
Attentive Betweenness Centrality (ABC):
Considering Options and Bandwidth when

Measuring Criticality
Sibel Adalı

Computer Science Department
Rensselaer Polytechnic Institute

Troy, New York 12180
Email: sibel@cs.rpi.edu

Xiaohui Lu
Computer Science Department

Rensselaer Polytechnic Institute
Troy, New York 12180
Email: lux3@cs.rpi.edu

Malik Magdon-Ismail
Computer Science Department

Rensselaer Polytechnic Institute
Troy, New York 12180

Email: magdon@cs.rpi.edu

Abstract—Betweenness centrality measures how critical a node
is to information flow in a network. A node is critical (and hence
should have high betweeness) if it is on many shortest paths. Two
shortcomings of such a measure are:

(i) It ignores nodes on “almost shortest” paths;
(ii) It assumes that a node can provide the same attention to

information flow through each of those shortest paths, no
matter how many shortest paths the node controls.

There have been attempts to address these concerns in the
literature, with partial success. We provide a new measure,
attentive betweenness centrality (ABC), that measures criticality
by the amount of attention a node devotes to the information
flow between other nodes. Our measure addresses both the
aforementioned concerns and can be computed efficiently. It
performs as well or better than betweenness centrality on both
stylized networks and large scale real data networks, and hence
provides a useful tool for measuring node criticality.

I. INTRODUCTION

Betweenness is a measure of how critical a node is in a
network. It is one of a number of ‘centrality’ indices that have
been introduced by researchers over the years (others include
closeness centrality, degree centrality, . . . , [1]). Such indices
have proved invaluable in understanding the roles of actors
in social networks, and more generally the importance of
vertices in information networks, citation networks, computer
and communication networks, biological networks, etc.

Even within the realm of betweenness, there are several
variants, and the standard betweenness centrality (or more
simply just betweenness) measures the fraction of shortest
paths that pass through a node [2], [3]. It models how critical
that node is in the transfer of information between other pairs
of nodes in the network. Bridge nodes in a network tend to
have high betweenness. Betweenness can be computed for all
nodes in a network with m edges and n nodes in O(mn) [4].

Betweenness rewards a node if it is on a shortest path, and
does not reward it at all if it is not on a shortest path. This is a
non-intuitive approach given that betweenness is supposed to
capture how critical a node is to information flow, because in
most networks, information does not only flow along shortest
paths [5], [6]. In fact, when actors are propagating information,

there is no reason to expect that they even know what the most
direct path to the destination is, as was demonstrated in [7],
[8]. So, on the philosophical side, if betweenness is to capture
how much control an actor has over the information flow, it
should not be assumed that information has to flow along
shortest paths. In fact, assuming that information must flow
only along shortest paths leads to undesirable consequences,
like overweighting the criticality of nodes that happen to be on
the shortest path while completely marginalizing nodes who
happen to be on paths that are just a little longer. The following
example in Figure 1 illustrates. One can easily verify that
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Fig. 1. Stylized network to illustrate the effect of ignoring nodes not on the
shortest path.

nodes C and D are not on the shortest path between any other
pair of nodes with one in the left clique and the other in the
right clique, while A and B are on all the shortest paths from
the left clique to the right one. Hence, the betweenness of A
and B is high, while the betweenness of C and D is very low;
this does not seem to be a reasonable conclusion. Even more,
it is clear that B is more important than A, since without B
there are no paths from the left to the right, but the reverse is
not true for A. While betweenness reflects this somewhat, the
difference is not appropriately emphasized. The culprit that
led to this state is the ignoring of information flow along
multiple paths, even if they are a little longer. Several attempts
to address this concern have been proposed and we will
mention the two perhaps most common approaches. The first
is the flow based approach as in flow betweenness [6], which



considers sending the maximum flow of information between
two nodes and determines the flow betweenness of a third node
v by what fraction of that maximum flow passes through v.
The main concerns with flow betweenness are: it computes a
node’s importance assuming that other nodes send information
along max-flow paths, and it is by no means clear that nodes
could even compute max-flow paths; max-flow paths can easily
over-emphasize highly indirect paths; max flow paths can
completely ignore nodes which would certainly be expected
to play a role in information flow (for example node C in
network 2 of Figure 5 will not be used in a maximum flow
from the left to the right because all such flows use the parallel
paths passing through A and B); the computation of flow
betweenness is O(m2n) [9] which is not scalable to modern
large networks. The second general approach to including non-
shortest paths in the centrality measure is based on random
walks, for example random walk betweenness [10], which
computes the betweenness of a node u by choosing the start
and end point of a random walk uniformly, and computing the
fraction of times this random walk will pass through u. While
“all” paths are considered as possible information flow paths,
such methods have a tendency to over emphasize peripheral
nodes. For example, in Figure 1, the nodes in the left and
right cliques get visited often because they are well connected.
Hence, these ’peripheral’ nodes will get high random walk
betweenness, yet they clearly don’t serve any critical role
in the network’s information flow. Further the computation
time is O(mn2), which again is not scalable in comparison to
betweenness.

Attention. To illustrate the concept of attention, we consider
Figure 2. Let’s consider information flow between A and
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Fig. 2. Stylized network to illustrate attention.

B (shaded black) and let’s analyze the criticality of nodes
C,X, Y for this flow. Betweenness says X and Y are useless,
because the only shortest path from A to B is through C.
Flow betweenness will send equal flow down the A–X–Y –B
path as the A–C–B path, and so C,X, Y all have equal flow
betweenness. A random walk starting at A and ending at B
can be viewed as a fair gamblers ruin problem; after a little
algebra one finds that the fraction of such random walks that
use C,X, Y are respectively 3

4 ,
2
3 .

1
2 . To summarize:

actor
Measure C X Y

Betweenness 1 0 0
Flow 1 1 1

Random Walk 1 8
9

2
3

(We rescaled all the scores in each row so that the maximum
is 1 for easy comparison of the relative rankings.) The general
conclusion is that C is important, yet when we step back and
take stock, this seems very surprising. If asked which is the
more reliable path for the A–B information flow, most would
not disagree if A would choose A–X–Y –B, and any of a
number of explanations would be convincing. We choose the
explanation that C is overloaded; C has only a finite attention,
and an incoming piece of information will not be forwarded
on to B necessarily. C has so many options, that (say) picking
one at random will not get it to B with very high probability.
In fact there is only a 1 in 2n − 1 chance that it gets to B.
Since A, a priori does not know which path is better, it splits
its information along both its outgoing options. Of the 1

2 that
goes to X , there is nowhere to go but B. Of the 1

2 that goes to
C, 1/(2n−1) of that will reach B (assuming C randomizes).
The total flow coming to B is therefore

1

2
+

1

2
· 1

2n− 1

Of this information reaching B, the fraction that came from
X,Y is 1− 1

2n and the fraction that came from C is 1
2n . So,

if we account for attention, we now see that, as n gets large,
it is in fact C that gets marginalized.

actor
Measure C X Y

Betweenness 1 0 0
Flow 1 1 1

Random Walk 1 8
9

2
3

ABC-Centrality 1
2n−1 1 1

That is the implication of finite attention, and in a very high-
level nutshell, that is the basic idea behind our proposed new
measure of betweenness, which we call Attentive Betweenness
Centrality, or ABC-centrality. Note that none of the other
algorithms will have a dependence on n. In a world where
C had bounded capacity/bandwidth/energy, C cannot possibly
forward all traffic to all neighbors, and if C did, C would
essentially become a spammer.

It is useful to explain exactly how the other measures failed
to account for this finite attention. Betweenness simply asserts
that C will forward to all nodes, and so given this infinite
power, the quickest path is only through C. Flow betweenness
asserts that A can tell C to send the information to B; not only
is this rarely the case in practice, but A may not know the
maximum flow path to B. In random walk betweenness, it is
assumed that if C forwards the information to a random node
like v, it will bounce back to C, and it will keep bouncing back
to C until it reaches B; in reality if C sends the information



to v, that is likely the end of the story and the information is
lost.

Information Flow. Before we develop any measure for
betweenness, we had better return to the axioms. Betweenness
is supposed to capture how much control an actor has over the
information flow of the network. Well, in that case, we must
first postulate the basic properties that information flow should
have. We list the ones we consider fundamental.

I. Forward Propagation. An actor will not send information
back along edges from where the information came.

II. Locality. An actor cannot process global information
and perform global algorithms in determining how to
forward information. An actor can only make use of
its local neighborhood in deciding how to forward the
information.

III. Attention. Actors have a finite attention they can give a
piece of information. In the simplest case we can imagine
an equal treatment of an actor’s neighbors when deciding
where to send a piece of information.

IV. Multipath. Information may flow along multiple paths to
reach a destination, some longer than others. Controlling
for attention, longer paths should be less valuable than
shorter ones.

With respect to some notion of information flow satisfying
these properties, the betweenness of a node v with respect
to some other pair of nodes trying to exchange information
should be the fraction of successful exchange that needs to
pass through v.

Our Contributions. We present a simple betweenness mea-
sure, attentive betweenness centrality (ABC-centrality) that is
based on a model of information flow that satisfies the basic
properties above. It contains features of flow based methods,
random walk based methods and incorporates preference for
shortest paths. It is efficient to compute, having the same
complexity as betweenness for unweighted graphs and better
complexity for weighted graphs. A summary of the informa-
tion flow models on which various betweenness measures are
based is given below.

Betweenness measure
Bet. ABC Flow Rand Walk

Forw. Prop. X X X 8
Locality 8 X 8 X
Attention 8 X 8 8

Non-shortest 8 X X X
Complexity O(mn) O(mn) O(m2n) O(mn2)

Bet=betweenness; ABC=our measure

Our algorithm contains a parameter α ∈ [0, 1] which deter-
mines the factor by which one prefers shorter paths over longer
paths. With α closer to 0, our algorithm is an extension of
betweenness that incorporates attention; With α closer 1, our
algorithm starts to have features of degree centrality. Thus the
general algorithm offers a spectrum of measures between these
two, and a practitioner could pick the appropriate one.

We illustrate the benefits of our ABC-centrality on several

stylized graphs. ABC-centrality has strong similarity to be-
tweenness with the added benefit of attention and multipath;
we demonstrate this not only on the stylized graphs but
also on large scale applications to the IMDB actor-movie
network and the DBLP author-paper academic network. Based
on the expectation that high betweenness actors ought to
be actors with a diversity of talents [11], we give a large
scale quantitative study on IMDB that demonstrates that ABC-
centrality is better able to capture this diversity than traditional
betweenness.

In conclusion, our method is similar to betweenness with
added benefits; it is just as efficient to compute; and, it
performs better in practice and on stylized networks (at
least within our limited experimental setup). As such, ABC-
centrality ought to be considered as a serious alternative to
betweenness when a betweenness measure of centrality is de-
sired. We emphasize that our goal is not to present a centrality
measure that dominates all other centrality measures, though
it would be interesting to perform a large scale comparison of
different types of centrality measures. Our goal is to address
some of the deficiencies in the betweenness algorithms, which
have been recognized in the past but not adequately addressed.
Our hope is that the remainder of the paper will convince the
reader that we do indeed address these deficiencies and provide
a superior measure of betweenness.

Paper Organization. Next, we give the detailed description
of the algorithm that computes ABC-centrality. We then give
the comparison of various measures of centrality on the
stylized networks as well as large scale validation on IMDB
and DBLP. We conclude with a discussion of weighted graphs
to which our algorithms seemlessly extend.

II. ALGORITHM FOR COMPUTING ABC-CENTRALITY

The ABC-centrality algorithm takes as input a value α and
computes scores for each node. The high level description of
the algorithm is as follows. The following small network in
Figure 3 will be a useful concrete realization of the algorithm.
For each node for example A, we imagine a unit of infor-
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Fig. 3. Illustration of the computation of ABC-Centrality



mation being sent out. Every node that receives information
propagates it out to its neighbors, dividing it equaly among
its neighbors, with the exception that neighbors from where
information came do not get any flow back. In this way, flow
propagates from A through the network in a breadth-first-
search manner and will eventually stop flowing after O(m)
steps. Now, every node (for example D) has received some
flow. The fraction of this flow that passed through various
other nodes on the way from A are what contribute to the
centrality score of those nodes. So for example, for the flow
from A to D, nodes B and C will be credited that fraction of
the (2α2 + α3)/12 that reached D and passed through them.
This entire process is repeated for information flow starting
from every node, resulting in an O(mn) final running time.
As can be seen from Figure 3, the role α plays is to attenuate
the information by the factor α for every edge the information
traverses. So information that arrives to (for example) D via a
longer path will get attenuated relative to information arriving
via a shorter path.

To see that the algorithm satisfies the basic requirements of
information flow, observe:

– Forward propagation. Information never flows back along
links.

– Locality. A node forwards to all nodes who didn’t already
send it information uniformly.

– Attention. A node divides its effort among its neighbors
(i.e. the information value gets split) as opposed to giving each
neighbor 100% service, which could be unbounded for very
large degree nodes.

– Multipath. Clearly information arrives to D using multiple
paths of different lengths. The α parameter determines how
much we prefer shorter paths. If α → 0 we only use
shortest paths, and then the only difference between ABC and
betweenness is attention.

We now give the more detailed description of the algorithm,
referring to Figure 3. The detailed pseudocode can be found
in the appendix in Figure 10. The information flow model
we will use results in an algorithm that is very similar to the
algorithm for computing standard betweenness.

The algorithm is initiated at each node so for illustration,
consider node A in Figure 3. The first step is the forward step
in which information is propagated from A. The second step
is the backward step in which we collect up the information
that has flowed through each node.

Forward Step. Initiate one unit of flow from A. The
forward propagation of flow proceeds in synchronous steps
t = 1, 2, . . .. We now describe the general process at a generic
node v, and then illustrate the process with Figure 3. At every
time step, either a node has received flow or not. The first
time a node receives flow, it will propagate over the next two
time steps. Suppose that v received information for the first
time at step t; here is what happens at steps t+ 1 and t+ 2.
We assume that v has access to information about the nodes
in its neighborhood. In particular, it can categorize the nodes

u in its neighborhood into three sets.

Spar(v) = {u s.t. u sent v info.};
Ssib(v) = {u s.t. u has info. but didn’t send to v};
Schild(v) = {u s.t. u has no information}.

This information is all locally available, which is essential
for the algorithm to be based on local information flow. The
situation is illustrated below.

v

Schild

Spar

Ssib

The grey nodes in Spar (your ‘parents’) have just forwarded
information to v. Let xt be the information coming from Spar,
and let δ = |Ssib|+ |Schild|. At step t+ 1, v forwards αxt/δ
information to each neighbor in Ssib along the red arrows. This
corresponds to dividing the information amongst its neighbors
(finite attention) and first sending the information to your
neighbors who already have information but didn’t send it
to you yet (your ‘siblings’). You will receive information
from these neighbors in this step as well. Let the amount
of information you receive from your siblings be xt+1. So
your total information is now xt + xt+1. Node v now sends
α(xt + xt+1)/δ to its ‘children’ nodes in Schild at time step
t + 2. After this point v will neither receive nor send any
more information. One can show that this process is exactly
analogous to a breadth-first (BFS) information propagation
starting from A with the addition that information propagates
during the even time steps with a BFS layer and during the
odd time steps from BFS-layer ` to layer `+ 1.

Every two time steps we process one layer in the BFS
tree starting from the root A. So the first step to actually
calculating the flow is to perform a BFS of your graph from A.
To process a layer, information first flows within the layer.
Then information flows from the layer to the next layer. Every
(undirected) edge is processed exactly twice so the running
time is O(m). The process extends seemlessly if the graph is
directed. For a weighted graph the only modification is that
instead of uniformly splitting your information among your
neighbors when you propagate, you split it in proportion to
the weights. Similarly, the algorithm can be used with directed
or undirected graphs.

We walk through the process in Figure 3. At step 1, A takes
its unit and sends α/2 to B,C. At step 2, B sends α

3 ·
α
2 to

C; and C does something similar (B,C are siblings). Finally
at step 3, B sends α

3 of its total information to each of D,E;
C sends α

2 of its total information to E.
Backward Step. The backward step now allocates credit

for all the flow to various nodes along the paths that the flow
took, which we denote by cv . We process all the nodes in



the BFS tree, layer by layer from bottom to top. The nodes
at the lowest layer all get credit of 0. Then, each node v at
the next level receives credit from nodes u at the level below
and nodes at the same level. Let U be the set of all nodes
v receives credit from and let xu be the flow that reached u
and let xvu be that part of xu which came from v. We then
compute cv as follows:

cv ←
∑
u∈U

(1 + cu)
xvu
xu

In other words, v is credited for that fraction of u’s flow that
came from v multiplied by the credit u has to give; v receives
credit and also now has more credit to give. After processing
all the children of nodes in the layer, the nodes process their
siblings in a similar way, in batch mode (i.e. simultaneously).
The process then moves up one layer. After the process is
complete, the credit received by the nodes is the score. The
entire process is repeated with a BFS starting from each node,
and the scores are all averaged.

In our example in Figure 3, node B is responsible for some
of the flow received at nodes C, D and E. It will get credit for
each. For node C, the fraction

α2/6

(3α+ α2)/6

is sent by B, so when B processes C, it will get that fraction
of the credit that C has to give. Similarly, B gets all the credit
for the flow received by D (and since D has 1 to give, this
will be 1 received by B – B will give some of its total credit
to C and the rest to A); finally, D will also receive a fraction

(2α2 + α3)/12

(5α2 + 2α3)/12

of the credit E has to give (which is also 1).
Again, the parameter α, from this simple example of

Figure 3, can be seen to determine how important longer
paths are. Our measure becomes closer to betweenness as α
approaches 0. Second, the more such paths the node is on,
the better, however, attention plays a role in determining how
much credit the node gets if alternative high attention paths
are available. The flow is only forward going unlike random
walk based diffusion.

III. COMPARISON OF CENTRALITY METHODS

We now compare ABC-Centrality with various other cen-
trality measures in different networks. We focus on unweighted
networks, because betweenness is predominantly studied in
unweighted networks. However, our measure seamlessly ex-
tends to weighted graphs and we give a brief discussion of this
toward the end of the paper. Table I lists the algorithms studied
in this paper. Note that, we are able to study FLOW and RW
only on very small networks because their computational com-
plexity does not allow them to scale to large networks. While
PG, DEG and CL are generally different than betweenness,
we are including them to show similarities and differences
between these algorithms for different data sets.

Abbr Description
ABCα ABC-Centrality

we report on α = 0.001, 0.5, 1
BET Betweenness
ABC0+ ABC-Centrality, α = 0.001
ABC0.5 ABC-Centrality, α = 0.5
ABC1 ABC-Centrality, α = 1
FLOW Flow Betweenness [6]
RW Random Walk Betweenness [10]
DEG Degree Centrality
CL Closeness Centrality
PG Pagerank (using 0.85) [12]

TABLE I
CENTRALITY MEASURES STUDIED IN THIS PAPER

a) Stylized Networks: We begin with stylized networks
that highlight the similarities and differences between var-
ious centrality measures. The first two networks are taken
from [10], and the third one is from Figure 1. The scores
of different algorithms are scaled to a comparable range.

X

Y
A B

C

Network 1

Measure A,B C X, Y
BET 1.00 0.00 0.00

FLOW 1.00 0.45 0.10
RW 1.00 0.49 0.40
PG 1.00 0.39 0.69

ABC1 1.00 0.51 0.19
ABC0.5 1.00 0.33 0.12
ABC0+ 1.00 0+ 0+

0+ is number slightly above zero

Fig. 4. Example network from [10].

In Figure 41, nodes A and B have the highest betweenness
as they lie on all shortest paths between the left and the right
cliques. For these paths, node C gets no credit as the path is
slightly longer if we travelled through node C. All the other
algorithms allow non-shortest path flow, and so assign some
value to C. The surprising thing about PG and RW is that
they assign surprisingly high scores to X,Y even though these
nodes are not very critical to the flow of information in this
network.

For the previous network, all the multipath algorithms found
some value for the node C. The next network in Figure 5
shows how flow-betweenness can ignore useful nodes because
max-flow paths tend to be non-overlapping. Now FLOW com-

X
Y

A

B

C

Network 2

Measure A,B C X, Y
BET 1.00 0.81 0.00

FLOW 1.00 0+ 0.06
RW 1.00 0.84 0.59
PG 0.68 0.68 1.00

ABC1 1.00 0.75 0.31
ABC0.5 1.00 0.75 0.19
ABC0+ 1.00 0.66 0+

Fig. 5. Example network from [10].

pletely ignores C, even though C can play an important role in

1Scores in each row are rescaled so that the maximum is 1 for Figure 4,
5, and 6.



information flow. However PG and RW, again, attribute high
score to X,Y which are peripheral nodes. ABC-Centrality
seems to do a good job on all fronts for α chosen as some
reasonable number like 0.5. Our final stylized network is the
one we used in the introduction, reproduced here in Figure 6
for convenience. A superficial analysis of this network might

B

Y

E

A

X

C D

Measure A B C D E X Y
BET 0.71 1.00 0.09 0.16 0.18 0.00 0.00

FLOW 0.62 1.00 0.46 0.46 0.62 0.08 0.08
RW 0.75 1.00 0.48 0.50 0.60 0.50 0.38
PG 0.83 1.00 0.40 0.40 0.83 0.66 0.66

ABC1 0.62 1.00 0.27 0.30 0.35 0.16 0.16
ABC0.5 0.63 1.00 0.24 0.27 0.29 0.10 0.10
ABC0+ 0.75 1.00 0.12 0.17 0.29 0+ 0+

Fig. 6. Example network from the introduction.

go as follows. B is most critical because without B, there
is no information flow between the left and the right. A is
not as important as in the first network because there are now
paths available through E, but the paths through E are slightly
longer. All shortest paths between the left and right that pass
through C or D must use E, so one might expect E,C,D
to be roughly equally critical; however E should dominate a
little since there are just more information flow paths available
that use E than C,D. X,Y are as usual peripheral nodes, and
should only be marginally critical. So we expect

B > A > E ' C ≈ D � X ≈ Y.

An examination of the scores from all the measures reveals that
the ABC-Centrality measures are the ones that most closely
realize this expectation.

Conclusions from Stylized Graphs First we observe that
ABC-Centrality and betweenness are different. When α = 0
the two are similar in spirit, focussing on shortest paths, but
ABC-Centrality also takes into account attention. When α is
large, ABC-Centrality starts to emphasize the shortest path less
and now focuses more on diversity of paths, and attention.

On these stylized networks, ABC-Centrality seems to de-
liver the results that you would expect of a measure of
criticality: peripheral nodes have low criticality; nodes that
are on short paths are favored, but if they are ‘overloaded’,
they will become disfavored with respect to nodes on longer
paths that are not as overloaded.

So we see that ABC-Centrality accounts for some of the
shortcomings of betweenness. Does it still retain the essence
of betweenness? In other words, we may have solved the
‘problems’ with betweenness, but in doing so we may have
constructed a measure that is completely different. As we will
soon see, this is not the case. We have retained the essence

(a) ABC0+

(b) RW
Fig. 7. A comprison of ABC & RW centrality scores for the Karate Club
Network (the area of the node is proportional to the score). (a) ABC does
a good job of highlighting the critical nodes for information flow. ABC has
essentially a correlation of 1 with betweeness and so the scores for ABC are
essentially the same scores obtained by BET. (b) RW does not differentiate
between nodes very effectively and there are some unusually high scores
for outlier nodes (such as the bottom right node); RW also does not seem to
capture the high centrality of some intuitively critical nodes in the left cluster.

of betweenness, while improving along the dimensions that
betweenness is lacking.

b) Karate Club Network: We will now look at the
various centrality measures on a real social network of mod-
erate size. The goal is to compare how well these different
measures capture betweenness. We use the Zachary Karate
Club Network [13] which contains 34 nodes and 78 undirected
edges representing friendship relationships.

The similarity between two measures of centrality can be
measured by the correlation of the centrality scores. The
correlations between the scores of different algorithms is given
in Table II.

For this Karate-club network, random walk (RW) is an
outlier. The centrality scores are illustrated in Figure 7, which
shows the results for ABC (essentially the same as BET)
and RW. From the figure, we can observe that ABC picks
up the intuitively critical nodes; RW does not differentiate
significantly between the nodes, produces some unusually high
scores for outlier nodes (for example the bottom right node)
and unusually low scores for seemingly critical nodes in the
centers of clusters. The results of RW do not conform to one’s
expectation given that the Karate Club network was formed
from the fracture of a single group into two groups with two
clear leaders in each group. From the table, it is clear that
ABC is the most correlated with BET (among the algorithms
we tested) and the correlation increases as α goes down, as
expected. Both degree and flow are the other two centrality



BET ABC1 ABC0+ RW DEG CL FLOW PG
BET 1 .98 1− .51 .92 .72 .95 .92
ABC1 .98 1 .98 .51 .96 .77 .96 .97
ABC0+ 1− .98 1 .51 .92 .73 .96 .93
RW .51 .51 .51 1 .41 .32 .53 .42
DEG .92 .96 .92 .41 1 .77 .91 1−
CL .72 .77 .73 .32 .77 1 .59 .74
FLOW .95 .96 .96 .53 .91 .59 1 .93
PG .92 .97 .93 .42 1− .74 .93 1

TABLE II
CORRELATION OF VARIOUS CENTRALITY SCORES FOR THE ZACHARY

KARATE CLUB. FOR TWO MEASURES WHICH ASSIGN SCORES s1, . . . , sn
AND t1, . . . , tn TO THE NODES IN THE NETWORK, THE CORRELATION IS

DEFINED AS

ρ =

∑n
i=1(si − s̄)(ti − t̄)

σsσt
,

WHERE s̄, t̄ ARE THE AVERAGE VALUES AND σ2
s , σ

2
t ARE THE VARIANCES.

measures highly correlated with betweenness on this small
network.

Conclusion. For this network ABC-Centrality captures the
essence of betweenness, more so than all the other measures,
and this conclusion is robust to the choice of α in our
algorithm. Since the Karate-club network is a typical bi-
partisan network, we expect this conclusion to generalize to
other social networks.

So, at the small scale network, everything seems rosy. Let’s
now take the ball game to an entirely different playing field –
very large scale social networks.

c) Internet Movie Database (IMDB): We also study a
subset of the Internet Movie Database 2 which consists of
actors and directors who featured in movies from 2000 to
2009. For movies, we only took the top 3 actors in the movie
given by the order of appearance. This eliminates actors with
small and cameo appearances in the movies. The resulting
graph has 32,557 nodes, each node is either an actor, actress or
a director. Two nodes are linked if they participated in the same
movie. The unweighted network has 82,832 edges. One could
also weight the edge by the number of movies two nodes have
in common to obtain a weighted graph, but for now we use
the unweighted version. We will briefly discuss the weighted
versions later. We show the correlations between the different
centrality measures in Table III.

BET ABC1 ABC0+ DEG CL PG
BET 1 .95 1− .72 .27 .75
ABC1 .95 1 .97 .76 .38 .78
ABC0+ .99 .97 1 .73 .29 .76
DEG .72 .76 .73 1 .41 .94
CL .27 .38 .29 .41 1 .27
PG .75 .78 .76 .94 .27 1

TABLE III
CORRELATION OF VARIOUS CENTRALITY SCORES FOR THE UNWEIGHTED

IMDB NETWORK OF 2000S

First, observe that we have not reported results for RW and

2imdb.com

BET ABC1 ABC0+ DEG CL PG
BET 1 .90 .97 .80 .41 .83
ABC1 .90 1 .97 .87 .58 .93
ABC0+ .97 .97 1 .84 .49 .88
DEG .80 .87 .84 1 .66 .97
CL .41 .58 .49 .66 1 .60
PG .83 .93 .88 .97 .60 1

TABLE IV
CORRELATION OF VARIOUS CENTRALITY SCORES FOR THE UNWEIGHTED

DBLP NETWORK

FLOW. This is due to their inability to scale to such large
networks. Among the remaining algorithms, the conclusion is
similar. ABC-Centrality is again the measure that is by far the
most correlated with betweenness. Now, even degree is not
very correlated with betweenness. We see that pagerank and
degree are generally highly correlated with each other as it was
observed in previous literature [14]. We also show the scatter
plot of the ABC-Centrality measure versus betweenness for
two different α values in Figure 8. As seen in this figure, the
relationship is near-linear and the distribution of the values
does not change drastically as a function of α.

Conclusion. For a large scale social network, the same result
holds. ABC-Centrality is the measure that most accurately
captures the essence of betweenness.

d) Academic Collaboration Network (DBLP): Finally,
we study the DBLP network 3 containing researchers in
Computer Science and the papers that they wrote. In this
network, two authors are connected if they co-wrote a paper.
We choose only those authors with more than 6 papers. The
DBLP graph we study has 74,443 authors and 417,397 edges.
The correlation between different centrality measures is given
in Table IV.

Again, ABC-Centrality is the most correlated measure to
betweenness in DBLP as with all our other networks, and
this is independent of the value of α. However, there is a
more significant variability as we change α for this network.
We attribute this to the higher number of edges in this
network. In fact, the degree distribution in this network is
heavy tailed in that most authors have few co-authors (2-3)
but a small number of authors have an unusually high number
of co-authors. For example, according to Microsoft Academic
Search 4, Thomas S. Huang has 745 co-authors and Alberto
L. Sangiovanni-Vincentelli has 752 co-authors. There are also
data curation problems in DBLP, especially due to error in
entity resolution in shorter and more common names leading to
multiple authors being merged into a single entity. In addition,
it seems that in this network nodes with high degree tend to
also have high pagerank and high betweenness. This means
that authors that tend to bridge multiple communities tend
to collaboratorate with many others. As a result, the high
degree nodes dominate all the various centrality measures.
Nevertheless, we still end up with a measure that has captured

3dblp.uni-trier.de
4academic.research.microsoft.com
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Fig. 8. Scatter plot showing the correlation of the ABC centrality values vs. betweenness values in IMDB for different α values. The points are nearly on a
line with extremely high betweeness values tending to be lower for ABC (this is the impact of attention) and the low betweeness values tending to be higher
(this is the impact of multi-path).

the essence of betweenness.

IV. EXTERNAL VALIDATION

We have an interesting situation. We have shown that ABC-
Centrality is different than betweenness on stylized networks;
but, different in the right way, capturing elements of criticality
that betweenness failed to capture. But, on large networks, we
see that ABC-Centrality and betweenness have a correlation
of almost 1. So, if they are so similar on large real networks,
is there any reason to use one over the other. We now show
quantitatively in a large scale study that even on these large
networks, though the correlation is nearly 1, the small dif-
ferences lead to consequences. In particular, using an external
charasteristic, we demonstrate a quantifiable improvement that
ABC-Centrality has over betweenness.

Diversity. It is believed that betweenness is a measure of
an actor’s diversity [11]. While betweenness is not the sole
measure of diversity, it is one of the important indicators.
In other words, a node with large betweenness means that
the node will typically belong to multiple communities. But
you must have diverse talents if you can belong to different
communities.

Take actors. An actor belonging to different actor commu-
nities (as defined by the movies they act in) probably means
they have the ability to play multiple different types of roles.
The actors of highest betweenness in IMDB are

Rank Actor
1 Michael Masden
2 David Carradine
3 James Russo
4 Joe Estevez
5 Eric Roberts
...

...

You will observe that these are not high profile actors. They
are multi-faceted actors who will take on secondary roles in

multiple different types of movies. So for example Michael
Masden is a ‘generic villian’ who might appear in a romance,
action, adventure, thriller, etc.

For an actor, we can use the various different types of
movies they act in to quantitatively compute an index of
diversity. Suppose there are genres g1, . . . , gk, and consider
an actor who acted in three movies with the genres

Movie Genres
1 g1

2 g1, g2

3 g1, g3

We compute the fraction of that actor’s effort spent on each
genre by treating each movie to be 1 unit of effort and then
splitting that effort among the genres of the movie. So in this
particular example, the actor’s efforts for each genre are

g1 : 1 + 1
2 + 1

2 = 2; g2 : 0 + 1
2 + 0 = 1

2 ; g2 : 0 + 0 + 1
2 = 1

2 .

Normalizing these efforts to sum to 1, we get a probability
distribution that reflects the fraction of an actor’s effort spent
on each genre. In this case the probability distribution would
be ( 2

3 ,
1
6 ,

1
6 ). This genre probability distribution represents how

multi-faceted or diverse the actor is. We can measure this
diversity quantitatively using the entropy of the probability
distribution, a well known measure of how concentrated the
distribution is. Let p = (p1, . . . , pk) be the genre probability
distribution for an actor. We define its diversity D by

D = H(p) = −
k∑
i=1

pi log pi.

Note that 0 log 0 = 0 and 0 ≤ D ≤ log k.
We may now quantitatively ask: “How well does the ABC-

Centrality of an actor track its diversity D, as compared to
betweenness?” More specifically, we can ask how well ABC-
Centrality correlates with diversity D as compared to the



correlation of betweenness with D. As a function of the degree
of a node, we plot the increased correlation with diversity that
is offered by ABC-Centrality in Figure 9.
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Fig. 9. Improvement of the correlation with an actors diversity index D that
ABC-Centrality offers over betweenness.

As we can observe, the correlation coefficient can increase
by as much as 0.06 for a large α. For a small alpha, ABC-
Centrality is very similar to betweenness except with the
addition of attention. Now, the improvement is less, but still
present on average. This means that attention alone seems to
capture something more than just pure betweenness.

V. WEIGHTED GRAPHS

ABC-Centrality can be easily extended to weighted graphs.
In fact, the pseudocode in the appendix is described for
weighted graphs. As a closing experiment, we show the
correlations between the various measures for our large scale
networks treated as weighted graphs. Since the weight is
meant to represent social distance, low weights represent close
relationships. The weights in IMDB are given by a variation
of the Adamic-Adar measure [15]: given a pair of actors, we
find all the movies m these actors have in common and sum
1/ log z over all such movies where z is the number of actors
in movie m. The distance is given by the reciprocal of this
value. Similarly in DBLP, the number of papers that authors
have in common are used by taking into account the total
number of authors in each paper.

The score correlations for IMDB are given in Table V and
for DBLP in Table VI. We note that in IMDB, our algorithm
continues to be very correlated to betweenness.

However, for DBLP, none of the other algorithms are very
similar to betweenness. In fact, we see that ABC is highly
correlated with degree and pagerank. This may be related to
the presence of extremely high degree nodes which swamp
the other measures. Nevertheless, ABC-Centrality is still (es-
sentially) the most correlated with betweenness (together with
PG).

VI. CONCLUSION

Our goal was to present a measure of betweenness that
improves upon the traditional measure. We broadly defined

BET ABC1 ABC0+ DEG CL PG
BET 1 .92 .96 .70 .27 .73
ABC1 .92 1 .97 .76 .38 .77
ABC0+ .96 .97 1 .73 .30 .76
DEG .70 .76 .73 1 .40 .92
CL .27 .38 .30 .40 1 .26
PG .73 .77 .76 .92 .26 1

TABLE V
CORRELATION OF VARIOUS CENTRALITY SCORES FOR THE WEIGHTED

IMDB NETWORK OF 2000S

BET ABC1 ABC0+ DEG CL PG
BET 1 .64 .64 .56 .28 .65
ABC1 .64 1 .97 .85 .40 .84
ABC0+ .64 .97 1 .83 .31 .78
DEG .56 .85 .83 1 .45 .83
CL .28 .40 .31 .45 1 .40
PG .65 .84 .78 .83 .40 1

TABLE VI
CORRELATION OF VARIOUS CENTRALITY SCORES FOR THE WEIGHTED

DBLP NETWORK

betweenness as the control a node has over the information
flow in a network. This lead to the need to formulate the basic
principles of information flow. Given a model for information
flow that satisfies these basic principles, the betweenness is
defined in the standard manner. Take two nodes and send
information between them. The amount of that information
that needs to pass through a generic third node v is the
betweenness of v for this pair. Now average over all possible
pairs.

Our principles of information flow are very general and so
this opens the door to a family of betweenness measures. We
used perhaps the simplest model of information flow that is
forward propagating, local, attention-sensitive and multipath.
Even still, the results show that we have captured the essence
of the traditional betweenness measure; we overcome its
difficulties; and we demonstrate quantifiable improved perfor-
mance on real, large-scale social networks.

Our approach to quantifying the quality of a betweenness
measure appears to be novel, and is just a begining. We hope to
extend our study within this framework of external validation
to a number of different measures. Since centrality in general,
and betweenness in particular are considered important mea-
sures of prominence, such approaches to validation on large
scale networks could be valuable.
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APPENDIX

We use the notation Γ(u, i) to denote the neighbors of node
u at level i and norm(u, i) =

∑
v∈(Γ(u,i)∪Γ(u,i)) weight(u, v)

for the sum of the forward weights. The norm function
disregards the weight of the edges at level i-1, and considers
only the edges at level i or i+1.

function SINGLESOURCEABC(Graph g, s, α)
V ← vertices(g);
pflow(v) = flow(v) = 0 for all v ∈ V
pflow(s) = flow(s) = 1; n = max bfs level(g)
for i: 1 to n do

for v is a node in V at bfs level i do
flow(v) =

∑
u∈Γ(v,i−1)

α.pflow(u).weight(u,v)
norm(u,i)

pflow(v) = flow(v)

flow(v)+=
∑
u∈Γ(v,i)

α.flow(u).weight(u,v)
norm(u,i)

end for
end for
score(v) = 0 for all v
for i: n to 1 do

for v is a node in V at bfs level i do
score(v) =

∑
u

(1+score(u)).(α.flow(v).weight(v,u))
flow(u).norm(v,i)

where u ∈ Γ(v, i+ 1)

score(v)+=
∑
u

(1+score(u)).(α.pflow(v).weight(v,u))
flow(u).norm(v,i)

where u ∈ Γ(v, i)
end for

end for
return score

end function

function ABC-CENTRALITY(Graph g, α)
V ← vertices(g); ABCScores(v)=0 for all nodes in V .
for all nodes v in V do

ABCScores += SingleSourceABC(g,v,α)
. add scores for each vertex

end for
for all nodes v in V do

ABCScores(v) = ABCScores(v)/|V |
end for
return ABCScores

end function

Fig. 10. The ABC-centrality algorithm


