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Abstract

Accent identification has grown over the past decade.
There has been decent success when a priori knowledge
about the accents is available. A typical approach entails
detection of certain syllables and phonemes, which in turn
requires phoneme-based models. Recently, Gaussian Mix-
ture Models (GMMs) have been used as an unsupervised
alternative to these phoneme-based models, but they have
had limited success unless they used a priori knowledge.
We studied extensions of the GMMs using ensemble learn-
ing (i.e. bagging and Boosting).

1 Introduction

The human voice carries a great deal of information, not
only in the words spoken, but also by way of pitch, harmon-
ics and other auditory features. With these features, the field
of speech recognition has been succesful in identity and
gender recognition. In this paper, we study accent recog-
nition. The accent may be due to the fact that the speaker
is a non-native speaker of the spoken language (e.g. a na-
tive German speaking English), or that the speaker is a na-
tive speaker that is using a particular dialect of the language
(e.g. an English speaker with a ’Southern’ United States
accent). The accurate identification of a speaker’s accent
has important uses. A non-native speaker’s accent can be
used to identify their native language. The system can then
switch to that native language or pre-process the non-native
speech to improve the accuracy of speech recognition. A
native speaker’s accent can also be used as a corroborative
biometric feature.

The non-native speaker’s accent is mainly characterized
by the difficulties in correctly pronouncing certain words or
affixes (e.g. in English, cough vs. though) or in pronounc-
ing sounds that do not occur in their native language. The

∗http:\\www.cs.rpi.edu\˜purnej\

accents of native speakers on the other hand, are more sub-
tle, being differentiated by how they pronounce certain syl-
lables or, in some cases, if they pronounce the syllable at all.
In general identifying native speaker accents is considerably
harder than identifying accents for non-native speakers. We
look at the problem of identifying native speaker accents
and our experimental test bed is a data set containing the
Northern and Southern accents in American English. The
speakers are labeled as Northerners or Southerners depend-
ing on where they were raised as children.

There are two typical approaches to speech identifica-
tion. The typical Hidden Markov Model (HMM) approach
and, a common ML approach, the Gaussian Mixture Model
(GMM). The former is used to model words or phonemes,
the atomic speech unit, and requires transcripts or some pre-
processing. Alternatively, the latter can work with the raw
speech signal using an unsupervised method.

We build on the GMM approach by exploring the ef-
fects of applying ensemble learning. Ensemble learning im-
proves upon classifiers at the expense of complexity and in-
creased training time. Since, for accent identification, train-
ing is only performed once and separately from classifica-
tion, it is acceptable to increase training time for higher ac-
curacy. Also, the improvements we implement mostly add
complexity to the training step and has a small impact on the
time required for the identification step. In addition to bag-
ging and Boosting, we present a simple ensemble method
for pruning data, based off of the bagging method, which
outperforms all the other methods.

The outline of the paper is as follows. In Section 2, we
review the related work. Then, we define the problem setup
in Section 3. We describe our approaches to improving the
accuracy of the model in Section 4. We show our experi-
mental results in Section 5 and conclude in Section 6.

2 Related Work

Accent identification and dialect identification can be
thought of as a generalization of speaker identification.



In [1], a Gaussian mixture model is successfully ( 80.8%)
used to identify individual speakers with 15 seconds of
speech over the telephone. It is show that the GMM is suc-
cessful because it captures some spectral shapes that make
the speaker’s voice unique from other speakers. In our case,
the problem is to find the spectral shapes that make the
voices of a particular group unique from other groups. A
particularly challenging aspect of accents is that the spec-
tral shapes of two groups may be quite similar.

The problem of accent identification originally was fo-
cused on non-native accents. A non-native accent in a spo-
ken language arises when the speaker has a different pri-
mary language (e.g., a German speaking English). A com-
monly used approach [2][3] involves modeling phonemes
with HMMs. Accuracy generally fell between 65% and
70%. Higher rates were achieved when using specific words
that were found, a priori, to be discriminative between ac-
cents. Research has been done in finding the informa-
tiveness of parts of the spectral data, such as certain for-
mants [4]. There has also been research in using less su-
pervised learning techniques, such as Support Vector Ma-
chines [5]. Pedersen achieved accuracies of about 72% and
then up to 97.5% when having the speakers reading from a
single page of text.

By far the harder problem is dialect or accent identifi-
cation (the spoken language of the speaker is their primary
language). While there are several possible factors that con-
tribute to its formation, a dialect is predominantly correlated
with geographical location [6].

Zheng [7] attempts to discriminate between dialects of
Mandarin, using properties known a priori of Shanghai-
accented Mandarin. The speakers were separated by ex-
perts into two groups: those having little accent and those
having a strong accent. They report an accuracy of 69%
on the weakly accented group and 86% on the strongly ac-
cented group. Zheng does not report results when using all
the data to train accent classifiers, so it is not clear how to
avoid the human expert who initially classifies the data into
weak and strong groups.

To avoid building a phonetic-based model, Chen [8] used
supervised GMMs on the standard features, Mel-frequency
cepstral coefficients (MFCCs). They had a classification er-
ror 88.3% for the male speakers.

The work by Zheng et al. indicates the advantage gained
in identification accuracy when the accent is treated as a
matter of degree. A similar perspective exists in the ma-
chine learning community in such forms as outlier detection
[9] [10], categorization by intrinsic margin [11], and data
cleansing [12]. Angelova [13] applied this to the facial
recognition problem by removing, or pruning, the ’noisy’
samples and features from the training set. Vezhnevets [14]
used this pruning technique to improve AdaBoost accuracy.
Our work studies the effect of pruning and boosting with

accent identification.

3 Accent Identification from Speech

3.1 Feature Set

The spectral space of speech yields very effective fea-
tures for various speaker identification problems. This is
because the spectrum of speech reflects their vocal tract
which is the dominant physiological factor in the unique-
ness of a speaker’s voice. The most popular feature set is
the cepstral coefficients of a mel-frequency filterbank. The
mel-frequency filterbank emphasizes particular ranges of
frequencies in a way that is similar to how the human ear
perceives sound.

Our feature set comes from the mel-frequency cepstral
coefficients (MFCC) of the speech samples. The data sam-
ples were pre-emphasized withH(z) = 1 − 0.97z−1, win-
dowed to 25-ms frames with 15-ms overlap, and param-
eterized into 39 features, consisting of 12 cepstral coeffi-
cients, the signal energy, and the first and second order dif-
ferences of the coefficients and energy. Cepstral mean sub-
traction was performed in each data sample to remove ef-
fects of channels. This processing was done with the HTK
3.0 toolkit [15]. Figure 1 illustrates the complete process.

Figure 1. How the speech is pre-processed to
produce MFCCs

3.2 Gaussian Mixture Model

A Gaussian mixture density is a weighted sum ofM

component densities. Each component density is aD vari-
ate Gaussian function with mean vector~µi and covariance
matrixΣi. It is defined as:

pi(~x) =
exp(−0.5(~x − ~µi)

T Σ−1(~x − ~µi))

(2π)D/2 det(Σ)1/2
(1)

where~x is a D-dimensional random vector,pi(~x), i =
1, . . . ,M , are the component densities andπi, i =, . . . ,M



are the mixture weights, which satisfy the constraint that∑M
i=1 pi = 1.
The model is characterized by a parameter set consisting

of the mixture weights, mean vectors, and covariance ma-
trices for theM components. They are collectively notated

λ = {πi, ~µi,Σi} i = 1, . . . ,M (2)

The probability of a sample,~x, being generated by a
given model is calculated

p(~x|λ) =
M∑

i=1

πipi(~x) (3)

Each of theN accents are modeled by GMMs that are
independently trained using speech from the correspond-
ing accent. In this case, we trained a GMM on Northern
speakers and another GMM on Southern speakers. Train-
ing started with determining the initial mean values,~µ, by
choosing frames of speech randomly (and without replace-
ment) from the training data. From the initial means, the
covariance matrices were calculated. The initial mixture
weights were set to be uniform.

After initializing the GMM parameters, a number of it-
erations of the EM algorithm are applied. In the expectation
step, the probabilities of each frame of speech data are cal-
culated by:

pij = πipi(~xj) (4)

During the maximization step, the parameters are up-
dated using the values from the previous expectation step,
as follows:

µ̂i =

∑
j pij ~xj∑

j pij
(5)

Σ̂i =

∑
j pij(~xj − µ̂i) ⊗ (~xj − µ̂i)∑

j pij
(6)

π̂i =
1

A

∑

i

pij (7)

whereA is the number of data samples in the training
set.

During identification, we looked at the sum of the log-
arithmic probabilities over all the speech data for a given
speaker. This sum is defined

T∑

t=1

log p(~xt|λk), k = 1, . . . , N (8)

whereT is the number of frames of speech data. The
speaker was then classified according to which accent

model yielded the greatest average logarithmic probability
for the speaker’s speech,k̂, as shown in

k̂ = arg
N

max
k=1

T∑

t=1

p(~xt|λk) (9)

4 Extensions of the GMM

In Section 5, we will see that the GMM is a decent tool
to use for accent identification, especially since it doesn’t
require a transcript for the speech or an explicit phoneme-
based structure. However, learning is shown to suffer if
’hard’ or ’confusing’ samples exist in the training data. In
the case of our corpus of American English accents, some
of the samples come from speakers that have grown up in
the Southern United States but, have very few indications
of a Southern accent in their speech. By identifying and
omitting possibly confusing samples, the models of the ac-
cents can be more accurate. In this section we look at some
methods of dealing with these confusing samples.

4.1 Bagging

Bagging, also known as bootstrap aggregating and intro-
duced by Breiman [16], is our first extension of the GMM. It
is straight forward to implement, given the underlying clas-
sifier. A number of subsets,Sj , j = 1 . . . M , are chosen
randomly with replacement from the training set,Strain.
Each subset has the same number of samples as the training
set. In training, the samples from a subset are divided by
their labeled accent,n = 1 . . . N , and used to train a clas-
sifier, hn

j (~x). So, we have a GMM for each subset-accent
pair.

During classification the data is passed through each
classifier. The probabilities are then summed over each ac-
cent. The data is classified by the accent that yields the
greatest sum.

Hbagging(~x) = arg
N

max
n=1

M∑

j=1

hn
j (~x) (10)

By combining the results over several classifiers, the in-
tent is to decrease the influence of ’noisy’ data on the final
classification.

4.2 AdaBoost

The next extension we looked at was AdaBoost. This
is a well known meta-algorithm that also works on the as-
sumption that ’noisy’ samples may be present in the training
set. Instead of ignoring or compensating the noisy samples,
AdaBoost focuses on learning to properly classify the noisy
samples.



AdaBoost is an iterative algorithm where several classi-
fiers are, in turn, trained and then applied to the training set.
On each iteration the training samples are weighted based
on how many times they were incorrectly classified by the
previous classifiers. For the first iteration, the weightingis
uniform. On each subsequent iteration the weights are up-
dated to emphasize the noisy samples [17].

To find noisy samples, the classifier from the previous
iteration is applied to the weighted training set. Each sam-
ple that is misclassified is determined as ’noisy’ and has its
weight increased. Conversely, the samples that are properly
classified have their weights decreased. Thus, when the next
classifier is trained it will put emphasis on correctly classi-
fying samples proportional to the times they are misclassi-
fied over previous iterations.

To determine the proper weighting, we start with the fol-
lowing measure of error,epsilont, and error rate,αt:

ǫt =

A∑

j=1

wt(j)[yj 6= ht(~xj)]αt = 0.5 ln
1 − ǫt

ǫt
(11)

whereA is then number of samples,wt(j) is the weight
for samplej at iterationt andht(~xj) = sign(p(j)). The
error rate is then used to update the sample weights as fol-
lows

wt+1(j) =
wt(j) exp−αtyjht(~xj)

∑A
j=1 wt(j) exp−αtyjht(~xj)

(12)

After several iterations are completed, a ’strong’ classi-
fier, H, is formed by a linear combination of the iterative
classifiers,ht. The iterative classifiers are weighted,αt,
proportionally to their accuracy on classifying the training
set. Assuming that the classifiers return +1 or -1, we define
the relation between the strong classifier and the iterative
classifiers as

H(~x) = sign(

T∑

t=1

αtht(~x)) (13)

where T is the number of iterative classifiers that were
trained.

4.3 Pruning

Pruning starts off by training classifiers on random sub-
sets of the training set, as in the bagging approach. These
classifiers are called ’weak’ classifiers, to differentiatethem
from the ’strong’ classifier that is trained at the end.

First, the ’weak’ classifiers are trained over the entire
training set. For each data sample, the sum of log probabili-
ties over all weak classifiers is calculated for each accent.A
data sample is classified according to which accent yielded

Algorithm 1 Pruning
Input: dataxi, num. of subsetsm, subset sizen, accents
aj

for k = 1 to m do
Generate subsetk by choosingn data fromx, uni-
formly and with replacement.
Train ’weak’ classifier on subsetk.

end for
for each dataxi do

for each accentaj do
for each subsetk do

Classifyxi with model for accent/subset (aj ,k)
Add log prob. ofxi for (aj ,k) in a sum for accent
aj

end for
end for
Find the accent with the greatest sum,a′

if xi’s label matchesa′ then
Add xi to the prune training set

else
Discardxi

end if
end for
Train ’strong’ classifier on pruned training set

the greatest sum. A data sample that is classified differently
from how its labeled,y(~x), is considered a ’hard’ or ’noisy’
sample. These samples are removed from the training set to
create a new pruned training set. The ’strong’ classifier is
defined as a classifier trained on this pruned training set.

Spruned ⊂ ∪~x∈Strain
Hpruning(~x) = y(~x) (14)

where Hpruning is defined in the same manner as
Hbagging in Eq. 10. The outline of the algorithm is listed
in Algorithm 1.

5 Experiments

The experiments conducted involved classifying data
samples, which were 25ms frames of speech. After classify-
ing these samples, they were grouped by spoken word. The
spoken word was classified based on which accent yielded
the greatest average log probability over all samples. Sim-
ilarly, the speakers were classified based on which accent
yields the greatest average log probability over all of the
speaker’s spoken words.

The complete (i.e.unpruned) training set was recorded
from 98 speakers and contained 8,295 words, with 4,490
coming from the 53 Northern speakers and 3,805 coming
from the 45 Southern speakers. The testing set was recorded
from 35 speakers and contained 2,988 words with 1,542



coming from the 18 Northern speakers and 1,446 coming
from the 17 Southern speakers. Due to the small number
of speakers in the given test set, we used cross-validation as
described below.

The speech was taken from the TIMIT’s Acoustic-
Phonetic Continuous Speech Corpus. The speakers were
primarily Texas Instrument personnel and selected to be
representative of different geographical dialect regions. The
dialect region was defined as the geographical area of the
U.S. where the speaker lived during their childhood years
(ages 2 to 10). The Northern region primarily consisted of
New York, Michigan, Wisconsin, Minnesota, and the Dako-
tas. The Southern region primarily consisted of Louisiana,
Mississippi, Alabama, southern Georgia, the eastern half of
the Carolinas and Florida.

5.1 Speech Processing and GMM Training

Speech processing was done with the HTK toolkit [15].
Although the HTK provides tools for training GMMs it did
not provide a way of applying weights to the samples, so
separate code was used in order to perform boosting on the
frames of speech. In training the GMM, we used an EM ap-
proach. On each iteration of training, the parameters were
initialized and then re-estimated once. After looking at us-
ing 8, 16 and 32 components in the GMM (see Table 1),
we decided to use 8 mixtures for the GMMs used in the ex-
periments since this allowed the experiments to run more
quickly and still revealed the differences in accuracies be-
tween the methods.

5.1.1 Experiments

Classifiers were trained with 4 iterations of the EM ap-
proach. For bagging and the pruning methods, 8 weak
classifiers were used. For boosting, 8 iterations of boost-
ing were performed. The methods were tested by cross-
validation, leaving out one speaker for testing and training
on the remaining 132 speakers. The results of the experi-
ments are shown in Table 1.

First, it can be seen that the increase in the number of
components in the GMM seems to have little or no effect.
The accuracy per sample and per word remains constant and
the accuracy per speaker increases slightly. Applying the
Bagging and Boosting technique shows an overall increase
in accuracy, with Bagging having particularly increased the
per speaker accuracy.

Pruning shows an interesting trend. While the per sam-
ple and per word accuracy are similar to the GMM accura-
cies, the per speaker accuracy increases significantly over
the Bagging and Boosting. The reason behind this is that
the correctly classified words were more evenly distributed
over the speakers with pruning rather than in bagging or

Table 1. Accuracies of GMM and the Exten-
sions

METHOD PER SAMPLE PER WORD PER SPEAKER

GMM-8 51.5% 54.6% 60%

GMM-16 51.1% 52.6% 62.9%

GMM-32 51.7% 53.5% 62.9%

BAGGING 52.8% 55.1% 65.9%

BOOSTING 51.9% 54.4% 63.9%

PRUNING 51.2% 53.2% 69.92%

boosting. In other words, it is more likely that a speaker
will have more than 50% of their words correctly classified
with pruning than with the other techniques. This results
in getting a higher per speaker accuracy despite a lower per
word accuracy.

6 Conclusion

Recent research has shown what seems to be an upper
bound of about 65% when it comes to correctly identifying
a speaker’s accent without using a priori knowledge of the
accent’s characteristics. Applying ensemble learning meth-
ods we have demonstrated the ability to increase speaker ac-
cent accuracy without using additional information. This is
beneficial in that there is no requirement of have a transcript
of the speech, training phoneme-based models, or extensive
supervision.

In this paper, our experiments involved discerning a
Northern American English accent from a Southern accent.
In the future, we plan to explore multi-accent identifica-
tion and the ability to discern similar sounding accents (eg.
Southern accent vs. Carolina accent). Also, our results
show that there may be a chance to improve on identify-
ing a speaker’s native language. In this case, training would
be done on speakers using a language that is their secondary
language with the goal of identifying the primary language.
Since the approaches to accent identification are highly re-
lated to non-native accent identification, it is very likelythat
advances in one area will work well in the other area.

Further, we plan to explore other ensemble learning tech-
niques that replicate the ability of human experts to deter-
mine the strength of an accent, as in Zheng’s work [7]. This
may include combining or hybridizing the ensemble tech-
niques we explored in this paper.
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