
Optimal Oblivious Routing in Hole-Free
Networks

Costas Busch1 and Malik Magdon-Ismail2

1 Louisiana State University, Baton Rouge, LA 70803, USA; busch@csc.lsu.edu
2 Rensselaer Polytechnic Institute, Troy, NY 12180, USA; magdon@cs.rpi.edu

Abstract. We study oblivious routing algorithms in which the packet
paths are constructed independently of each other. Oblivious algorithms
are inherently distributed and they can be designed to efficiently balance
the network utilization. We give an oblivious routing algorithm for the
class of hole-free networks, in which the nodes are topologically embed-
ded in simple areas of the plane. Such networks appear frequently in
wireless and sensor network topologies. The algorithm achieves optimal
congestion and stretch. The stretch of the resulting paths is constant. The
congestion is O(C∗ logn), where C∗ is the optimal non-oblivious conges-
tion and n is the number of nodes. This congestion bound is asymptoti-
cally worst-case optimal for oblivious routing algorithms.

Key words: oblivious routing, congestion, path stretch, wireless net-
works, sensor networks

1 Introduction

Routing algorithms specify the paths to be followed by packets in a network. A
routing algorithm is oblivious if the path of every packet is selected independently
of the paths of the other packets and without considering the history of the
previously routed packets. Oblivious algorithms are by their nature distributed
and capable of solving online routing problems, where packets continuously arrive
in the network. The objective of this work is to present oblivious algorithms with
low congestion and small path stretch. For congestion we consider the bottleneck
metric C which is equal to the maximum number of selected paths that use any
edge in the network.

Oblivious routing is applicable to wireless and sensor networks. It is partic-
ularly suitable to energy and power constraint networks (e.g. battery operated
nodes), since it can help to extend the time until some node runs out of power.
Lowering the network congestion (lowering edge bottlenecks), results to improved
load balancing and thus prolonged lifetime and better utilization of the network.
In addition, paths of small stretch (ratio of path length to shortest path) result
to low overall energy utilization. Oblivious algorithms are also easy to implement
in wireless and sensor networks, on account of their simplicity.

We give an oblivious routing algorithm designed for hole-free networks which
are suitable to model wireless network communication environments. A hole-free

2 Costas Busch and Malik Magdon-Ismail

Fig. 1. Hole-free grid-like network G

network is embedded in the 2-dimensional Euclidian plane inside a simple area
A (see Figure 1). We are considering grid-like networks, which are induced when
we apply a simple area A on top of a m×m grid M . Hole-free grid-like graphs
are interesting because they can model wireless and sensor network topologies
where each node is connected with a link with its neighbors at distance 1, within
the boundaries of area A.

We give an oblivious routing algorithm on any hole-free grid-like graph G
that gives paths with optimal stretch and congestion. In particular, given a set
of packets Π with respective sources and destinations, our algorithm returns a
set of paths P , one path for each packet in Π, such that stretch(P) = Θ(1). In
other words, the length of every resulting path is within a constant factor from
the length of the respective shortest path. Further, the congestion of paths P is
O(C∗ log n), where n is the number of nodes in G, and C∗ denotes the optimal
congestion that can be achieved for the packets Π. The upper bound is optimal
since it is known that any oblivious algorithm has congestion Ω(C∗ log n) in the
worst case for grids [13].

The algorithm we give is oblivious and randomized, which means that each
path is computed with some randomized choices in a specific manner that does
not depend on other path requests in the network. In particular, a path from a
source s to a destination t is computed by using a shortest path q based on which
we estimate a sequence of adjacent squares along q. The requested path from s
to t is formed by concatenating randomized one-bend paths or two-bend paths
formed in each square in the sequence. The squares in the sequence are selected
from a hierarchical partition of the grid M into canonical squares of various sizes
placed in fixed positions in M . A crucial aspect of the algorithm is that the sum
of the side lengths of the squares in the sequence is within a constant factor to
the length of the shortest path from s to t. This helps to control the stretch. The

Oblivious Routing in Hole-Free Networks 3

congestion is controlled by adjusting the square sizes to the cut sizes (between
s and t) which involve the nodes in the squares.

1.1 Related Work

Valiant and Brebner [21, 20] are the first to propose the oblivious routing tech-
nique of using a single random intermediate node in order to minimize con-
gestion in networks. They give an appropriate general approach for oblivious
routing based on solutions to flow problems in the network. Applications are
permutation routing problems on the hypercube and butterfly networks.

The motivation for minimizing congestion and stretch simultaneously is be-
cause there exist packet scheduling algorithms [12] which deliver the packets
along the given paths in time very close to the optimal O(C +D), where D is
the maximum path length of the routing algorithm. A trivial lower bound for the
total time to transfer all the packets along the selected paths is Ω(C+D). Hence
C + D is a natural metric by which to measure the quality of the paths that
are produced by a routing algorithm. Our oblivious routing algorithm provides
paths with small C +D because of the low congestion and small stretch.

Maggs et al. [13] give an oblivious algorithm for the d-dimensionalmesh (grid)
with congestion O(d ·C∗ · log n). However, the stretch factor in that algorithm is
unbounded. To control stretch within a constant factor, we generalize in [8] the
hierarchical decomposition for the mesh denoted by an access tree [13] to a more
general access graph. Oblivious congestion minimizing algorithms which control
the stretch have been also considered by Scheideler [18] for the 2-dimensional
mesh, which uses a different approach by routing within a square containing the
source and destination and building an access tree specific to this square.

Following the work in [13], there have been extensions to general networks
[4, 5, 10, 15, 16], where progressively better oblivious algorithms with near op-
timal congestion. However, in all these algorithms the stretch is unbounded.
Further, most of these algorithms are based on a hierarchical decomposition of
the network into clusters, which requires a logarithmic number of intermediate
nodes. In [7] we present an oblivious routing algorithm for geometric networks,
which are special types of networks embedded in the 2-dimensional grid, and it
is a very restricted subclass of hole-free networks. That algorithm uses a single
random intermediate node and doesn’t depend on any hierarchical clustering.

Lower bounds on the competitive ratio of oblivious routing has been studied
for various types of networks. Maggs et al. [13] give the Ω(C

∗

d · log n) lower
bound on the competitive ratio of an oblivious algorithm on the mesh. Valiant
and Brebner [21] perform a worst case theoretical analysis on oblivious routing on
specific network topologies such as the hypercube. Borodin and Hopcroft [6] and
Kaklamanis et al. [11] showed that deterministic oblivious routing algorithms can
not approximate the minimal load on most non-trivial networks, which justifies
the necessity for randomization.

Non-oblivious approaches to optimizing C + D have received considerable
attention, and near optimal algorithms are discussed in [1, 3, 17, 19]. As already
mentioned, such offline algorithms require knowledge of the traffic distribution

4 Costas Busch and Malik Magdon-Ismail

a priori and generally do not scale well with the number of packets. Tradeoffs
between stretch and congestion have been studied in wireless networks [9, 2].

As an alternative routing scheme for sensor networks, curve routing relies
on geographic information, which can be obtained through GPS devices [22].
Packets are sent along specified trajectories from sources to destinations. The
trajectories are defined in space, and then they are projected to actual paths in
the network. Packets contain information about the path trajectory, and each
time they are forwarded to the next best node that is closer to the trajectory
and the destination. This has the benefit that the actual network path does not
need to be precisely defined, but it can be determined on the fly in a similar
way as in geographic routing. Thus, such routing methods are suitable for sensor
network and wireless ad hoc networks, where the actual graph connectivity may
not be known precisely but there is some information about the geographic area
that contains the network. Recently, curveball routing has been proposed as a
routing method to send packets along curves with the benefit of load-balancing
the node utilization [14]. All the nodes are projected (uniformly) in the surface of
a sphere. Then a routing curve is obtained from the shortest path in the sphere
that connects the source to the destination. For the virtual path we only need
to know the virtual coordinates of the source and destination. Note that the
shortest path in the sphere may not be realized in the actual network, since we
may not be able to find nodes closer to the destination in virtual coordinates.
In such situations regular geographic routing may be used. Since the surface of
a sphere is symmetric, the expected load on the nodes is balanced.

Paper Outline. We begin with some preliminary definitions in Section 2. We
continue with describing how to construct sequences of squares for paths in
Section 3. We give the oblivious routing algorithm in Section 4. We finish with
its congestion and stretch analysis in Section 5.

2 Preliminaries

An area A on the plane is simple (or hole-free) if every closed curve in A can be
continuously deformed into a point. Intuitively, the area bounded by any closed
curve is completely contained in the area A. For example a disc is hole free, but
an annulus is not.

We now consider a 2-dimensional m×m grid (mesh) graph M consisting of
nodes at positions (i, j) where i, j ∈ [0, 1, . . . ,m− 1], and (0, 0) is a the bottom
left, such that each node is connected with an edge to any node at distance 1
(there are at most four such nodes). On top of this grid, we draw any simple
closed area A. The induced subgraph of A is the subgraph GA consisting of all
nodes and edges which lie in the area A with the removal of all edges which cross
the boundary of A. If the induced subgraph GA is connected, the we say that GA
is a simple-area grid-like graph (or hole-free grid-like graph). This construction
extends the notion of hole-free from areas on the plane to graphs with natural

Oblivious Routing in Hole-Free Networks 5

embeddings on the plane. From now on, G will refer to a simple-area grid-like
network.

2.1 Canonical Squares

Let M be an m×m grid which contains G as a subgraph, where m is a power
of 2. We can divide M into 1 + lgm levels of canonical square subgraphs as
follows. For 0 ≤ ℓ ≤ lgm, the canonical square subgraphs at level ℓ partition M
into 22(lgm−ℓ) square subgraphs. Each canonical square subgraphs at level ℓ is
a 2ℓ × 2ℓ grid subgraph of M , whose bottom left corner node has coordinates
(i · 2ℓ, j · 2ℓ), where 0 ≤ i, j ≤ 2lgm−ℓ − 1.

For simplicity, we will refer to the canonical square subgraph as canonical
squares. The α-partition of M consists of the α×α canonical squares of M . Note
that two canonical squares are either node disjoint or one contains the other.
Further, every node of M is contained in exactly 1+lgm canonical squares. Two
canonical squares M1 and M2 (not necessarily at the same level) are adjacent if
they are disjoint and there is an edge from M1 to M2, i.e. an edge (u, v) ∈ M ,
such that u ∈ M1 and v ∈ M2.

Given a simple-area grid-like graph G defined in M , a canonical square B is
internal if B consists only of nodes in G; otherwise, we say that B is external,
in which case B may consist of both nodes in G and nodes not in G but in M .

2.2 Path Definitions

Consider a simple-area grid-like graph G. The input for a path selection prob-
lem is a set of N sources and destinations (i.e. packets), Π = {si, ti}Ni=1 in G.
The output is a set of paths in G, P = {pi}Ni=1, where each path pi ∈ P is
from node si to node ti. The length of path p, denoted |p|, is the number of
edges it uses. We denote the distance from s to t (the length of the shortest
path from s to t) by dist(s, t). The stretch of a path pi, denoted stretch(pi),
is the ratio of the path length to the shortest path length between its source
and destination, stretch(pi) = |pi|/dist(si, ti). The stretch factor for the collec-
tion of paths P , denoted stretch(P), is the maximum stretch of any path in
P , stretch(P) = maxi stretch(pi). We will denote by C the network congestion,
which is the maximum number of paths in P that use any edge in the network.
We will denote by C∗ the optimal congestion incurred by the optimal set of
paths the can route the packets in Π.

2.3 Cut Number

Consider a source s and destination t, both in G, and any other node v in G.
We now define the cut number of node v with respect to s, t, denoted cuts,t(v).
Let Q be any connected set of nodes containing v and not both of s, t (Q could
contain one or none of s, t). The set Q is an s − t node-cut if every path from
s to t uses at least one node in Q. We will say that Q is an s − t node cut for

6 Costas Busch and Malik Magdon-Ismail

node v. The cut number cuts,t(v) is the size (number of nodes) of the smallest
s− t node cut for node v.

A shortest path from s to v not containing t or from v to t not containing s
give trivial node cuts. Note that at least one (but not necessarily both) of the
trivial node cuts above must exist for every node v. Thus we have the following
simple lemma,

Lemma 1. 1 ≤ cuts,t(v) ≤ 1 + min{distG(s, v), distG(t, v)}.

Intuitively, nodes for which cuts,t(v) < 1 +min{distG(s, i), distG(t, i)} repre-
sent bottlenecks in the network (with respect to sending packets from s to t).
Consider two nodes u, v. Any node set containing v can be converted to one
containing u by including the nodes in a shortest path from u to v. Thus, we
have:

Lemma 2. |cuts,t(u)− cuts,t(v)| ≤ distG(u, v).

The next lemma will be useful for our later results. It basically states that
if a shortest path has to wind a lot, then this path must be passing through a
small cut.

Lemma 3. Suppose that p is a shortest path from s to t which crosses a vertical
(or horizontal) line of nodes three times at the vertical (or horizontal) positions
x1 > x2 > x3 corresponding to the nodes u, v, w. Then cuts,t(v) < |x1 − x3|.

3 Square Sequences of Paths

Consider a simple-area grid-like graph G defined in the m × m grid M . Let p
be a shortest path in G from a node s to node t. We define a square sequence
of shortest path p, to be a sequence R(p) = M1,M2, . . . ,Mk (k ≤ |p|) with the
following properties:

– Canonical-Property: each Mi is a canonical square (ni and ℓi are the number
of nodes and edges, respectively, in a side of Mi), and any two consecutive
squares Mi and Mi+1 are adjacent;

– Coverage-Property: p can be written as a concatenation of subpaths p =
p1p2 · · · pk, such that pi is completely contained in Mi (subpath pi is from
node vi ∈ Mi to wi ∈ Mi);

– Cut-Property: β1 · ℓi ≤ cuts,t(vi) ≤ β2 · ni, where β1, β2 > 0 are appropriately
chosen constants.

The cut-property controls the cut numbers of the nodes in the square sequence
of a shortest path. An effect of the cut-property is that adjacent squares do not
differ significantly in size. Note that the canonical squares used in R(p) may be
internal of external. The same canonical external square may be used multiple
times in a square sequence, or with two non-consecutive squares one may include
the other, due to the way that the graph is formed. In section 3.3, we describe
how to convert a square sequence to consist only of internal canonical squares,
but at the expense of not covering all the nodes in the shortest path.

Oblivious Routing in Hole-Free Networks 7

3.1 Square Sequence Construction

Given a shortest path p in G from a node s to node t we describe how to
construct square sequenceR(p) recursively. We use the following notations: prefix
subsequence Ri(p) = M1, . . . ,Mi, prefix subpath qi = p1 · · · pi, and vi and wi

denote the first and last nodes of pi, respectively.
At the basis of the recursion we have R1(p) = M1, which is the canonical

1 × 1 square that contains s. Suppose that we have constructed the sequence
Ri(p). Let vi+1 be the first node after wi in p. Select Mi+1 to be the largest
canonical square such that: Mi+1 contains vi+1, Mi+1 is adjacent to Mi, and
β1 · ℓi+1 ≤ cuts,t(vi+1). The newly selected square Mi+1 defines the subpath
pi+1. The process repeats until the destination node t is included. The following
figures illustrate this process.

s

t

p

Mi

qi

Ri

A

s

t

p

Mi

qi+1

Mi+1

Ri+1

A

Notice in the above example, Mi+2 may equal or contain Mi. Thus, the same
submesh may be repeated in the canonical decomposition.

3.2 Side Size Bound

In what follows we will focus on providing a bound on the sum of the total side
sizes

∑n
i=1 ni of the canonical squares in R(p), with respect to the length |p| of

the shortest path p. This is useful because it help to bound the stretch of the
resulting paths in the oblivious algorithm.

The connection of the square side sizes with the length of the path p comes
from the cut-number relations of the squares. In the construction of the canonical
squares, the side length ℓi is related to the cut number of vi. We need to find a
relation between the |pi| (the path segment in Mi) and the side length ℓi. We
will establish this relationship through a sequence of lemmas.

The length of path segment pi may exceed 2ℓi in case that Mi is external.
The first lemma shows that if a path segment is long enough then it has to cross
some horizontal or vertical line three times.

Lemma 4. If |pi| ≥ 4ℓi + 2, then pi must cross some horizontal or vertical line
within Mi at least three times.

The following result follows from Lemmas 3 and 4 and the cut-property of
the square sequence:

Lemma 5. |pi| ≤ 5ℓi.

Next we show that the sequence of canonical squares does not grow or de-
crease in size too rapidly.

8 Costas Busch and Malik Magdon-Ismail

Lemma 6. β3 · ni ≤ ni+1 ≤ β4 · ni, for 1 ≤ i ≤ k − 1, and constants 0 < β3 <
1/2 < β4.

We continue with another result with respect to the length of the subpaths
pi inside some Mi.

Lemma 7. Any segment q′ of path pi starting at vi of length |q′| = α ≤ β1ℓi
2

cannot cross a horizontal or vertical line 3 times.

Proof. Suppose that q′ intersects a line 3 times. By Lemma 3, there is node
u ∈ q′ with cut number cuts,t(u) < α, and so cuts,t(vi) < 2α by Lemma 2. By
construction of Mi, β1 · ℓi ≤ cuts,t(vi) < 2α ≤ β1 · ℓi, which is a contradiction.

The next simple observation will be useful.

Lemma 8. A path of length less than α can use at most 4 different α×α squares
in the α-partition of M . Further all the different squares used lie within a 2α×2α
square.

Every time the path p moves from one of its canonical squares Mi to the
next square Mi+1, we will say that the path makes a canonical step. Our next
lemma basically states that if a path makes many (more than 4) canonical steps,
then the path makes significant progress (relative to the length of the canonical
squares).

Lemma 9. If a segment q′ of the shortest path p starting at vi in Mi makes
5 canonical steps, then the length of that segment is at least |q′| ≥ β5ni, for a
constant β5 > 0.

Proof. Let β5 = β5
3 . Suppose that |q′| < β5

3ni. Note that |q′| ≥ 4, since q′ makes
five canonical steps. Since β3 < 1/2, it has to be that ni > 27. By Lemma 6,
each canonical step can decrease the side length by at most a factor β3. Let
nmin be the minimum side size (number of nodes) of the canonical squares used
over the next 5 canonical steps, then nmin ≥ β5

3ni > |q′|. Now consider the
nmin-partitioning of M . Since |q′| < nmin, by Lemma 8, q′ may only use at
most 4 different nmin×nmin squares, all enclosed within a single 2nmin×2nmin

square S. Each canonical transition must cross either the middle horizontal or
middle vertical line of S. Since q makes 5 canonical transitions, either the middle
horizontal or middle vertical line is crossed at least 3 times. To conclude, since
β3 < 1/2 and taking β1 > 2, we get |q′| < β5

3ni < ni − 1 = ℓi < β1ℓi
2 , which

contradicts Lemma 7.

The next simple lemma follows directly from Lemma 1 and the fact that
(ni − 1)β1 = ℓiβ1 ≤ cuts,t(vi) ≤ 1 + dist(s, t).

Lemma 10. ni ≤ β6 · dist(s, t), for some constant β6 > 0.

We are now ready to bound the sum of the sides of the squares in the canonical
square decomposition of a shortest s− t path p.

Oblivious Routing in Hole-Free Networks 9

Theorem 1. For the square sequence of shortest path p, R(p) = M1, . . . ,Mk,

the sum of the side sizes of the canonical squares is bounded as
∑k

i=1 ni ≤
β7 · dist(s, t), for some constant β7 > 0.

Proof. From Lemma 9, |pi|+ |pi+1|+ |pi+2|+ |pi+3|+ |pi+4|+ |pi+5| ≥ β5ni, for
1 ≤ i ≤ k − 5. Thus,

β5

k−5∑
i=1

ni ≤
k−5∑
i=1

(|qi|+ |qi+1|+ |qi+2|+ |qi+3|+ |qi+4|+ |qi+5|),

≤ 6 · dist(s, t).

By Lemma 10,
∑k

i=k−4 ni ≤ 5β6 · dist(s, t), and so by combining these two

inequalities, we conclude that
∑k

i=1 ni ≤ (6/β5 + 5β6) · dist(s, t).

3.3 Internal Square Sequence

The problem with the canonical decomposition R(p) discussed in the previous
section is that it constructs a sequence of squares which may not be completely
enclosed in the network G. Here, we construct a sequence with only internal
squares.

We sumarize the properties of the canonical square decomposition which will
be important for the oblivious path selection algorithm.

1. The cut number of the nodes in the canonical square are proportional to the
side of the canonical square.

2. The canonical squares in the sequence do not grow or shrink in size too
quickly.

3. The sum of the side sizes of the canonical squares is proportional to the
shortest path length distG(s, t).

We briefly sketch why these properties are important. The main idea is that
we will construct the final path from random path segments which move from
one canonical square to the next. The congestion caused by the paths within
any one canonical square is related to the size of the square (how much the
packets can spread). The cut number of these nodes gives a lower bound on
the congestion for sending packets from s to t. Since the cut number and the
side lengths are proportional (property 1 above), this allows us to show that
the congestion inside the canonical squares is near optimal. Further, we do not
want to create a bottleneck in going from one canonical square to the next, so
there should be significant overlap between the intersecting sides of consecutive
squares in the decomposition. This is ensured by property 2. Finally, property 3
bounds the stretch, since the path length is proportional to the sum of the side
sizes of the canonical squares in the decomposition.

We now show how to convert the canonical square decomposition which may
contain some external squares into an internal canonical square decomposition
that still satisfies these three required properties. The basic idea is to replace

10 Costas Busch and Malik Magdon-Ismail

an external square with a sequence of one or more internal squares which are
adjacent to it. This may result to a new sequence of squares which may not
contain the shortest path p. However, this does not cause a problem since the
goal of the oblivious algorithm is to construct new oblivious paths which are
formed near the original path p, and not necessarily exactly on top of it.

Let R(p) = M1,M2, . . . ,Mk be the canonical square decomposition for p, a
shortest s-t path. We will construct an alternative path p′ from s to t and a
respective square sequence R(s, t) = M ′

1,M
′
2, . . . ,M

′
k′ , such that all canonical

squares in R(s, t) are internal. Similar to R(p), let Ri(s, t) be a prefix of the
square sequence R(s, t), q′i a prefix of p′, and p′i the subpath of p′ in M ′

i . The
path p′ will be very close to p, so that stretch(p′) is constant.

We know that M1 is internal, by construction of R(p). Let Mj , j > 1, be
the first external canonical square in R(p). We take the two square sequences
to be the same up to Mj−1, namely, Rj−1(s, t) = Rj−1(p). The idea is that
we will divert the path p from wj−1 (the last node in the canonical square
before Mj) to vj+1 (the first node in the canonical square after Mj) so that
the new respective prefix of path p′ uses only internal canonical squares. Let
nmin = min(nj−1, nj , nj+1) and consider the α-partition of M into squares of
side α = nmin/2. Assume for now that nmin > 1, and that Mj−1,Mj ,Mj+1 are
disjoint. Note that Mj is also partitioned into squares of side α, as is Mj−1 and
Mj+1.

We now consider the (possibly partial) ring X of α × α squares in the α-
partition of M which are adjacent to Mj but are not contained in Mj+1. The
main claim, is that there is a path from wj−1 to vj+1 which uses a sequence of
internal squares in the partial ring X, and then enters Mj+1. In particular, we
consider the paths pc and pa from wk−1 to Mj+1 which go around Mj , staying
as close as possible Mj . The path pc goes around Mj clockwise and the path
pa goes around Mj counter-clockwise. The following lemma is crucial in the
construction:

Lemma 11. Either pa or pc use exclusively internal squares in X.

Proof. Suppose that both pa and pc use each at least one external square in X.
Then, we will show that cuts.t(vj) ≤ 8nj . Let Sa be the first canonical square
used by pa which is external and let va be an external node in Sa. Similarly
let Sc be the first canonical square used by pc which is external and let vc be
an external node in Sc. Consider a shortest path from vj to va and let Ya be
the segment of this path up to but excluding the first external node met on the
path. Similarly let Yc be the segment of a shortest path from vj to vc up to the
first external node on the path. Let Y = Ya ∪ Yc. Since the shortest path from
vj to va is entirely in a square of side nj +2α ≤ 2nj (since 2α ≤ nj), |Ya| ≤ 4nj .
Similarly, |Yc| ≤ 4nj and so |Y | ≤ 8nj . Clearly, Y is an s-t cut for vj , since
Mj−1,Mj ,MJ+1 are taken to be disjoint. Therefore, cuts,t(vj) ≤ 8nj . Since by
construction of R(p), β1ℓj ≤ cuts,t(vj), and also nj = ℓj + 1 and we assumed
that nj ≥ 2, by choosing the constant β1 appropriately large, we obtain the
cuts,t(vi) > 8nj . A contradiction.

Oblivious Routing in Hole-Free Networks 11

Lemma 11 implies that we can replace pj with either pa or pc (whichever
uses only internal α × α squares) in p′. The corresponding sequence R(s, t) is
augmented after Rj−1(s, t) with the α × α internal canonical squares in ring
X that correspond to the chosen pa or pc. This way, Mj has been eliminated
and replaced by internal squares whose side size is within constant factor from
nj . The process repeats with the next external square in R(p), until all external
squares have been eliminated. The process can also be appropriately modified for
the cases where nmin = 1 and Mj−1,Mj ,Mj+1 are not pairwise disjoint. Using
Theorem 1 and Lemma 6, we can obtain the following result:

Theorem 2. Given source s and destination t we can construct a square se-
quence R(s, t) = M1,M2, . . . ,Mk such that:

(i) each Mi is an internal canonical square (with side size ni and length ℓi),
(ii) for any v ∈ Mi, γ1 · ℓi ≤ cuts,t(v) ≤ γ2 · ni, for constants γ1, γ2 > 0,
(iii) Mi and Mi+1 are adjacent with γ3 · ni ≤ ni+1 ≤ γ4 · ni, for 1 ≤ i ≤ k − 1,

and constants γ3, γ4 > 0, and
(iv)

∑k
i=1 ni = Θ(dist(s, t)).

4 Oblivious Path Selection Algorithm

Consider a hole-free grid-like network G with n nodes. The input for a path
selection problem is a set of N sources and destinations (i.e. packets), Π =
{si, ti}Ni=1 and the output is a set of paths, P = {pi}Ni=1, where each path
pi ∈ P is from node si to node ti. It suffices to describe the algorithm for
an arbitrary single s-t source destination pair, and then each packet can use the
same algorithm.

We will assume that in the network we have pre-computed the internal square
sequence R(s, t) = M1,M2, . . . ,Mk, for every pair s, t, as specified by Theorem 2.
A one-bend path uses two straight lines in different dimensions, and a two-bend
path uses three straight lines with alternate dimensions. The path from s to t
is computed by using either a one-bend path or a two-bend in each square Mi.
The decision for which type of path to use depends on the way that consecutive
squares Mi−1,Mi,Mi+1 are aligned. We have the following algorithm.

1: Consider three adjacent squares Mi−1,Mi,Mi+1. Let nmin = min{ni, ni+1}.
Suppose we have constructed the path from s to t up to square Mi−1, and
let ui−1 be the last node of the path on the side of Mi−1 adjacent to Mi.

2: if (Mi−1 and Mi are adjacent in the right and left sides, respectively, and
Mi and Mi+1 are adjacent in the top and bottom sides, respectively) then

3: Select a random node ui among the nmin nodes on the top edge of Mi

adjacent Mi+1. Construct a one-bend path from ui−1 to ui.
4: else
5: if (Mi−1 and Mi are adjacent in the right and left sides, respectively, and

Mi and Mi+1 are adjacent in the right and left sides, respectively) then

12 Costas Busch and Malik Magdon-Ismail

6: Select a random node x ∈ Mi among ni nodes on the horizontal line
specified by ui−1. Select a random node ui among the nmin on the right
edge of Mi adjacent to Mi+1. Construct a two-bend path from ui−1 to
ui through x.

7: Every other arrangement of the sides of Mi−1,Mi,Mi+1 can be handled
similar to one of the cases above. For the first square we have u1 = s and
for the last square uk = t.

5 Congestion and Stretch Analysis

From the algorithm description in Section 4, the path from si to ti is formed
by concatenating one-bend paths or two-bend paths formed in the respective
squares in the seuquence R(si, ti). By construction, we observe that each subpath
in a square Mi has length at most 3ni. This observation with combination of
property (iv) in Theorem 2 implies that:

Theorem 3 (Stretch). The stretch of the paths P returned by the oblivious
algorithm has stretch(P) = Θ(1).

Thus, we only need to focus on the congestion. We start with a lower bound
analysis for the optimal congestion and then we give an upper bound which is
within a log factor from the lower bound. In what follows we give the bounds in
terms of the node congestion, which is the maximum number of paths that use
any node. The resulting bounds immediately translate to edge congestion within
a factor 4 since each node has at most four adjacent edges. Thus, the asymptotic
bounds stay the same for edge congestion.

5.1 Lower Bound on Optimal Congestion

Consider an arbitrary α × α internal canonical square B. Let Q ⊆ P be the
set of paths selected by the algorithm that use B because it is in their square
sequence. We establish a lower bound on the optimal congestion C∗ due to the
paths Q in B.

With respect to any path p ∈ Q from source s to destination t, Theorem 2
implies that every node v ∈ B has cuts,t(v) ≤ γ2α. Let H be a (2γ2 + 1)α ×
(2γ2 + 1)α grid subgraph of nodes in M such that B is in the middle of H. We
truncate H wherever it exceeds the network M , resulting to a rectangular grid of
maximum side length (2γ2 + 1)α. Let HG denote the subgraph of G in H. Note
that HG may be disconnected. We define the perimeter nodes of HG, denoted
T (HG), as the set of nodes of u ∈ HG which have incident edges (u, v) ∈ G, such
that v /∈ HG.

Lemma 12. The following properties hold for T (HG): (i) |T (HG)| ≤ (8γ2+4)α,
and (ii) for any w1 ∈ B and w2 ∈ T (HG), dist(w1, w2) ≥ γ2α.

Oblivious Routing in Hole-Free Networks 13

Proof. We define the perimeter nodes of H, and we denote them as T (H), to be
those nodes ofH which have incident edges (u, v) ∈ M , where u ∈ M and v /∈ M .
Since H is a rectangular grid of maximum side size 3α, |T (H)| ≤ 4 · (2γ2+1)α =
(8γ2 + 4)α. We will show that T (HG) ⊆ T (H).

Let u ∈ T (HG), and suppose that u /∈ T (H). Then there is an edge (u, v) ∈ G,
with v /∈ HG. Since u ∈ H and u /∈ T (H), we obtain v ∈ H. Thus, v is a node
in H and also a node in G, and therefore, by construction of HG, v ∈ HG, a
contradiction.

Therefore, T (HG) ⊆ T (H). Consequently, |T (HG)| ≤ |T (H)| ≤ (8γ2 + 4)α,
which proves property (i). Further, since B is chosen to be in the middle of H
(before the truncation of H), the smallest distance of any node w1 ∈ B to the
closest perimeter node of H is at least γ2α. Since T (HG) ⊆ T (H), w1 is at
distance at least γ2α from any node w2 ∈ T (HG), proving property (ii).

We can write Q = Q1 ∪Q2, where Q1 are the paths of Q whose both source
and destination are outside HG, and Q2 are the paths of Q whose either source
or destination (or both) are inside H. Note that Q1 and Q2 are disjoint. We first
relate Q1 with the lower bound C∗.

Lemma 13. Given a path p ∈ Q1 with source s and destination t, every path
from s to t uses some node in HG.

Proof. Suppose that there is a path q ∈ G from s to t such that for each node
u ∈ q with u /∈ HG. Let v ∈ B. Consider now the smallest (s, t)-cut z, such
that v ∈ z. Clearly, cuts,t(v) = |z|, where |z| denotes the number of nodes in z.
Clearly, z contains a node u ∈ q. Since, v ∈ B and u /∈ HG, z has to use a node
in the perimeter w ∈ T (HG). Thus, z has two edge-disjoint sets z1 and z2, from
v to w, and from w to u, respectively.

From Lemma 12, |z1| ≥ γ2α+ 1. Further, |z2| ≥ 1, since u ̸= w (w ∈ T (HG)
and u /∈ T (HG)). Consequently, |z| ≥ |z1| + |z2| − 1 ≥ γ2α + 1. Therefore,
cuts,t(v) ≥ γ2α+ 1. A contradiction, since by Theorem 2, cuts,t(v) ≤ γ2α.

Lemma 14. C∗ ≥ γ5|Q1|/α, for some constant γ5 > 0.

Proof. Consider a path p ∈ Q1 from s to t. From Lemma 13, each path q from
s to t has to use a node in HG. Since s /∈ HG and t /∈ HG, q enters HG through
one of the perimeter nodes in T (HG).

Thus, any path selection algorithm (including the optimal oblivious or non-
oblivious) for the |Q1| source-destination pairs, has to construct paths that each
uses at least one node in T (HG). Let Utotal = |Q1| denote the total node utiliza-
tion of the nodes in T (HG) due to the |Q1| paths that have to be constructed.
The average node utilization of the nodes in T (HG) is Uavg = Utotal/|T (HG)|.
The optimal congestion C∗ has to be at least as much as the average node uti-
lization Uavg, since some node in T (HG) has to be used by at least Uavg paths,
by any path selection algorithm. Thus, Lemma 12 gives for a constant γ5:

C∗ ≥ Uavg ≥ Utotal

|T (HG)|
≥ |Q1|

(8γ2 + 4)α
=

γ5|Q1|
α

.

14 Costas Busch and Malik Magdon-Ismail

We continue now to relate the optimal congestion C∗ to the paths in Q2.

Lemma 15. Let a path p ∈ Q2 from s to t. Then, dist(s, t) ≥ γ6(α − 2), for
some constant γ6 > 0.

Proof. Let q be a shortest-path from s to t which is used to construct the
sequence of squares R(q) from s to t containing possibly external or internal
squares. Path p uses B because it appears in the sequence of internal squares
R(s, t) that we obtain from R(q). We examine two cases:

– B ∈ R(q): Then, shortest path q uses some node v ∈ B. From Theorem 2,
γ1(α − 1) ≤ cuts,t(v). From Lemma 1, |q| ≥ cuts,t(v) − 1 ≥ γ1(α − 1) − 1 ≥
γ1(α− 2).

– B /∈ R(q): By the construction of R(s, t), B must be adjacent to some α′ ×α′

canonical square B′ ∈ R, where α′ ≥ 2α, such that q goes through B′. Further,
if v is the first node of q that uses B′, then there is a node u ∈ B such that
dist(u, v) ≤ κα, for some appropriate constant κ. From Theorem 2, cuts,t(u) ≥
γ1(a− 1). From Lemma 2, cuts,t(v) ≥ cuts,t(u)− dist(u,w) ≥ γ1(α− 1)− κα
From Lemma 1, |q| ≥ cuts,t(v)− 1 ≥ (γ1 − κ)(α− 2).

Considering now both of the cases, |q| ≥ min{(γ1 − κ)α, γ1(α− 2)} = γ6(α− 2),
for some appropriate constant γ6.

We define the k-neighborhood of a node in graph G as Nk(v) = {u ∈ G :
dist(u, v) ≤ k} (note that this includes also v since by default dist(v, v) = 0).
The k-neighborhood of a set of nodes A in G is Nk(A) =

∪
v∈A Nk(v).

Lemma 16. C∗ ≥ γ7|Q2|/α, for some constant γ7 > 0.

Proof. Consider the case where α ≥ 4. Let A = Nγ6α(HG), that is, A is the
γ6α-neighborhood of HG in G (note that A includes all the nodes in HG). Let
H ′ be a square grid of side length 2⌈log(2γ6α+(2γ2+1)α)⌉ = ξα, for some constant
ξ, such that B is in the middle. (Note that the non truncated square grid H
with side length (2γ2 + 1)α is also in the middle of H ′.) In particular, consider
the truncated version (due to the boundaries of M) of H ′ which is a rectangular
grid of maximum side length ξ′α that contains H and B. We have that all the
nodes in A are inside H ′. Therefore, |A| ≤ (ξα)2.

Consider now a path p ∈ Q2 from s and t. Suppose, without loss of generality,
that s ∈ HG (the other case is t ∈ HG which is symmetric). By Lemma 15, any
path p′ from s to t has |p′| ≥ γ6(α− 2). Since the source of p′ is in HG, path p′

has a prefix p′′ which is completely inside A and has |p′′| = γ6(α− 2). Thus, p′

uses at least γ6(α− 2) nodes of A. Similarly, any path from s to t has to use at
least γ6(α− 2) nodes of A.

Thus, any path selection algorithm for the |Q2| source-destination pairs, has
to construct paths that each uses at least γ6(α−2) nodes in T (HG). Let Utotal =
γ6(α− 2)|Q2| denote the total node utilization of the nodes in A due to the |Q2|
paths that have to be constructed. The average node utilization of the nodes in
A is Uavg = Utotal/|A|. The optimal congestion C∗ has to be at least as much

Oblivious Routing in Hole-Free Networks 15

as the average node utilization Uavg, since some node in A has to be used by
at least Uavg paths, by any path selection algorithm. Since we took α ≥ 4, we
obtain:

C∗ ≥ Uavg ≥ Utotal

|A|
≥ γ6(α− 2)|Q2|

(ξα)2
≥ γ7|Q2|

α
,

for some constant γ7. For the case α < 4, we can use the trivial bound C∗ > 1,
and adjust appropriately γ7.

Lemma 17. C∗ ≥ γ8|Q|/α, for some constant γ8 > 0.

Proof. By combining Lemma 14 and Lemma 16, we obtain C∗ ≥
max{γ5|Q1|/α, γ7|Q2|/α}. Let X = max{|Q1|, |Q2|}. Since Q1 and Q2 are dis-
joint, X ≥ |Q|/2. Let γmin = min{γ5, γ7}, and γ8 = γmin/2. We have,

C∗ ≥ max

{
γmin|Q1|

α
,
γmin|Q2|

α

}
≥ γminX

α
≥ γmin|Q|

2α
=

γ8|Q|
α

.

5.2 Upper Bound on Algorithm Congestion

We continue with providing an upper bound on the congestion. Let Q ⊆ P be
the set of chosen paths by the algorithm that use internal canonical α×α square
B because it is in their internal square sequence.

Lemma 18. For any v ∈ B, the number of paths in Q which are expected to use
v is at most φ|Q|/a, for some constant φ.

Proof. We can write Q = Qa ∪ Qb, where Qa are the chosen paths that follow
one-bend paths in B, while Qb are the chosen paths that follow two-bend paths
in B. Note that Qa and Qb are disjoint.

Consider a path p ∈ Qa. Let p
′ be the one-bend subpath of p in B. We can

write p′ as the concatenation of two paths p′ = p1p2, where p1 corresponds to
the first part of p′ before the bend (the bend node is also included in p1), and
p2 corresponds to the second part of p′ after the bend. Path p may use v either
in one of the subpaths p1 or p2. Suppose, without loss of generality, that p1 is
horizontal. Let u be the first node in p1. If u is in the same row with v then p1 uses
v. According to the path selection algorithm, node u is chosen (along a column
of nodes) with probability at most r = φ/α, for some constant φ ≥ 1. Therefore,
subpath p1 uses v with probability at most r. With a similar analysis, subpath
p2 uses v with probability at most r (by adjusting appropriately φ). Therefore,
path p uses v with probability at most r.

Consider now the case where p ∈ Qb. Let p′ be the two-bend subpath of p
in B. We can write p′ as the concatenation of three paths p′ = p1p2p3, which
correspond to the part of p′ before the first bend, between the first and second
bends, and after the second bend, respectively. Path p may use v in only one of
the subpaths p1 or p2 or p3. The probability that either p1 or p3 use v is bounded
by r, as proven in the one-bend case. Suppose, without loss of generality, that
p2 is horizontal. Let u be the first node of p2. If u is in the same row with v then

16 Costas Busch and Malik Magdon-Ismail

p2 uses v. According to the path selection algorithm, node u is chosen (along
a column of nodes) with probability r′ = 1/α. Therefore, subpath p2 uses v
with probability at most r′. Therefore, path p uses v with probability at most
max(r, r′) = r.

Therefore, from the paths in Qa it is expected that at most |Qa|r will use
v. Similarly, the expected number of paths from Qb that will use v is at most
|Qb|r. Therefore, the expected number of paths from Q that will use v is at most
|Qb|r + |Qb|r = |Q|r = φ|Q|/a.

From Lemma 17 and Lemma 18, we obtain the following corollary.

Corollary 1. For any v ∈ B, the number of paths in P which are expected to
use v is O(C∗).

Theorem 4 (Congestion). The expected congestion on any node v ∈ G is
O(C∗ log n), where n is the number of nodes in G. (The same result holds also
with high probability by applying a Chernoff bound.)

Proof. Node v ∈ G may participate to O(logm) partition levels of internal
canonical squares. Since we can choose M to be such that m is at most the
diameter D of G, then we have that m = Θ(D) = Θ(n), which implies O(log n)
partition levels. From Corollary 1, the internal square at any particular partition
level causes O(C∗) expected congestion to v. Thus, the total expected congestion
to v is O(C∗ log n).

References

1. J. Aspens, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. Online load balancing
with applications to machine scheduling and virtual circuit routing. In Proceedings
of the 25th ACM Symposium on Theory of Computing, pages 623–631, 1993.

2. F. Meyer auf der Heide, C. Schindelhauer, K. Volbert, and M. Grünewald. Con-
gestion, dilation, and energy in radio networks. Theory of Computing Systems,
37(3):343–370, 2004.

3. B. Awerbuch and Y. Azar. Local optimization of global objectives: competitive
distributed deadlock resolution and resource allocation. In Proceedings of 35th
Annual Symposium on Foundations of Computer Science, pages 240–249, Santa
Fe, New Mexico, 1994.

4. Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing
in polynomial time. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (STOC), pages 383–388, San Diego, CA, June 2003. ACM Press.

5. Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical al-
grorithm for constructing oblivious routing schemes. In Proceedings of the 15th
Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages
24–33, Jun. 2003.

6. A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models
of computation. Journal of Computer and System Science, 30:130–145, 1985.

7. Costas Busch, Malik Magdon-Ismail, and Jing Xi. Oblivious routing on geometric
networks. In Proceedings of the 17th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 316–324, Las Vegas, Nevada, July 2005.

Oblivious Routing in Hole-Free Networks 17

8. Costas Busch, Malik Magdon-Ismail, and Jing Xi. Optimal oblivious path selection
on the mesh. IEEE Transactions on Computers, 57(5):660–671, May 2008.

9. Jie Gao and Li Zhang. Tradeoffs between stretch factor and load balancing ratio in
routing on growth restricted graphs. In PODC ’04: Proceedings of the twenty-third
annual ACM symposium on Principles of distributed computing, pages 189–196,
New York, NY, USA, 2004.

10. Chris Harrelson, Kristen Hildrum, and Satish Rao. A polynomial-time tree decom-
position to minize congestion. In Proceedings of the 15th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, pages 34–43, Jun. 2003.

11. Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for
oblivious routing in the hypercube. In Proceedings of 2nd IEEE Symposium on
Parallel and Distributed Processing (2nd SPAA 90), pages 31–36, Crete, Greece,
July 1990.

12. F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-scheduling
in O(congestion+ dilation) steps. Combinatorica, 14:167–186, 1994.

13. B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westerman. Exploiting
locality in data management in systems of limited bandwidth. In Proceedings of the
38th Annual Symposium on the Foundations of Computer Science, pages 284–293,
1997.

14. Lucian Popa, Afshin Rostamizadeh, Richard Karp, Christos Papadimitriou, and
Ion Stoica. Balancing traffic load in wireless networks with curveball routing. In
MobiHoc, 2007.

15. Harald Räcke. Minimizing congestion in general networks. In Proceedings of the
43rd Annual Symposium on the Foundations of Computer Science, pages 43–52,
Nov. 2002.

16. Harald Räcke. Optimal hierarchical decompositions for congestion minimization
in networks. In Proceedings of the 40th STOC, pages 255–264, 2008. Co-Winner
of Best Paper Award.

17. P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

18. C. Scheideler. Course notes. http://www14.in.tum.de/lehre/2005WS/na/index.
html.en.

19. A. Srinivasan and C-P. Teo. A constant factor approximation algorithm for packet
routing, and balancing local vs. global criteria. In Proceedings of the ACM Sym-
posium on the Theory of Computing (STOC), pages 636–643, 1997.

20. L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Com-
puting, 11:350–361, 1982.

21. L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In
Proceedings of the 13th Annual ACM Symposium on Theory of Computing, pages
263–277, May 1981.

22. Feng Zhao and Leonidas J. Guibas. Wireless Sensor Networks: An Information
Processing Approach. Morgan Kaufmann, 2004.

