x o
o xx 00
[ee) XX 00000
o0 5001 x o0
0% xx e 00
00> xxXXXxXxXXxXxX O 000
o N sl . . , o 50000 : . . .
0 0.5 1 15 2 25 3 35 4 45 0 0.5 1 15 2 25 3 35 4 45
Number of Nodes x10° Number of Nodes x10*

Figure 11. Runtime of the previous algorithm procedur&aRe andlS) compared to the current procedures
(LA andISZ) with increasing edge density. On the left is a comparisothefinitialization procedureRaRe
and LA, whereLA improves as the edge density increases. On the right is aarsop of the refinement
proceduredS and IS2. As expectedJS2 results in a decreased runtime for sparse graphs, but i&fiteen
decrease as the number of edges becomes large.

defined for a set of nodes as

2[E(C)]

Waq(C) = ICI 5

(13)
whereE (C) is the set of edges with both endpointgdn

The runtime for the algorithms is presented in Figure 11. Tb& algorithm remains
quadratic, but both the seed algorithm and the refinemeatitiigh run-times are improved signif-
icantly for sparse graphs. In the upper left plot in Figureth# original version oRaRe is also
plotted, which recalculates the node ranks a number of timetead of precomputing the ranks
a single timeLA is 35 times faster than the originRaRe algorithm andS? is about twice as
fast aslS for graphs with five edges per node. The plots on the right dstnate the tradeoff in

Runtime Per Cluster (s) (5 Edges Per Node) Runtime Per Cluster (s) (5 Edges Per Node)

0.1r 0.8

HEd,
x LA 0.7 x IS
o l¢5 <
0.08F 0.0 o 0P ol
90 © -
0.06f S 05 ©
: OOOOOOOO OOoOo
. o 0.4f eel
0.04 © . 03f P
[e'e} X XXX)
00 X 02k OOooooo
0.02f00 Pt OOOoOO
xxxX 0.11 o0
XXX - ole} XXX XRXXHXX
et N PO - L s
0 05 1 1 2 25 3 35 4 45 0 05 1 15 2 25 3 35 4 45
Number of Nodes x 10 Number of Nodes x10°

Figure 12. Runtime per cluster of the previous algorithRaRe followed by|S) and the current algorithms
(LA followed byISZ). These plots show the algorithms are linear for each aidstend.

Mean Density (5 Edges Per Node) Mean Density (10 Edges Per Node)
2.5 4
O RaRe - IS O RaRe - IS
x LA - Is? 350 x LA - 1Is?
21 TKXXRXXKR 3l °
OoO
[x ©000q
15 25 00000000
Jl ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><
1r 15
1k
0.5r
0.5r

G(J 05 1 15 2 25 3 35 4 4.5 O0 0.5 1 15 2 25 3 35 4 4.5
Number of Nodes X 10* Number of Nodes x 10°

Figure 13. Performance (average density) of the algorithm comparéuktprevious algorithm.

IS2 between the time spent computing the cluster neighborhnddre time saved by not needing
to examine every node. It appears that the tradeoff is bathat about 10 edges per node. For
graphs that are more dense, the origiisaalgorithm runs faster, but for less dense grapﬁ%,is
preferable.

Figure 12 shows that the quadratic nature of the algorithpased on the number of clusters
found. When the runtime per cluster found is plotted, theltew curves are linear.

Runtime is not the only consideration when examining thig algorithm. It is also important
that the quality of the clustering is not hindered by thesginie improvements. Figure 13 com-
pares the average density of the clusters found for bothlthera improved algorithms. A higher
average density indicates a clustering of higher qualispe€ially for sparse graphs, the average
density is approximately equal in the old and new algorithatthough the older algorithms do
show a slightly higher quality in these random graph cases.

Another graph model more relevant to communication neta/iwkhe preferential attachment
model. This model simulates a network growing in a natural.\.Weodes are added one at a time,
linking to other nodes in proportion to the degree of the sodéerefore, popular nodes get more
attention (edges), which is a common phenomenon on the Wemaother real world networks.
The resulting graph has many edges concentrated on a fevs.nbde algorithms were run on
graphs using this model with five links per node, and the numb&odes ranging from 2,000
to 16,000. Figure 14 demonstrates a surprising change ialgfogithm RaRe when run on this
type of graphRaRe removes high-ranking nodes, which correspond to the fevesi@dth very

Mean Density (5 Edges Per Node)

x 10" Runtime (s) (5 Edges Per Node) @ ® ® ® ® = 5 »
© RaRe - IS O RaRe 2IS

35k X LA - 152 . x LA - IS

3k
2.5¢ s

2r o

L 4r
1.5 °

1k

2l
o

0.5 °

e 9 L . L . . g ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 2000 4000 6000 8000 10000 12000 14000 16000 O 2000 4000 6000 8000 10000 12000 14000 16000

Number of Nodes Number of Nodes

Figure 14. Runtime and performance of the previous algoritiitaRe followed byIS) and the current algo-
rithm (LA followed by1S2) for preferential attachment graphs.

Runtime (s) (5 Edges Per Node) Mean Density (5 Edges Per Node)
2501
o

O LA with PageRank 2F M S o o o e} o o o
x LA with Random Order | x x x x x x x
150 O LA with PageRank
x x LA with Random Order

2001

1501

x 1t
1001
x o
x o
0.5
501 o
x o °
x
0 o 5 9 ¢ , 0 , ,
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of Nodes Number of Nodes

Figure 15. Runtime and performance bfA with two different ordering types.

large degree. When these nodes are added back into club&rsend to be adjacent to most all
clusters, and it takes a considerable amount of time tat@ehaough all edges to determine which
connect to a given cluster. The algorittuA, on the other hand, starts by considering high-ranking
nodes before many clusters have formed, saving a large @mbtime. The plot on the right of
Figure 14 shows that the quality of the clusters are not comfmed by using the significantly
faster new algorithnL A — 1S2.

Figure 15 confirms that constructing the clusters in orderaofanking such as Page
Rank Myields better results than a random ordering.performs better in terms of both runtime
and quality. This is a surprising result since the randoneidng is obtained much more quickly
than the ranking process. However, the first nodes in a raratdering are not likely to be well
connected. This will cause many single-node clusters tobyedd in the early stages bA. When
high degree nodes are examined, there are many clustergc¢k whnether adding the node will
increase the cluster density. This is time consuming. Ifibes are ranked, the high degree nodes
will be examined first, when few clusters have been creathesd few clusters are likely to attract
many nodes without starting a number of new clusters, liesuih the algorithm completing more
quickly.

The algorithms were also tested on real-world data. Thdtseate shown in Table 3. For all
cases other than the web graph, the new algorithm producledtering of higher quality.

4, Conclusion

In this article, we described methods for discovering hidgeups based only on communication
data, without the use of communication contents. The algos rely on the fact that such groups
display correlations in their communication patterns (teral or spatial). We refer to such groups
as hidden because they have not declared themselves asbestity. Because our algorithms
detect hidden groups without analyzing the contents of teesages, they can be viewed as an
additional, separate toolkit, different from approactiest ire based on interpreting the meaning
of the messages. Our algorithms extract structure in thenoamitation network formed by the
log of messages; the output groups can further be studiedir detail by an analyst who might
take into account the particular form and content of eachnsomnication, to get a better overall
result. The main advantage is that our algorithms greatlyce the search space of groups that the
analyst will have to look at.

The spatial and temporal correlation algorithms targdedght types of hidden groups. The
temporal hidden group algorithms identify those groupscWitiommunicate periodically and are
engaged in planning an activity. Our algorithms have beewstto be effective at correctly iden-
tifying hidden groups artificially embedded into the baakgrd of random communications. Ex-
periments show that as the background communications ecooone dense, it takes longer to
discover the hidden group. A phase transition occurs if @ekground gets too dense, and the
hidden group becomes impossible to discover. However,eBitlien group becomes more struc-
tured, the group is easier to detect. In particular, if a iddroup is secretive (non-trusting), and
communicates key information only among its members, thergtoup is actually more readily
detectable.

Our approach to the discovery of spatial correlation in camitations data is based on the
observation that social groups often overlap. This fadswlut the traditional techniques of parti-
tioning and calls for novel procedures for clustering axiato overlapping groups. The families
of clustering algorithms described here are able to discavéde variety of group types based on
the clustering metric provided. The algorithms have be@wsito be both efficient and accurate
at discovering clusters and retaining meaningful overkefwben clusters.

Acknowledgments

The research presented here was partially supported by N®Es®324947 and 0346341.

References

[1] R. Albertand A. Barabasi. Statistical mechanics of clermetworks.Reviews of Modern Physic#4,
2002.

[2] J.Baumes, M. Goldberg, M. Krishnamoorthy, M. Magdomésl, and N. Preston. Finding comminities
by clustering a graph into overlapping subgraptoceedings of IADIS Applied Computingages
97-104, 2005.

[3] J. Baumes, M. Goldberg, and M. Magdon-Ismail. Efficiesfentification of overlapping communities.
Intelligence and Security Informatics (ISpages 27-36, 2005.

[4] J.Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallabéscovering hidden groups in communi-
cation networkslIntelligence and Security Informatics (ISpages 378-389, 2004.

[5] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallac@n hidden groups in communication
networks. Technical report, TR 05-15, Computer Scienceaisgent, Rensselaer Polytechnic Institute,
2005.

[6] C. Berge.Hypergraphs North-Holland, New York, 1978.

[7] Béla Bollobas.Random Graphs, Second EditioBambridge University Press, new york edition, 2001.

[8] A. Capocci, V. D. P. Servedio, G. Caldarelli, and F. Cotai Detecting communities in large networks.
Workshop on Algorithms and Models for the Web-Graph (WAWgfes 181-188, 2004.

9]
(10]
(11]
(12]
(13]

(14]
[15]

(16]

(17]
(18]

[19]

[20]

(21]
(22]
(23]
(24]
(25]
(26]
(27]
(28]
[29]
(30]
(31]

(32]
(33]

(34]
(35]
(36]

(37]

K. Carley and M. Prietula, editor€Computational Organization Thear{zawrence Erlbaum associates,
Hillsdale, NJ, 2001.

K. Carley and A. Wallace. Computational organizatitvedry: A new perspective. In S. Gass and
C. Harris, editorsEncyclopedia of Operations Research and Management Scikhover Academic
Publishers, Norwell, MA, 2001.

P. Erdbs and A. Rényi. On random grapHhaubl. Math. Debrecer6:290-297, 1959.

P. Erdbs and A. Rényi. On the evolution of random grapktaguar Tud. Acad. Mat. Kutato Int. Kozeél
5:17-61, 1960.

P. Erdds and A. Rényi. On the strength of connectedness of a randapih.gActa Math. Acad. Sci.
Hungar, 12:261-267, 1961.

Bonnie H. Erickson. Secret societies and social stmeciSocial Forces60:188-211, 1981.

G. Even, J. Naor, S. Rao, and B. Schieber. Fast appragigyaph partitioning algorithmsSiam J.
Computing 28(6):2187—2214, 1999.

G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Ciesng methods basen on minimum-cut trees.
Technical Report 2002-06, NEC, Princeton, NJ, 2002.

L. Freeman. A set of measures of centrality based ondmtwessSociometry40:35-41, 1977.

D. Gibson, J. Kleinberg, and P. Raghavan. Inferring wetmmunities from link topologyProceedings
of the 9th ACM Conference on Hypertext and Hypermeti®8.

M. Girvan and M. E. J. Newman. Community structure iniaband biological networksProc. Natl.
Acad. Sci.99:7821-7826, 2002.

Mark Goldberg, Paul Horn, Malik Magdon-Ismail, JesBi®moso, David Siebecker, William Wallace,
and Bulent Yener. Statistical modeling of social groups @mmunication networks. Ifist Conf. of the
N. Amer. Assoc. for Comp. Social and Organizational Sci€NeeACSOS)PA, June 2003. (electronic
proceedings).

Bruce Hendrickson and Robert W. Leland. A multi-levigaithm for partitioning graphs. liSuper-
computing 1995.

Svante Janson, Tomasz Luczak, and Andrzej Rucifidom GraphsSeries in Discrete Mathematics
and Optimization. Wiley, New york, 2000.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: @;d@md, and spectralournal of the ACM
51(3):497-515, 2004.

G. Karypis and V. Kumar. A fast and high quality multiwscheme for partitioning irregular graphs.
20(1), 1998.

G. Karypis and V. Kumar. Multilevel k-way partitionirgcheme for irregular graph3ournal of Parallel
and Distributed Computing48(1), 1998.

B. W. Kernighan and S. Lin. An efficient heuristic procee for partitioning graphsThe Bell System
Technical Journal49(2):291-307, 1970.

A. Kheyfits. Introduction to clustering algorithms: étarchical clusteringDIMACS Educational Mod-
ule Series03-1, March 17, 2003.

J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopateng A. S. Tomkins. The Web as a graph:
measurements, models, and methddscture Notes in Computer Sciend$27, 1999.

Valdis E. Krebs. Uncloaking terrorist networkSirst Monday 7 number 4, 2002.

Malik Magdon-Ismail, Mark Goldberg, William Wallaceand David Siebecker. Locating hidden groups
in communication networks using Hidden Markov Models.Irih Conf. on Intelligence and Security
Informatics (ISI) pages 126-137, Tucson, AZ, June 2003.

N. Mishra, D. Ron, and R. Swaminathan. Large clustera/@lh pages.Workshop on Algorithms and
Models for the Web Graph (WAWD002.

P. Monge and N. Contractol.heories of Communication Network@xford University Press, 2002.

M. E. J. Newman. The structure and function of complefmoeks. SIAM Reviews45(2):167-256,
June 2003.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagkreitation ranking: Bringing order to the
web. Stanford Digital Libraries Working Papef998.

David Ronfeldt and John Arquilla. Networks, netwaradéghe fight for the future.First Monday 6
number 10, 2001.

Ashish Sanil, David Banks, and Kathleen Carley. Modelsevolving fixed node networks: Model
fitting and model testingJournal oF Mathematical Sociolog21(1-2):173-196, 1996.

David Siebecker. A Hidden Markov Model for describirg tstatistical evolution of social groups over

communication networks. Master’s thesis, Rensselaet&aipic Institute, Troy, NY 12180, July 2003.
Advisor: Malik Magdon-Ismail.

[38] D. B. Skillicorn. Social network analysis via matrix@empositions: al Qaeda.

[39] Thomas A. Stewart. Six degrees of Mohamed ARasiness 2.@ issue 10:63, 2001.

[40] Douglas B. Westlntroduction to Graph TheoryPrentice Hall, Upper Saddle River, NJ, U.S.A., 2001.

