
Discovering Hidden Groups in
Communication Networks1

Jeff BAUMESa, Mark K. GOLDBERG a,2, Malik MAGDON-ISMAIL a,
William A. WALLACE b

aCS Department, Rensselaer Polytechnic Institute, Troy, NY12180.
b DSES Department, Rensselaer Polytechnic Institute, Troy,NY 12180.

Abstract. This chapter presents statistical and algorithmic approaches to discov-
ering groups of actors that hide their communications within the myriad of back-
ground communications in a large communication network. Our approach to dis-
covering hidden groups is based on the observation that a pattern of communica-
tions exhibited by actors in a social group pursuing a commonobjective is different
from that of a randomly selected set of actors. We distinguish two types of hid-
den groups:temporal, which exhibits repeated communication patterns; andspatial
which exhibits correlations within a snapshot of communications aggregated over
some time interval. We present models and algorithms, together with experiments
showing the performance of our algorithms on simulated and real data inputs.

Keywords. statistical communication analysis, terrorist networks,graph clustering,
temporal correlation

1. Introduction

1.1. Motivation

Modern communication networks (telephone, email, Internet chatroom, etc.) facilitate
rapid information exchange among millions of users around the world. This vast com-
munication activity provides the ideal environment for groups to plan their activity unde-
tected: the related communications are embedded (hidden) within the myriad of random
background communications, making them difficult to discover. When a number of indi-
viduals in a network exchange communications related to a common goal, or a common
activity, they form a group; usually, the presence of the coherent communication activ-
ity imposes a certain structure of the communications on theset of actors, as a group.
A group of actors may communicate in a structured way while not being forthright in
exposing its existence and membership. This chapter develops statistical and algorithmic
approaches to discovering such hidden groups.

1This article is a reproduction of the article “Identification of Hidden Groups in Communications,” by J.
Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallace,Handbook in Information Systems, Volume 2, pp.
209 - 242; 2007,c© Elsevier B. V.

2Corresponding Author: Rensselaer Polytechnic Institute;110 8th street, Troy, N.Y., 12180; USA;
Email:goldberg@cs.rpi.edu.

Finding hidden groups on the Internet has become especiallyimportant since the
September 11, 2001 attacks. The tragic event underlines theneed for a tool (a software
system) which facilitates the discovery of hidden (malicious) groups during theirplan-
ning stage, before they move to implement their plans. A generic way of discovering
such groups is based on discoveringcorrelationsamong the communications of the ac-
tors of the communication network. Thecommunication graphof the network is defined
by the set of its actors, as the vertices of the graph, and the set of communications, as
the graph’s edges. Note that the content of the communications is not used in the defini-
tion of the graph. Although the content of the messages can beinformative and natural
language processing may be brought to bear in its analysis, such an analysis is generally
time consuming and intractable for large data-sets. The research presented in this chapter
makes use of only three properties of a message: its time, thename of the sender and the
name of the recipient of the message.

Our approach to discovering hidden groups is based on the observation that a pat-
tern of communications exhibited by actors in a social grouppursuing a common ob-
jective is different from that of a randomly selected set of actors. Thus, we focus on the
discovery of such groups of actors whose communications during the observation time
period exhibit statisticalcorrelations. We will differentiate betweenspatialandtemporal
correlations, which as we shall see, lead to two different notions of hidden groups.

1.2. Temporal Correlation

One possible instance of temporal correlation is an occurrence of arepeated communi-
cation pattern.Temporal correlation may emerge as a group of actors are planning some
future activity. This planning stage may last for a number oftime cycles, and, during
each of them, the members of the group need to exchange messages related to the future
activity. These message exchanges imply that, with high probability, the subgraph of the
communication graph formed by the vertices corresponding to the active members of
the group is connected. If thisconnectivityproperty of the subgraph is repeated during
a sufficiently long sequence of cycles, longer than isexpectedfor a randomly formed
subgraph of the same size, then one can discovers thishigher-than-averagetemporal
correlation, and hence identify the hidden group.

Thus, in order to detect hidden groups exhibiting temporal correlations, we exploit
the non-random nature of their communications as contrasted with the general back-
ground communications. We describe efficient algorithms, first appearing in [4,5], which,
under certain conditions on the density of the background communications, can effi-
ciently detect such hidden groups. We differentiate between two types of temporally cor-
related hidden groups:a trusting, or non-secretivehidden group, whose members are
willing to convey their messages to other hidden group members via actors that are not
hidden group members, using these non-hidden group membersas “messengers”; and, a
non-trusting, or secretivehidden group, where all the “sensitive” information that needs
to be conveyed among hidden group members uses only other hidden group members as
messengers.

Our results reveal those properties of the background network activity and hidden
group communication dynamics that make detection of the hidden group easy, as well as
those that make it difficult. We find that if the background communications are dense or
more structured, then the hidden group is harder to detect. Surprisingly, we also find that

when the hidden group is non-trusting (secretive), it is easier to detect than if it is trusting
(non-secretive). Thus, a hidden group which tries to prevent the content of its messages
from reaching third parties undermines its operations by becoming easier to detect!

1.3. Spatial Correlation

We use spatial correlation to refer to correlations in the communications of a single com-
munication graph, which represents a snapshot of the communications aggregated over
some time interval (in contrast to temporal correlation which refers correlation in the
communications over multiple communication graphs which represent successive snap-
shots of the communications). Spatial correlation of messages initiated by a group of
actors in a social network can be identified by ahigher-than-averagetotal communica-
tion levelwithin this group. This property does not rely on the content of the messages
and is adequately described by the communication graph: theedge densityof the corre-
sponding set of vertices of the graph is higher than that of the average set. To be able
to address a wide variety of applications, we consider a general notion of edge density,
which compares the intensity of communications between theactors within a particular
set and that between the set and the “outside world.” The edgedensity may be defined
in numerous ways depending on the desired characteristics of the discovered groups; our
algorithms for discovering groups of higher density (potential hidden groups) are generic
with respect to the definition of density. Furthermore, we find only groups which are
more dense than any group sufficiently close, which reflects the principle of locality in a
social network.

For our numerical experiments, we use two main ideas in defining density: one is
the proportion of the number of actual communications to thetotal number of possible
communications; and the other is the ratio of the number of communications within the
group to the total number of group communications, including messages to individuals
outside the group.

In graph-theoretical terminology, the problem we study isclustering. An important
implication of our approach is that our algorithms construct clusters that may overlap,
i.e., some actors may be assigned to more than one group. While there is much literature
in the area of graph clustering, up until very recent work it has mainly focused on a spe-
cific sub-case of the problem: graph-partitioning. As opposed to partitioning algorithms,
which decompose the network intodisjoint groups of actors, general clustering allows
groups to extend to their natural boundaries by allowing overlap. We discuss prior work
in the area ofpartitioning, and present three generalclusteringheuristics, originally de-
scribed in [2,3]. We refer to these procedures by the names Iterative Scan (IS), Rank
Removal (RaRe) and Link Aggregate (LA). We present experimental data that illustrate
the efficiency, flexibility, and accuracy of these heuristics.

Searching for both spatial and temporal correlation may be combined to produce a
more effective algorithm for the identification of hidden groups. The temporal algorithms
may indicate that a large group of individuals are involved in planning some activity. The
spatially-correlated algorithm may then be used to clusterthis large group into overlap-
ping subgroups, which would correspond to smaller working groups within the larger
group.

We present results from the testing of our spatial-hidden group algorithms on a num-
ber of real-world graphs, such as newsgroups and email. We analyze the quality of the

groups produced by the clustering algorithms. We also test the algorithms on random
graph models in order to determine trends in both runtime andaccuracy. One of the
interesting experimental discoveries that different implementations of the Iterative Scan
algorithm are optimized for different domains of application based on the sparseness
(density) of the communication network.

2. Discovering Temporal Correlation

2.1. Literature Review

Identifying temporally correlated hidden groups was initiated in [30] using Hidden
Markov models. Here, our underlying methodology is based upon the theory of random
graphs [7,22]. We also incorporate some of the prevailing social science theories, such as
homophily [32], by incorporating group structure into our model. A more comprehensive
model of societal evolution can be found in [20,37]. Other simulation work in the field
of computational analysis of social and organizational systems [9,10,36] primarily deals
with dynamic models for social network infrastructure, rather than the dynamics of the
actual communication behavior, which is the focus of this chapter.

One of the first works analyzing hidden groups is found in [14]. Here, the author
studies a number of secret societies, such as a resistance that was formed among prisoners
at Auschwitz during the Second World War. The focus, as it is in this paper, was on the
structure of such societies, and not on the content of communications. An understanding
of a hidden network comes through determining its general pattern and not the details of
its specific ties.

The September 11, 2001 terrorist plot spurred much researchin the area of discov-
ering hidden groups. Specifically, the research was aimed atunderstanding the terrorist
cells that organized the hijacking. Work has been done to recreate the structure of that
network and to analyze it to provide insights on general properties that terrorist groups
have. Analyzing their communication structure provides evidence that Mohammed Atta
was central to the planning, but that a large percent of the individuals would have needed
to be removed in order to render the network inoperable [39].In “Uncloaking Terror-
ist Networks” [29], Krebs uses social network measures suchas betweenness to iden-
tify which individuals were most central to the planning andcoordination of the attacks.
Krebs has also observed that the network that planned September 11 attempted to hide
by making their communications sparse. While these articles provide interesting infor-
mation on the history of a hidden group, our research uses properties of hidden groups
to discover their structure before a planned attack can occur.

There is also work being done in analyzing the theory of networked groups, and
how technology is enabling them to become more flexible and challenging to deal with.
The hierarchical structure of terrorist groups in the past is giving way to more effective
and less organized network structure [35]. Of course, the first step to understanding de-
centralized groups is to discover them. What follows are some strategies to solve this
problem.

2.2. Methodology

A temporally hidden group is a different kind of group from the normally functioning so-
cial groups in the society that engage in “random” communications. We define atempo-

cycle1 cycle2 cycle3 cycle4

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������ ������ ������ ������ ����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���� ���� ���� ���� ����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

������������������������

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

���� ���� ������ ������ ����

���� ���� ������ ������ ����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

Figure 1. Cyclic representation of the communication.

rally hidden group, or in this section labeled ahidden group, as some subset of the actors
who are planning or coordinating some activity over time; the hidden group members
may also be engaging in other non-planning related communications. The hidden group
may be malicious (for example some kind of terrorist group planning a terror attack) or
benign (for example a foursome planning their Sunday afternoon golf game). So in this
sense, a hidden group is not assumed to be intentionally hiding, but the group activity
is initially unknown and masked by the background communications. The hidden group
is attempting to coordinate some activity, using the communication network to facilitate
the communications between its members. Our task now is to (1) discover specific prop-
erties that can be used to find hidden groups; and (2) construct efficient algorithms that
utilize those properties. The next steps such as formulation of empirically precise models
and further investigation of the properties of hidden groups is beyond the scope of this
methodology.

Whether intentional or not, in a normal society, communications will, in general,
camouflage the planning related activity of the hidden group. This could occur in any
public forum such as a newsgroup or chatrooms, or in private communications such as
email messages or phone conversations. However, the planning related activity is exactly
the Achilles heel that we will exploit to discover the hiddengroup: on account of the
planning activity, the hidden group members need to stay “connected” with each other
during each “communication cycle.” To illustrate the general idea, consider the follow-
ing time evolution of a communication graph for a hypothetical society; here, communi-
cations among the hidden group are in bold, and each communication cycle graph rep-
resents the communications that took place during an entiretime interval. We assume
that information must be communicated amongall hidden group members during one
communication cycle (see Figure 1).

Note that the hidden group is connected in each of the communication cycle figures
above. We interpret this requirement that the communication subgraph for the hidden
group be connected as the requirement that during a single communication cycle, infor-
mation must have passed (directly or indirectly) from some hidden group member to all
the others. If the hidden group subgraph is disconnected, then there is no way that infor-
mation could have been passed from a member in one of the components to a member
in the other, which makes the planning impossible during that cycle. The information
need not pass from one hidden group member to every other directly: A message could
be passed fromA to C via B, whereA, B, C are all hidden group members. Strictly
speaking,A and C are hidden group members, howeverB need not be one. We will
address this issue more formally in the next section. A hidden group may try to hide its
existence by changing its connectivity pattern, or by throwing in “random” communica-
tions to non-hidden group members. For example, at some times the hidden group may

(1) Internally Connected (2) Externally Connected (3) Disconnected

���
���
���
���

����

������

������

������

������

���
���
���
���

������

���
���
���
���

������

����

���
���
���
���

����

������

������

������

������

���
���
���
���

������

���
���
���
���

������

����

��
��
��
��

����

����

������

����

������

���
���
���
���

���
���
���
���

����

������

������

Figure 2. Types of connectivity.

be connected by a tree, and at other times by a cycle. None of these disguises changes
the fact that the hidden group is connected, a property we will exploit in our algorithms.

We make the assumption here that the hidden group remains static over the time
period when communications are collected. The algorithms described here would still
be useful, however, as long as a significant subset of the group remains the same. The
algorithms would likely not detect members that joined or left the group, but would
discover a “core” group of members.

2.2.1. Trusting vs. Non-Trusting Hidden Groups

Hidden group members may have to pass information to each other indirectly. Suppose
that A needs to communicate withB. They may use a number of third parties to do this:
A → C1 → · · · → Ck → B. Trusting hidden groups are distinguished fromnon-
trustingones by who the third partiesCi may be. In a trusting (or non-secretive) hidden
group, the third parties used in a communication may be any actor in the society; thus,
the hidden group members (A, B) trust some third-party couriers to deliver a message for
them. In doing so, the hidden group is taking the risk that thenon-hidden group members
Ci have access to the information. For a malicious hidden group, such as a terrorist
group, this could be too large a risk, and so we expect that malicious hidden groups will
tend to be non-trusting (or secretive). In a non-trusting (secretive) hidden group,all the
third parties used to deliver a communicationmustthemselves be members of the hidden
group,i.e., no one else is trusted. The more malicious a hidden group is,the more likely
it is to be non-trusting.

Hidden groups that are non-trusting (vs. trusting) need to maintain a higher level of
connectivity. We define three notions of connectivity as illustrated by the shaded groups
in Figure 2. A group isinternally connectedif a message may be passed between any
two group members without the use of outside third parties. In the terminology of Graph
Theory, this means that the subgraph induced by the group is connected. A group isexter-
nally connectedif a message may be passed between any two group members, perhaps
with the use of outside third parties. In Graph Theory terminology, this means that the
group is a subset of a connected set of vertices in the communication graph. For example,
in Figure 2 (2) above, a message fromA to B would have to use the outside third party
C. A group isdisconnectedif it is not externally connected. The following observations
are the basis for our algorithms for detecting hidden groups.

(i) Trusting hidden groups areexternally connected in every communication cycle.

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

�� ��

����

���� ��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

�� ��

����

���� ��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

�� ��

����

���� ��

��
��
��
��

t = 1 t = 2 t = 3 t = 4

IP EP

��
��
��
��

D

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�

���� ����

��

�� ����

Figure 3. Internally persistent, externally persistent and non-persistent groups. The communication graph dur-
ing 4 communication cycles is shown. Three groups are highlighted, I P, E P, D. One can easily verify that
I P is internally persistent during these 4 communication cycles, and so is a candidate non-trusting hidden
group. E P is only internally persistent only for time periods 1 and 2. If we only observed data during this
time period, thenE P would also be a candidate non-trusting hidden group. However, E P is only externally
persistent for all the communication cycles, and hence can only be a candidate for a trusting hidden group.D
becomes disconnected during communication cycle 4, and hence is not a candidate hidden group.

(ii) Non-trusting hidden groups areinternally connected in every communication
cycle.

We can now state the idea behind our algorithm for detecting ahidden group: a
group of actors ispersistentover communication cycles 1, . . . , T if it is connected in
each of the communication graphs corresponding to each cycle. The two variations of the
connectivity notion, internal or external, depend on whether we are looking for a non-
trusting or trusting hidden group. Our algorithm is intended to discover potential hidden
groups by detecting groups that are persistent over a long time period. An example is
illustrated in Figure 3.

A hidden group can be hidden from view if, by chance, there aremany other persis-
tent subgroups in the society. In fact, it is likely that there will be many persistent sub-
groups in the societyduring any given short time period. However, these groups will be
short-lived on account of the randomness of the society communication graph. Thus we
expect our algorithm performance to improve as the observation period increases.

2.2.2. Detecting The Hidden Group

Our ability to detect the hidden group hinges on two things. First, we need an efficient al-
gorithm for identifying maximally persistent components over a time period5. Second,
we need to ensure, with high probability, that over this timeperiod there are no persistent
components that arise, by chance, due to the background societal communications. We
will construct algorithms to efficiently identify maximal components that are persistent
over a time period5. Given a model for the random background communications, we
can determine (through simulation) how long a time period a group of a particular size
must be persistent in order to ensure that, with high probability, this persistent component
did not arise by chance, due to background communications.

(a) Externally persistent components (b) Internally persistent components

1: Ext_Persistent({Gt}Tt=1, V)

2: //Input: Graphs{Gt = (Et , V)}Tt=1.
3: //Output: A partitionP = {Vj } of V .
4: UseDFS to get the connected componentsCt

of everyGt ;
5: SetP1 = C1 andPt = {} for t > 1;
6: for t = 2 to T do
7: for Every setA ∈ Pt−1 do
8: Obtain a partitionP′ of A by intersecting

A with every set inCt ;
9: PlaceP′ intoPt ;

10: end for
11: end for
12: return PT ;

1: Int_Persistent({Gt}Tt=1, V)

2: //Input: Graphs{Gt = (Et , V)}Tt=1.
3: //Output: A partitionP = {Vj } of V .

4: {Vi }Ki=1 = Ext_Persistent({Gt }Tt=1, V)

5: if K = 1, then
6: P = {V1};
7: else
8: P = ∪K

k=1Int_Persistent({Gt (Uk)}Tt=1, Vk);
9: end if

10: return P ;

|

Figure 4. Algorithms for detecting persistent components.

2.3. Algorithms

Select1 to be the smallest time-interval during which it is expectedthat information
is passed amongall group members. Index the communication cycles (which are con-
secutive time periods of duration1) by t = 1, 2, . . . , T . Thus, the duration over which
data is collected is5 = 1 · T . The communication data is represented by a series of
communication graphs,Gt for t = 1, 2, . . . , T . The vertex set for each communication
graph is the setV of all actors.

The input to the algorithm is the collection of communication graphs{Gt } with a
common set of actorsV . The algorithm splitsV into persistent components, i.e., compo-
nents that are connected in everyGt . The notion of connected could be either external or
internal, and so we develop two algorithms,Ext_Persistent andInt_Persistent.

Each algorithm develops the partition in an iterative way. If we have only one com-
munication graphG1, then both the externally and internally persistent components are
simply the connected components ofG1. Suppose now that we have one more graph,
G2. The key observation is that two vertices,i , j are in the same external component if
and only if they are connected in bothG1 andG2, i.e., they are in the same component
in bothG1 andG2. Thus, the externally persistent components for the pairG1, G2 are
exactly the intersections of the connected components inG1 with those inG2. This argu-
ment clearly generalizes to more than two graphs, and relieson the fundamental property
that any subset of an externally connected set is also externally connected. Unfortunately,
the same property does not hold for internal connectivity, i.e, a subset of an internally
connected set is not guaranteed to be internally connected.However, a minor modifica-
tion of the externally connected algorithm where one goes back and checks any sets that
get decomposed leads to the algorithm for detecting internally persistent components.
(Figure 4(b)). The formal details of the algorithms are given in [5].

2.3.1. Analysis

The correctness and computational complexity results of the algorithms given in Figure
4 are stated here. For full detail see [5]. We say that a setA is amaximalpersistent set
(internal or external) if it is persistent, and any other persistent set that contains at least
one element ofA is a subset ofA. Clearly, any two maximal persistent sets must be
disjoint, which also follows from the following lemma.

Lemma 1 If A and B are non-disjoint externally (resp. internally) persistent sets then
A∪ B is also externally (resp. internally) persistent.

Theorem 1 (Correctness of Ext_Persistent) AlgorithmExt_Persistent correctly par-
titions the vertex set V into maximal externally connected components for the input
graphs{Gt }Tt=1.

Let Et denote the number of edges inGt , and letE denote the total number of edges
in the input,E =

∑T
t=1 Et . The size of the input is then given byE + V · T .

Theorem 2 (Complexity of Ext_Persistent) The computational complexity of Algo-
rithm Ext_Persistent is in O(E + V T) (linear in the input size).

Theorem 3 (Correctness of Int_Persistent) Algorithm Int_Persistent correctly parti-
tions the vertex set V into maximal internally connected components.

Theorem 4 (Complexity of Int_Persistent) The computational complexity of Algo-
rithm Int_Persistent is in O(V · E + V2 · T).

2.3.2. Statistical Significance of Persistent Components

Let h be the size of the hidden group we wish to detect. Suppose thatwe find a persistent
component of size≥ h overT communication cycles. A natural question is to ask how
sure we can be that this is really a hidden group versus a persistent component that
happened to arise by chance due to the random background communications.

Let X(t) denote the size of the largest persistent component over thecommunication
cycles 1, . . . , t that arises due to normal societal communications.X(t) is a random
variable with some probability distribution, since the communication graph of the society
follows a random process. Given a confidence threshold,ǫ, we define the detection time
τǫ(h) as the time at which, with probability 1−ǫ, the largest persistent component arising
by chance in the background is smaller thanh, i.e.,

τǫ(h) = min{t P X(t) < h ≥ 1− ǫ}. (1)

Then, if afterτǫ(h) cycles we observe a persistent component of size≥ h, we can claim,
with a confidence 1− ǫ, that this did not arise due to the normal functioning of the
society, and hence must contain a hidden group.τǫ(h) indicates how long we have to
wait in order to detect hidden groups of sizeh. Another useful function ishǫ(t), which
is an upper bound forX(t), with high probability (1− ǫ), i.e.,

hǫ(t) = min{h P X(t) < h ≥ 1− ǫ}. (2)

If, after a given timet , we observe a persistent component with size≥ hǫ(t), then
with confidence at least 1− ǫ, we can claim it to contain a hidden group.hǫ(t) indicates
what sizes hidden group we can detect with onlyt cycles of observation. The previous
approaches to detecting a hidden group assume that we knowh or fix a timet at which to
make a determination. By slightly modifying the definition of hǫ(t), we can get an even
stronger hypothesis test for a hidden group. For any fixedδ > 0, define

Hǫ(t) = min{h P X(t) < h ≥ 1− δ
t1+δ ǫ}. (3)

Then one can show that ifX(t) ≥ Hǫ(t) at any time, we have a hidden group with
confidence 1− ǫ.

Note that the computation ofτǫ(h) andhǫ(t) constitute a pre-processing of theso-
ciety’s communicationdynamics. This can be done either from a model (such as the ran-
dom graph models we have described) or from the true, observed communications over
some time period. More importantly, this can be done off-line. For a given realization of
the society dynamics, letT(h) = min{t X(t) < h}. Some useful heuristics that aid in
the computation ofτǫ(h) andhǫ(t) by simulation can be obtained by assuming thatT(h)

andX(t) are approximately normally distributed, in which case,

Confidence level τǫ(h) hǫ(t)
50% ET(h) E X(t)

84.13% ET(h)+
√

V arT(h) E X(t)+
√

V ar X(t)
97.72% ET(h)+ 2

√
V arT(h) E X(t)+ 2

√
V ar X(t)

(4)

2.4. Random Graphs as Communication Models

Social and information communication networks,e.g., the Internet and WWW, are usu-
ally modeled by graphs [33] [9] [10] [36], where the actors ofthe networks (people,
IP-addresses, etc.) are represented by the vertices of the graph, and the connections be-
tween the actors are represented by the graph edges. Since wehave noa priori knowl-
edge regarding who communicates with whom,i.e., how the edges are distributed, it is
appropriate to model the communications using a random graph. In this paper, we study
hidden group detection in the context of two random graph models for the communi-
cation network: uniform random graphs and random graphs with embedded groups. In
describing these models, we will use standard graph theory terminology [40], and its ex-
tension tohypergraphs[6]. In a hypergraph, the concept of an edge is generalized toa
hyperedgewhich may join more than two vertices. In addition to these two models, there
are other models of random networks, such as the small world model and the preferential
attachment model [1]. However, in this work we limited our experiments to the following
models, which are also illustrated in Figure 5.

Random Model A simple communication model is one where communications happen
at random uniformly among all pairs of actors. Such a communication model can be
represented by the random graph model developed and extensively studied by Erd̋os
and Rényi, [11,12,13,7]. In this model, the graph is generated by a random process in
which an edge between every pair of vertices is generated independently with a given
probability p.

The probability space of graphs generated by such a random process is denoted
G(n, p), or sometimes are called the Bernoulli Graphs. We will use theG(n, p) notation
throughout this paper.

Random Model Group Model

Figure 5. Two random graph models.

Group Model TheG(n, p) random graph model may not be a suitable model for large
communication networks. Actors tend to communicate more often with certain actors
and less frequently with others. In a more realistic model, actors will belong to one
or more social groups where communication among group members is more frequent
than communication among actors that do not belong to the same group. This leads us
to the hypergraph model of the communication network, in which the actors associate
themselves into groups. In this paper, we assume that each group is static and contains
m actors. While this is a simplification, it serves to illustrate all the essential ideas and
results without undue complication. A group of actors is represented by a hyperedge in
the graph, and an actor may belong to zero or more hyperedges.The set of all hyperedges
represents the structure of the communication network. Since groups tend to be small,
it is appropriate to model the communications within a groupas aG(m, pg), wherepg

is the probability within the group. We also allow communication between two actors
that do not share a group in common; we denote such communications as external. The
probability of an external communication ispe; we further assume thatpe≪ pg because
intra-group communications are much more likely than extra-group communications.

Connectivity of Random GraphsThe key idea of our algorithms is based on the fol-
lowing observation. For any subset of actors in a random model network, it is very un-
likely that this subset is connected during a “long” consecutive period of time cycles,
while a hidden group must stay connected (for its operations) as long as it functions as a
group. Thus, we summarize here some results from random graph theory regarding how
the connectivity of aG(n, p) depends onn andp, [11,12,13,7]. These results are mostly
asymptotic in nature (with respect ton), however, we use them as a guide that remains
accurate even for moderately sizedn.

Given a graphG = {V, E}, a subsetS ⊆ V of the vertices is connected if there
exists a path inG between every pair of vertices inS. G can be partitioned into disjoint
connected componentssuch that every pair of vertices from the same connected com-
ponent is connected and every pair of vertices in different connected components is not
connected. The size of a component is the number of its vertices; the size of the largest
connected component is denoted byL(G).

The remarkable discovery by Erdős and Rényi, usually termedThe Double Jump,
deals with the size of the largest component, and essentially states thatL(G) goes
through two phase transitions asp increases beyond a critical threshold value. All the
results hold asymptotically, with high probability,i.e., with probability tending to 1 when
n→∞:

p = c
n p = ln n

n +
x
n , x > 0

L(G(n, p)) =











O(ln n) 0 < c < 1

O(n2/3) c = 1

β(c)n c > 1, β(c) < 1

L(G(n, p)) = n with prob.e−e−x (5)

Note that whenx → ∞, the graph is connected with probability 1. Since our approach
is based on the tenet that a hidden group will display a higherlevel of connectivity than
the background communications, we will only be able to detect the hidden group if the
background is not maximally connected,i.e., if L(G) 6= n. Thus we expect our ability
to detect the hidden group to undergo a phase transition exactly when the background
connectivity undergoes a phase transition. Forp = constant orp = d ln n/n with d > 1,
the graph is asymptotically connected which will make it hard to detect the hidden group.
However, whenp = constant, connectivity is exponentially more probable than when
p = d ln n/n, which will have implications on our algorithms.

2.5. Experiments and Results

In these tests, we simulate societies of sizesn = 1000 and 2000. The results for both the
random background communication model and the group background communication
model are presented in parallel. For each model, multiple time series of graphs are gener-
ated for communication cyclest = 1, 2, . . . , T , whereT = 200. Experiments were run
on multiple time series (between five and thirty), and averaged in order to obtain more
statistically reliable results. In order to estimatehǫ(t), we estimateE X(t) by taking the
sample average of the largest persistent component over communication cycles 1, . . . , t .
Givenh, the time at which the plot ofE X(t) drops belowh indicates the time at which
we can identify a hidden group of size≥ h.

We first describe the experiments with the random modelG(n, p). The presence of
persistently connected components depends on the connectivity of the communication
graphs over periods 1, 2, . . . , T . When the societal communication graph is connected
for almost all cycles, we expect the society to generate manylarge persistent compo-
nents. By the results of Erdős and Rényi described in Section 2.4, a phase transition from
short-lived to long-lived persistent components will occur at p = 1/n and p = ln n/n.
Accordingly, we present the results of the simulations withp = 1/n, p = c ln n/n for
c = 0.9, 1.0, 1.1, andp = 1/10 for n = 1000. The rate of decrease ofE X(t) is shown
in Figure 6. Forp = 1/n, we expect exponential or super-exponential decay inE X(t)
(Figure 6, thin dashed line). This is expected becauseL(G) is at most a fraction ofn. An
abrupt phase transition occurs atp = ln n/n (Figure 6 dot-dashed line). At this point the
detection time begins to become large. For constantp (wherep does not depend onn, in
this case 1/10), the graph is connected with probability tending to 1, and it becomes es-
sentially impossible to detect a hidden group using our approach without any additional
information (Figure 6 thick dashed line). This will occur for any choice of a constant asn
becomes large. That is, for any constantp > 0, there is an integerN such that ifn > N
thenG(n, p) is connected with high probability, tending to 1.

The parameters of the experiments with the group model are similar to that of the
G(n, p)-model. We pick the group sizem to be equal to 20. Each group is selected in-
dependently and uniformly from the entire set of actors; thegroups may overlap; and
each actor may be a member of zero or more groups. If two members are in the same

Largest Persistent Internally Connected Component, G(1000,p)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

Time

L
ar

g
es

t
C

o
m

p
o

n
en

t
S

iz
e

as
 F

ra
ct

io
n

 o
f

n

p = 1 / n
p = 0.9 ln n / n
p = 1.0 ln n / n
p = 1.1 ln n / n
p = 0.1

Largest Persistent Internally Connected Component, G(2000,p)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

Time

L
ar

g
es

t
C

o
m

p
o

n
en

t
S

iz
e

as
 F

ra
ct

io
n

 o
f

n

p = 1 / n
p = 0.9 ln n / n
p = 1.0 ln n / n
p = 1.1 ln n / n
p = 0.1

Figure 6. The largest internally persistent componentE X(t) for the G(n, p) model with
n = 1000, 2000. The five lines representp = 1/n, p = c ln n/n for c = 0.9, 1.0, 1.1, and
p = 1/10. Note the transition atp = ln n/n. This transition becomes more apparent atn = 2000.
When p is a constant (i.e. does not depend onn; here we used 1/10), the graph is almost always
connected. The results were averaged over a number of runs. The sharp jumps indicate where the
largest component quickly jumped from about 0.9n to zero in different runs.

group together, the probability that they communicate during a cycle ispg, otherwise
the probability equalspe. It is intuitive thatpg is significantly bigger thanpe; we picked
pe = 1/n, so each actor has about one external communication per timecycle. The val-
ues ofpg that we use for the experiments are chosen to achieve a certain average number
of communications per actor, thus the effect of a change in the structure of the communi-
cation graph may be investigated while keeping the average density of communications
constant. The average number of communications per actor (the degree of the actor in
the communication graph) is set to six in the experiments. The results do change quali-
tatively for different choices of average degree. The number of groupsg is chosen from
{50, 100, 200}. These cases are compared to theG(n, p) structure with an average of
six communications per actor. For the selected values ofg, each actor is, on average, in
1, 2 and 4 groups, respectively. Wheng is 50, an actor is, on average, in approximately
one group, and the overlaps of groups are small. However, when g is 200, each actor,

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Largest Persistent Internally Connected Component, deg
av

 = 6

La
rg

es
t C

om
po

ne
nt

 S
iz

e
as

 F
ra

ct
io

n
of

 n

Time

Uniform G(n,p)
50 Groups Size 20
100 Groups Size 20
200 Groups Size 20

Group Model Random Model
g (# of groups) 50 100 200 G(n, 6

n)

T(1) > 100 63 36 32

Figure 7. Times of hidden group discovery for various amounts of groupstructure; each group is indepen-
dently generated at random and has 20 actors. In all cases,n = 1000,degav = 6, and the group sizem = 20.
Note how, as the number of groups becomes large, the behaviortends toward theG(n, p) case.

on average, is in about 4 groups, so there is a significant amount of overlap between the
groups. The goal of our experiments is to see the impact ofg on finding hidden groups.
Note that asg increases, any given pair of actors tends to belong to at least one group
together, so the communication graph tends toward aG(n, pg) graph.

We give a detailed comparison between the society with structure (group model) and
the one without (random model) in Figure 7. The table showsT(1), which is the time
after which the size of the largest internally persistent component has dropped to 1. This
is the time at which any hidden group would be noticed, since the group would persist
beyond the time expected in our model.

We have also run similar experiments for detecting trustinggroups. The results are
shown in Figure 2.5. As the table shows, for the corresponding non-trusting communi-
cation model, the trusting group is much harder to detect.

3. Discovering Spatial Correlation

3.1. Literature Review

While an informal definition of the goal of clustering algorithms is straightforward, dif-
ficulty arises when formalizing this goal. There are two mainapproaches to clustering:
partitioning and general clustering.

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Largest Persistent Connected Component, deg
av

 = 2
La

rg
es

t C
om

po
ne

nt
 S

iz
e

as
 F

ra
ct

io
n

of
 n

Time

Internally Connected
Externally Connected

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

Largest Persistent Connected Component, deg
av

 = 6

La
rg

es
t C

om
po

ne
nt

 S
iz

e
as

 F
ra

ct
io

n
of

 n

Time

Internally Connected
Externally Connected

degav T(1) for trusting groups T(1) for non-trusting groups
2 28 2
6 > 100 32

Figure 8. Times of hidden group discovery for non-trusting (internally connected) hidden groups and trusting
(externally connected) hidden groups. In all cases the communication graphs areG(n, p) with n = 1000.

Partitioning, or hierarchical clustering, is the traditional method of performing clus-
tering. In some circles, clustering and partitioning are synonymous. For example, Kan-
nan, Vempala, and Vetta define clustering as “partitioning into dissimilar groups of sim-
ilar items” [23]. However, the partitioning approach forces every cluster to be either en-
tirely contained within or entirely disjoint from every other cluster. Partitioning algo-
rithms are useful when the set of objects needs to be broken down into disjoint categories.
These categories simplify the network and may be treated as separate entities. Partition-
ing is used in the fields of VLSI design, finite element methods, and transportation [24].

Many partitioning algorithms attempt to minimize the number of connections be-
tween clusters, also called thecut sizeof the partition [27] [26] [21] [24] [25]. Theρ-
separatormetric attempts to balance the sizes of the clusters, while also minimizing the
cut size [15]. Thebetweennessmetric is used to find a small cut by removing edges that
are likely to split the network into components [17,19]. In addition to trying to mini-
mize the cut size, some algorithms attempt to maximize the quality of each cluster. Two
metrics used in partitioning which define cluster quality are expansionandconductance
[16,23]. A final metric relates to how well the members of the same cluster are related to
the values in eigenvectors of the adjacency matrix of the network [8].

Groups in social networks do not conform to this partitioning approach. For exam-
ple, in a social network, an individual may belong to numerous groups (e.g., occupa-
tional, religious, political, activity). A general clustering algorithm may put the individ-
ual into all these clusters, while a partitioning algorithmwill only place the individual
into one cluster. Classifying an individual as belonging toa single cluster or social group
will often miss the full picture of the societal structure. As opposed to partitioning, gen-
eral clustering allows individuals to belong to many groupsat once. General clustering
algorithms determine the zero, one or more groups that each actor belongs to, without
enforcing a partition structure on the clusters. This complex structure may more directly
correspond to real-world clusters. However, permitting overlapping groups is a more
complex problem, since each cluster may not be treated as a separate entity. See Figure 9
for a comparison of partitioning and general clustering.

(a) (b)

Figure 9. A comparison of a partitioning (a) and a general clustering (b) of the same network.

When clustering a network, there needs to be a definition of what constitutes a
“good” cluster. In some sense, members of a cluster need to be“close” to each other, and
“far” from the other objects in the network. There are many ways to define the criterion
for a valid cluster.

The general clustering problem has been less widely studiedthan the partitioning
problem, however there are some algorithms that exist for discovering a general cluster-
ing of a network.

Some algorithms of this type are well suited for web networks[28,18,31]. These
algorithms all attempt to find clusters by optimizing a metric referred to asbicliqueness.
Though often used for partitioning, eigenvector correlation may also be used to discover
overlapping clusters [38].Local optimalityis a generic technique which can optimize
many of the previously mentioned metrics, even metrics originally developed for parti-
tioning. These algorithms have been applied to social networks [2,3]. We present these
algorithms in more detail in the following sections.

3.2. Methodology

Let G = (V, E) be a graph whose nodes represent individuals, web pages, etc., and
whose edges represent communications, links, etc. The graph may be directed or undi-
rected. We present the definitions for directed graphs, the undirected case being similar.
A graph cluster Cis a set of vertices which can be viewed as a binary vector of length
|V | that indicates which nodes are members ofC. The set of all graph clusters,C, is the
power set ofV .

A weight function, ormetricis a functionW C 7→ R that assigns a weight to a graph
cluster. Associated to clusterC, we define three edge sets:E(C), the edges induced by
C; E(C, C), the edges inE from C to its complement;E(C, C), the edges inE to C
from its complement. LetEout(C) = E(C, C) + E(C, C). We define theinternal and
external edge intensities,

pin(C) =
E(C)

|C| · (|C| − 1)
, pex(C) =

Eout(C)

2|C| · (n− |C|)
(6)

(pex = 1 when|C| = |V |). We will consider three weight functions: theinternal edge-
probability Wp; theedge ratio We; and, theintensity ratio Wi ,

Wp(C) = pin(C), We(C) =
E(C)

E(C)+ Eout(C)
, Wi (C) =

pin (C)

pin (C)+ pex(C)
. (7)

These metrics are measures of how intense the communicationwithin the cluster is, relative to
that outside the cluster; they can be efficiently updated locally, i.e. the metric may be updated
by knowing only the connectivity of the one node that is addedor removed (which improves the
efficiency of the algorithms). Aset-differencefunction δ is a metric that measures the difference
between two clustersC1, C2. Two useful set-difference functions are theHamming or edit distance
δh, and thepercentage non-overlapδp:

δh(C1, C2) = |(C1 ∩ C2) ∪ (C1 ∩C2)|, δp(C1, C2) = 1−
|C1 ∩C2|
|C1 ∪C2|

. (8)

Theǫ-neighborhoodof a clusterBδ
ǫ (C) is the set of clusters that are withinǫ of C with respect to

δ, i.e., Bδ
ǫ (C) = {C′|δ(C, C′) ≤ ǫ}. For weight functionW, we say that a clusterC∗ is ǫ-locally

optimal if W(C∗) ≥ W(C) for all C ∈ Bδ
ǫ (C∗).

We are now ready to formally state our abstraction of the problem of finding overlapping
communities in a communication network. The input is a graphG, the communication graph,
along with the functionsW, δ andǫ. The output is a set of clustersO ⊆ C such thatC ∈ O iff
C is ǫ-locally optimal. While our heuristic approaches are easily adapted to different weight and
set-difference functions, we will focus on the choicesW = We, δ = δh andǫ = 1, referring to the
output clusters as locally optimal.

As stated, the problem isNP-hard. In fact, the restriction toδ = δh andǫ = |V | asks to find
all the globally optimal clusters according to an arbitraryweight functionW, which is well known
to beNP-hard. Thus, we present heuristic, efficient (low-order polynomial time) algorithms that
output candidate (overlapping) clusters, and then evaluate the quality of the output.

3.3. Algorithms

3.3.1. k-Neighborhood (k− N)

k − N is a trivial algorithm that yields overlapping clusters. The clusters are simply thek-
neighborhoods of a randomly selected setS of cluster centers. The inputs to this algorithm arek
and|S|.

3.3.2. Rank Removal (RaRe)

Algorithm RaRe is based on the assumption that within a communication network, there is a
subset of “important” or high-ranking nodes, which do a significant amount of communication.
RaRe attempts to identify these nodes and remove them from the graph, in order to disconnect the
graph into smaller connected components. The removed node(s) are added to a setR. This process
is repeated, until the sizes of the resulting connected components are within a specified range.
These connected components can be considered thecore of each cluster. Next, the vertices inR
are considered for addition into one or more of these cores. If a vertex fromR is added to more
than one cluster, then these clusters now overlap. Note, however, that the cores of each cluster are
disjoint, and only communicate with each other through vertices inR.

“Important” or high-ranking nodes are determined by a ranking functionφ. These are the
nodes which are removed at each iteration. We wish to remove nodes that will result in disconnect-
ing the graph as much as possible. One choice is to remove vertices with high degree, correspond-
ing to the choiceφd(v) = deg(v). Another approach that we have found to be experimentally
better is to rank nodes according to their Page RankTM , φp(v) [34]. The Page RankTMof a node
is defined implicitly as the solution to the following equation,

φp(v) = c
∑

u,v

φp(u)

deg−(v)
+

(1− c)

n
(9)

Table 1. User specified inputs for AlgorithmRaRe.

Input Description

W Weight function.

φ Ranking function.

min, max Minimum and maximum core sizes.

t Number of high-ranking vertices to remove.

wheren is the number of nodes in the graph,deg−(v) is the out degree of vertexv, andc is a
decay factor between 0 and 1. An iterative algorithm to computeφp(v) for all the nodes converges
rapidly to the correct value.

Once we have obtained the cores, we must add the vertices inR back into the cores to build
up the clusters. Intuitively, a vertexv ∈ R should be part of any cluster to which it is immediately
adjacent, as it would have been part of the core if it were not removed at some step. Also, if we do
not take this approach, we run the risk ofv not being added to any cluster, which seems counter-
intuitive, asv was deemed “important” by the fact that it was at one time added to R. This is
therefore the approach which we take. We also add vertices inR to any cluster for which doing
so increases the metricW. The algorithm is summarized in Figure 10, and all the user specified
inputs are summarized in Table 1.

It is important to note that the initial procedure of removing vertices, though not explicitly
attempting to optimize any single metric, does produce somewhat intuitive clusters. The cores that
result are mutually disjoint and non-adjacent. Consider a connected componentC at iterationi . If C
has more vertices than our maximum desired core sizemax, we remove a setRi of vertices, where
|Ri | = t . If the removal ofRi results in disconnectingC into two or more connected components
C1, C2...Ck, we have decreased the diameter ofC1, C2...Ck with respect toC, resulting in more
compact connected components. If the removal ofRi does not disconnect the graph, we simply
repeat the procedure on the remaining graph until it either becomes disconnected or its size is less
thanmax.

As an added performance boost, the ranks may be computed initially, but not recomputed
after each iteration. The idea is that if the setR′ is being removed, the rank of a vertexv in G will
be close to the rank ofv in G− R′.

3.3.3. The Link Aggregate Algorithm (LA)

TheIS algorithm performs well at discovering communities given agood initial guess, for example
when its initial “guesses” are the outputs of another clustering algorithm such asRaRe as opposed
to random edges in the communication network. We discuss a different, efficient initialization
algorithm here.

RaRe begins by ranking all nodes according to some criterion, such as Page RankTM [34].
Highly ranked nodes are then removed in groups until small connected components are formed
(called the cluster cores). These cores are then expanded byadding each removed node to any
cluster whose density is improved by adding it.

While this approach was successful in discovering clusters, its main disadvantage was its
inefficiency. This was due in part to the fact that the ranks and connected components need to be
recomputed each time a portion of the nodes are removed. The runtime ofRaRe is significantly
improved when the ranks are computed only once. For the remainder of this paper,RaRe refers to
the Rank Removal algorithm with this improvement, unless otherwise stated.

Since the clusters are to be refined byIS, the seed algorithm needs only to find approxi-
mate clusters. TheIS algorithm will “clean up” the clusters. With this in mind, the new seed al-
gorithm Link AggregateLA focuses on efficiency, while still capturing good initial clusters. The
pseudocode is given in Figure 10. The nodes are ordered according to some criterion, for example

decreasing Page RankTM , and then processed sequentially according to this ordering. A node is
added to any cluster if adding it improves the cluster density. If the node is not added to any cluster,
it creates a new cluster. Note, every node is in at least one cluster. Clusters that are too small to be
relevant to the particular application can now be dropped. The runtime may be bounded in terms
of the number of output clustersC as follows

Theorem 5 The runtime ofLA is O(|C||E| + |V |).

Proof: Let Ci be the set of clusters just before thei th iteration of the loop. The time it takes for
the i th iteration isO(|Ci |deg(vi)), wheredeg(vi) is the number of edges adjacent tovi . Each
edge adjacent tovi must be put into two classes for every cluster inCi : either the other endpoint
of the edge is in the cluster or outside it. With this information, the density of the cluster withvi
added may be computed quickly (O(1)) and compared to the current density. Ifdeg(vi) = 0, the
iteration takesO(1) time. Therefore the total runtime is asymptotically on the order of

∑

deg(vi)>0

|Ci |deg(vi)+
∑

deg(vi)=0

1≤
|V |
∑

i=1

|Ci |deg(vi)+
|V |
∑

i=1

1 (10)

≤
|V |
∑

i=1

|C|deg(vi)+ |V | = 2|C||E| + |V | = O(|C||E| + |V |). (11)

Q.E.D

3.3.4. Iterative Scan (IS)

Algorithm IS explicitly constructs a clusters that is a local maximum w.r.t. a density metric by
starting at a “seed” candidate cluster and updating it by adding or deleting one vertex at a time
as long as the metric strictly improves. The algorithm stopswhen no further improvement can
be obtained with a single change. This algorithm is given in pseudo-code format in Figure 10.
Different local maxima can be obtained by restarting the algorithm at a different seed, or changing
the order in which vertices are examined for cluster updating. The algorithm terminates if the
addition toC or deletion fromC of a single vertex does not increase the weight. During the
course of the algorithm, the clusterC follows some sequence,C1, C2, . . ., with the property that
W(C1) < W(C2) < · · · , where all the inequalities are strict. Since the number of possible clusters
is finite, the algorithm must terminate when started onany seed, and the cluster output will a
locally optimal cluster.

The cluster size may be enforced heuristically by incorporating this criterion into the weight
function. This is done by adding a penalty for clusters with size outside the desired range. Such an
approach will not impose hard boundaries on the cluster size. If the desired range isCmin, Cmax,
then a simple penalty functionPen(C), that linearly penalizes deviations from this range is

Pen(C) = max

{

0, h1 ·
Cmin− |C|
Cmin− 1

, h2 ·
|C| − Cmax

|V | − Cmax

}

, (12)

whereCmin, Cmax, h1, h2 are user specified parameters. All the user specified inputs are summa-
rized in Table 2.

We emphasize that algorithmIS can be used to improve any seed cluster to a locally optimal
one. Instead of building clusters from random edges as a starting point, we can refine clusters, that
are output by some other algorithm – these input clusters might be good “starting points”, but they
may not be locally optimal.IS then refines them to a set of locally optimal clusters.

The original process forIS consisted of iterating through the entire list of nodes overand
over until the cluster density cannot be improved. In order to decrease the runtime ofIS, we

Table 2. User specified inputs to AlgorithmIS.

Parameter Description

W Weight function.

δ Set-difference function (δ = δh in our implementation).

ǫ Size of set neighborhood (ǫ = 1 in our implementation).

max_ f ail Number of unsuccessful restarts to satisfy stopping condition.

Cmin, Cmax Desired range for cluster size.

h1, h2 Penalty for a cluster of size 1 and|V |.

Table 3. Algorithm performance on real-world graphs. The first entryin each cell is the average value of
Wad. The two entries in parentheses are the average number of clusters found and the average number of
nodes per cluster. The fourth entry is the runtime of the algorithm in seconds. The e-mail graph represents e-
mails among the RPI community on a single day (16,355 nodes).The web graph is a network representing the
domainwww.cs.rpi.edu/∼magdon (701 nodes). In the newsgroup graph, edges represent responses to posts
on thealt.conspiracy newsgroup (4,526 nodes). The Fortune 500 graph is the network connecting companies
to members of their board of directors (4,262 nodes).

Algorithm E-mail Web

RaRe→ IS 1.96 (234,9); 148 6.10 (5,8); 0.14

LA→ IS2 2.94 (19,25); 305 5.41 (6,19); 0.24

Algorithm Newsgroup Fortune 500

RaRe→ IS 12.39 (5,33); 213 2.30 (104,23); 4.8

LA→ IS2 17.94 (6,40); 28 2.37 (288,27); 4.4

make the following observation. The only nodes capable of increasing the cluster’s density are the
members of the cluster itself (which could be removed) or members of the cluster’s immediate
neighborhood, defined by those nodes connected to a node inside the cluster. Thus, rather than
visiting each node on every iteration, we may skip over all nodes except for those belonging to one
of these two groups. If the neighborhood of a cluster is much smaller than the entire graph, this
could significantly improve the runtime of the algorithm.

This algorithm provides both a potential decrease and increase in runtime. A decrease occurs
when the cluster and its neighborhood are small compared to the number of nodes in the graph. This
is the likely case in a sparse graph. In this case, building the neighborhood setN takes a relatively
short time compared to the time savings of skipping nodes outside the neighborhood. An increase
in runtime may occur when the cluster neighborhood is large.Here, finding the neighborhood is
expensive, plus the time savings could be small since few nodes are absent fromN. A large cluster
in a dense graph could have this property. In this case, placing all nodes inN is preferable.

Taking into account the density of the graph, we may construct N in either of the two methods
described here, in order to maximize efficiency in all cases.If the graph is dense, all nodes are
placed inN, but if the graph is sparse, the algorithm computesN as the neighborhood of the
cluster.

In the experiments that follow, the behavior ofIS for sparse graphs is denotedIS, and the
behavior for dense graphs is denotedIS2.

3.4. Experiments and Results

A series of experiments were run in order to compare both the runtime and performance of the new
algorithm with its predecessor. In all cases, a seed algorithm was run to obtain initial clusters, then
a refinement algorithm was run to obtain the final clusters. The baseline was the seed algorithm

procedure RaRe(G, W)
global R← ∅;
{Hi } are connected components inG;
for all Hi do

ClusterComponent(Hi);
end for
Initial clusters{Ci } are cluster cores;
for all v ∈ R do

for all ClustersCi do
Add v to clusterCi if v is adjacent toCi or
W(v ∪Ci) > W(Ci);

end for
end for

procedure ClusterComponent(H)
if |V(H)| > max then
{vi } aret highest rank nodes inH ;
R← R∪ {vi }; H ← H \ {vi };
{Fi } are connected components inH ;
for all Fi do

ClusterComponent(Fi);
end for

else if min≤ |V(H)| ≤ max then
mark H as a cluster core;

end if

procedure LA(G, W)
C← ∅;
Order the verticesv1, v2, . . . , v|V |;
for i = 1 to |V | do

added← false;
for all D j ∈ C do

if W(D j ∪ vi) > W(D j) then
D j ← D j ∪ vi ; added← true;

end if
end for
if added= false then

C← C ∪ {{vi }};
end if

end for
return C;

procedure IS(seed,G, W)
C← seed; w← W(C);
increased← true;
while increased do

if G is densethen
N ← All nodes adjacent toC;

else
N ← All nodes inG;

end if
for all v ∈ N do

if v ∈ C then
C′ ← C \ {v};

else
C′ ← C ∪ {v};

end if
if W(C′) > W(C) then

C← C′;
end if

end for
if W(C) = w then

increased← false;
else

w← W(C);
end if

end while
return C;

Figure 10. Algorithms Rank Removal (RaRe), Link Aggregate (LA), and Iterative Scan (IS).

RaRe followed by IS. The proposed improvement consists of the seed algorithmLA followed
by IS2. The algorithms were first run on a series of random graphs with average degrees 5, 10,
and 15, where the number of nodes range from 1,000 to 45,000. In this simple model, all pairs of
communication are equally likely.

All the algorithms take as input a density metricW, and attempt to optimize that metric. In
these experiments, the density metric was chosen asWad, called theaverage degree, which is

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

100

200

300

400

500
Runtime (s) (5 Edges Per Node)

Number of Nodes

Original RaRe
RaRe
LA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

100

200

300

400

500

600

700

800
Runtime (s) (5 Edges Per Node)

Number of Nodes

IS
IS2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

200

400

600

800

1000
Runtime (s) (10 Edges Per Node)

Number of Nodes

RaRe
LA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

100

200

300

400

500

600
Runtime (s) (10 Edges Per Node)

Number of Nodes

IS
IS2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

500

1000

1500
Runtime (s) (15 Edges Per Node)

Number of Nodes

RaRe
LA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

500

1000

1500

2000

2500
Runtime (s) (15 Edges Per Node)

Number of Nodes

IS
IS2

Figure 11. Runtime of the previous algorithm procedures (RaRe andIS) compared to the current procedures
(LA andIS2) with increasing edge density. On the left is a comparison ofthe initialization proceduresRaRe
and LA, whereLA improves as the edge density increases. On the right is a comparison of the refinement
proceduresIS and IS2. As expected,IS2 results in a decreased runtime for sparse graphs, but its benefits
decrease as the number of edges becomes large.

defined for a set of nodesC as

Wad(C) =
2|E(C)|
|C|

, (13)

whereE(C) is the set of edges with both endpoints inC.
The runtime for the algorithms is presented in Figure 11. Thenew algorithm remains

quadratic, but both the seed algorithm and the refinement algorithm run-times are improved signif-
icantly for sparse graphs. In the upper left plot in Figure 11, the original version ofRaRe is also
plotted, which recalculates the node ranks a number of times, instead of precomputing the ranks
a single time.LA is 35 times faster than the originalRaRe algorithm andIS2 is about twice as
fast asIS for graphs with five edges per node. The plots on the right demonstrate the tradeoff in

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.02

0.04

0.06

0.08

0.1
Runtime Per Cluster (s) (5 Edges Per Node)

Number of Nodes

RaRe
LA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Runtime Per Cluster (s) (5 Edges Per Node)

Number of Nodes

IS
IS2

Figure 12. Runtime per cluster of the previous algorithm (RaRe followed by IS) and the current algorithms
(LA followed byIS2). These plots show the algorithms are linear for each cluster found.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1

1.5

2

2.5
Mean Density (5 Edges Per Node)

Number of Nodes

RaRe → IS
LA → IS2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
Mean Density (10 Edges Per Node)

Number of Nodes

RaRe → IS
LA → IS2

Figure 13. Performance (average density) of the algorithm compared tothe previous algorithm.

IS2 between the time spent computing the cluster neighborhood and the time saved by not needing
to examine every node. It appears that the tradeoff is balanced at about 10 edges per node. For
graphs that are more dense, the originalIS algorithm runs faster, but for less dense graphs,IS2 is
preferable.

Figure 12 shows that the quadratic nature of the algorithm isbased on the number of clusters
found. When the runtime per cluster found is plotted, the resulting curves are linear.

Runtime is not the only consideration when examining this new algorithm. It is also important
that the quality of the clustering is not hindered by these runtime improvements. Figure 13 com-
pares the average density of the clusters found for both the old and improved algorithms. A higher
average density indicates a clustering of higher quality. Especially for sparse graphs, the average
density is approximately equal in the old and new algorithms, although the older algorithms do
show a slightly higher quality in these random graph cases.

Another graph model more relevant to communication networks is the preferential attachment
model. This model simulates a network growing in a natural way. Nodes are added one at a time,
linking to other nodes in proportion to the degree of the nodes. Therefore, popular nodes get more
attention (edges), which is a common phenomenon on the Web and in other real world networks.
The resulting graph has many edges concentrated on a few nodes. The algorithms were run on
graphs using this model with five links per node, and the number of nodes ranging from 2,000
to 16,000. Figure 14 demonstrates a surprising change in thealgorithmRaRe when run on this
type of graph.RaRe removes high-ranking nodes, which correspond to the few nodes with very

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Runtime (s) (5 Edges Per Node)

Number of Nodes

RaRe → IS
LA → IS2

0 2000 4000 6000 8000 10000 12000 14000 16000
0

2

4

6

8

Mean Density (5 Edges Per Node)

Number of Nodes

RaRe → IS
LA → IS2

Figure 14. Runtime and performance of the previous algorithm (RaRe followed byIS) and the current algo-
rithm (LA followed byIS2) for preferential attachment graphs.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

50

100

150

200

250
Runtime (s) (5 Edges Per Node)

Number of Nodes

LA with PageRank
LA with Random Order

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

Mean Density (5 Edges Per Node)

Number of Nodes

LA with PageRank
LA with Random Order

Figure 15. Runtime and performance ofLA with two different ordering types.

large degree. When these nodes are added back into clusters,they tend to be adjacent to most all
clusters, and it takes a considerable amount of time to iterate through all edges to determine which
connect to a given cluster. The algorithmLA, on the other hand, starts by considering high-ranking
nodes before many clusters have formed, saving a large amount of time. The plot on the right of
Figure 14 shows that the quality of the clusters are not compromised by using the significantly
faster new algorithmLA→ IS2.

Figure 15 confirms that constructing the clusters in order ofa ranking such as Page
RankTMyields better results than a random ordering.LA performs better in terms of both runtime
and quality. This is a surprising result since the random ordering is obtained much more quickly
than the ranking process. However, the first nodes in a randomordering are not likely to be well
connected. This will cause many single-node clusters to be formed in the early stages ofLA. When
high degree nodes are examined, there are many clusters to check whether adding the node will
increase the cluster density. This is time consuming. If thenodes are ranked, the high degree nodes
will be examined first, when few clusters have been created. These few clusters are likely to attract
many nodes without starting a number of new clusters, resulting in the algorithm completing more
quickly.

The algorithms were also tested on real-world data. The results are shown in Table 3. For all
cases other than the web graph, the new algorithm produced a clustering of higher quality.

4. Conclusion

In this article, we described methods for discovering hidden groups based only on communication
data, without the use of communication contents. The algorithms rely on the fact that such groups
display correlations in their communication patterns (temporal or spatial). We refer to such groups
as hidden because they have not declared themselves as a social entity. Because our algorithms
detect hidden groups without analyzing the contents of the messages, they can be viewed as an
additional, separate toolkit, different from approaches that are based on interpreting the meaning
of the messages. Our algorithms extract structure in the communication network formed by the
log of messages; the output groups can further be studied in more detail by an analyst who might
take into account the particular form and content of each communication, to get a better overall
result. The main advantage is that our algorithms greatly reduce the search space of groups that the
analyst will have to look at.

The spatial and temporal correlation algorithms target different types of hidden groups. The
temporal hidden group algorithms identify those groups which communicate periodically and are
engaged in planning an activity. Our algorithms have been shown to be effective at correctly iden-
tifying hidden groups artificially embedded into the background of random communications. Ex-
periments show that as the background communications become more dense, it takes longer to
discover the hidden group. A phase transition occurs if the background gets too dense, and the
hidden group becomes impossible to discover. However, as the hidden group becomes more struc-
tured, the group is easier to detect. In particular, if a hidden group is secretive (non-trusting), and
communicates key information only among its members, then the group is actually more readily
detectable.

Our approach to the discovery of spatial correlation in communications data is based on the
observation that social groups often overlap. This fact rules out the traditional techniques of parti-
tioning and calls for novel procedures for clustering actors into overlapping groups. The families
of clustering algorithms described here are able to discover a wide variety of group types based on
the clustering metric provided. The algorithms have been shown to be both efficient and accurate
at discovering clusters and retaining meaningful overlap between clusters.

Acknowledgments

The research presented here was partially supported by NSF grants 0324947 and 0346341.

References

[1] R. Albert and A. Barabasi. Statistical mechanics of complex networks.Reviews of Modern Physics, 74,
2002.

[2] J. Baumes, M. Goldberg, M. Krishnamoorthy, M. Magdon-Ismail, and N. Preston. Finding comminities
by clustering a graph into overlapping subgraphs.Proceedings of IADIS Applied Computing, pages
97–104, 2005.

[3] J. Baumes, M. Goldberg, and M. Magdon-Ismail. Efficient identification of overlapping communities.
Intelligence and Security Informatics (ISI), pages 27–36, 2005.

[4] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallace. Discovering hidden groups in communi-
cation networks.Intelligence and Security Informatics (ISI), pages 378–389, 2004.

[5] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallace. On hidden groups in communication
networks. Technical report, TR 05-15, Computer Science Department, Rensselaer Polytechnic Institute,
2005.

[6] C. Berge.Hypergraphs. North-Holland, New York, 1978.
[7] Béla Bollobás.Random Graphs, Second Edition. Cambridge University Press, new york edition, 2001.
[8] A. Capocci, V. D. P. Servedio, G. Caldarelli, and F. Colaiori. Detecting communities in large networks.

Workshop on Algorithms and Models for the Web-Graph (WAW), pages 181–188, 2004.

[9] K. Carley and M. Prietula, editors.Computational Organization Theory. Lawrence Erlbaum associates,
Hillsdale, NJ, 2001.

[10] K. Carley and A. Wallace. Computational organization theory: A new perspective. In S. Gass and
C. Harris, editors,Encyclopedia of Operations Research and Management Science. Kluwer Academic
Publishers, Norwell, MA, 2001.

[11] P. Erd̋os and A. Rényi. On random graphs.Publ. Math. Debrecen, 6:290–297, 1959.
[12] P. Erd̋os and A. Rényi. On the evolution of random graphs.Maguar Tud. Acad. Mat. Kutató Int. Kozël,

5:17–61, 1960.
[13] P. Erd̋os and A. Rényi. On the strength of connectedness of a random graph. Acta Math. Acad. Sci.

Hungar., 12:261–267, 1961.
[14] Bonnie H. Erickson. Secret societies and social structure. Social Forces, 60:188–211, 1981.
[15] G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning algorithms.Siam J.

Computing, 28(6):2187–2214, 1999.
[16] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Clustering methods basen on minimum-cut trees.

Technical Report 2002-06, NEC, Princeton, NJ, 2002.
[17] L. Freeman. A set of measures of centrality based on betweenness.Sociometry, 40:35–41, 1977.
[18] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring webcommunities from link topology.Proceedings

of the 9th ACM Conference on Hypertext and Hypermedia, 1998.
[19] M. Girvan and M. E. J. Newman. Community structure in social and biological networks.Proc. Natl.

Acad. Sci., 99:7821–7826, 2002.
[20] Mark Goldberg, Paul Horn, Malik Magdon-Ismail, JessieRiposo, David Siebecker, William Wallace,

and Bulent Yener. Statistical modeling of social groups on communication networks. In1st Conf. of the
N. Amer. Assoc. for Comp. Social and Organizational Science(NAACSOS), PA, June 2003. (electronic
proceedings).

[21] Bruce Hendrickson and Robert W. Leland. A multi-level algorithm for partitioning graphs. InSuper-
computing, 1995.

[22] Svante Janson, Tomasz Luczak, and Andrzej Rucinski.Random Graphs. Series in Discrete Mathematics
and Optimization. Wiley, New york, 2000.

[23] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad, and spectral.Journal of the ACM,
51(3):497–515, 2004.

[24] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
20(1), 1998.

[25] G. Karypis and V. Kumar. Multilevel k-way partitioningscheme for irregular graphs.Journal of Parallel
and Distributed Computing, 48(1), 1998.

[26] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.The Bell System
Technical Journal, 49(2):291–307, 1970.

[27] A. Kheyfits. Introduction to clustering algorithms: Hierarchical clustering.DIMACS Educational Mod-
ule Series, 03-1, March 17, 2003.

[28] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan,and A. S. Tomkins. The Web as a graph:
measurements, models, and methods.Lecture Notes in Computer Science, 1627, 1999.

[29] Valdis E. Krebs. Uncloaking terrorist networks.First Monday, 7 number 4, 2002.
[30] Malik Magdon-Ismail, Mark Goldberg, William Wallace,and David Siebecker. Locating hidden groups

in communication networks using Hidden Markov Models. InInt. Conf. on Intelligence and Security
Informatics (ISI), pages 126–137, Tucson, AZ, June 2003.

[31] N. Mishra, D. Ron, and R. Swaminathan. Large clusters ofweb pages.Workshop on Algorithms and
Models for the Web Graph (WAW), 2002.

[32] P. Monge and N. Contractor.Theories of Communication Networks. Oxford University Press, 2002.
[33] M. E. J. Newman. The structure and function of complex networks. SIAM Reviews, 45(2):167–256,

June 2003.
[34] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the

web. Stanford Digital Libraries Working Paper, 1998.
[35] David Ronfeldt and John Arquilla. Networks, netwars, and the fight for the future.First Monday, 6

number 10, 2001.
[36] Ashish Sanil, David Banks, and Kathleen Carley. Modelsfor evolving fixed node networks: Model

fitting and model testing.Journal oF Mathematical Sociology, 21(1-2):173–196, 1996.
[37] David Siebecker. A Hidden Markov Model for describing the statistical evolution of social groups over

communication networks. Master’s thesis, Rensselaer Polytechnic Institute, Troy, NY 12180, July 2003.
Advisor: Malik Magdon-Ismail.

[38] D. B. Skillicorn. Social network analysis via matrix decompositions: al Qaeda.
[39] Thomas A. Stewart. Six degrees of Mohamed Atta.Business 2.0, 2 issue 10:63, 2001.
[40] Douglas B. West.Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ, U.S.A., 2001.

