
Robust Asynchronous Optimization for Volunteer ComputingGrids

Travis Desell∗, Malik Magdon-Ismail∗, Boleslaw Szymanski∗, Carlos Varela∗, Heidi Newberg† and Nathan Cole†
∗Department of Computer Science

Rensselaer Polytechnic Institute, Troy, New York, USA
Email: (deselt,magdon,szymansk,cvarela)@cs.rpi.edu

†Department of Physics, Applied Physics and Astronomy
Rensselaer Polytechnic Institute, Troy, New York, USA

Email: (heidi, colen2)@rpi.edu

Abstract—Volunteer computing grids offer significant com-
puting power at relatively low cost to researchers, while at
the same time generating public interest in different scientific
projects. However, in order to be used effectively, their
heterogeneity, volatility and restrictive computing models
must be overcome. As these computing grids are open,
incorrect or malicious results must also be handled. This
paper examines extending the BOINC volunteer computing
framework to allow for asynchronous global optimization as
applied to scientific computing problems. The asynchronous
optimization method used is resilient to faults and the hetero-
geneous nature of volunteer computing grids, while allowing
scalability to tens of thousands of hosts. A work verification
strategy that does not require the validation of every result
is presented. This is shown to be able to effectively reduce
the need for verification done to less than 30% of the
reported results, without degrading the performance of the
asynchronous search methods. An asynchronous version of
particle swarm optimization (APSO) is presented and com-
pared to previously used asynchronous genetic search (AGS)
using the MilkyWay@Home BOINC computing project. Both
search methods are shown to scale to MilkyWay@Home’s
current user base, over 75,000 heterogeneous and volatile
hosts, something not possible for traditional optimization
methods. APSO is shown to provide faster convergence
to optimal results while being less sensitive to its search
parameters. The verification strategy presented is shown to
be effective for both AGS and APSO.

Keywords-astroinformatics; volunteer computing; asyn-
chronous optimziation; particle swarm; genetic search;

I. I NTRODUCTION

Volunteer computing grids (VCGs) can provide a mas-
sive amount of computing power at low cost to researchers.
They also stimulate public interest in different scientific
computing projects. They provide a democratic way for
the public to participate in science, allowing them to
choose what scientific projects they want to volunteer
their computing resources towards. However, the public
nature of this type of computing environment leads to
many challenges that must be overcome in order to use it
effectively. VCGs are highly heterogeneous, as many dif-
ferent computing architectures must be supported for wide
public use, so computation and communication times vary
widely. As the resources used are public and volunteered,
they are highly volatile. There are no guarantees on when
work may be completed and reported to the server, as
work is computed at a volunteer’s leisure and may never
be returned if a volunteer decides to stop participating.

Additionally, malicious users may send incorrect results.
VCGs also typically limit communication to client-server
only. In order to overcome these issues, highly robust and
asynchronous computing methods are required.

Milkyway@Home1 uses the Berkeley Open Infrastruc-
ture for Network Computing (BOINC) to harness volun-
teered computing resources in creating a highly accurate
three dimensional model of the Milky Way galaxy using
data gathered by the Sloan Digital Sky Survey [1]. Cal-
culating a single fit of the Milky Way model to a small
wedge of observed stars can take over an hour on a high
end processor. Finding the best fit of the model to one of
the hundred wedges in the Milky Way can involve 50,000
or more model evaluations. Using the power of volunteer
computing grids allows this optimization to be done in a
reasonable amount of time.

This work examines how BOINC was modified to per-
form asynchronous optimization for MilkyWay@Home.
Two different asynchronous global optimization methods,
based on genetic search (AGS) and particle swarm opti-
mization (APSO) are examined and tested with a challeng-
ing optimization problem. BOINCs verification scheme
is improved upon for asynchronous optimization by only
requiring verification of a limited subset of important
results, instead of every result. APSO is shown to be more
reliable than AGS, finding better models quicker while
being less dependant on the input parameters to the search.
Additionally, APSO is shown to perform best with a lesser
amount of results requiring verification (less than 30%),
while AGS requires more (less than 60%).

II. V OLUNTEER COMPUTING

Volunteer computing enables people across the world to
volunteer their computing resources, such as processors,
graphics processing units and hard drive space. Popular ex-
amples include SETI@Home [2], which was generalized
to the Berkeley Open Infrastructure for Network Com-
puting (BOINC) [3], IBM’s World Community Grid2 and
Stanford’s Folding@Home [4]. Users can even volunteer
non-standard computing units such as gaming consoles
like the XBOX 360 and Playstation 3. These computing
frameworks not only provide thousands (even millions)

1MilkyWay@Home can be visited at http://milkyway.cs.rpi.edu
2http://www.worldcommunitygrid.org



Figure 1. Handling of work units by the BOINC server software.

of personal computers as very powerful distributed com-
puting networks at the low price of running a server, but
generate public interest in different scientific computing
projects.

However these benefits do come at a price. The com-
puting architectures involved can be extremely different,
located world-wide with dramatically different latencies
and are sporadically available at the volunteers’ whim.
The result of this is that the computing network is highly
heterogeneous in terms of computing power, architecture
and latency, as well as extremely volatile as there is no
guarantee that results reported by a volunteered host are
correct, or when they will be returned, if ever. In addition,
only client-server communication is allowed which even
further limits synchronization and work sharing between
volunteers.

The Milkyway@Home project uses BOINC for volun-
teer computing for a variety of reasons. First, BOINC
currently has a large existing user base and it is easy
for current users to join new projects. All a user who
has already installed the BOINC client needs to do to
join a new project is enter the projects website to join
and start participating. Second, the code is open source
and extensible, which allows easy modification to develop
asynchronous optimization methods.

A. BOINC

The BOINC server side software consists of six services
that handle work generation, communication with clients
and result verification (see Figure 1):

• The Transitioner determines which work units are
ready to be validated or need more results to be
calculated. It will resend work to clients if a timeout
has elapsed or an error occured in calculating a
result. If a workunit has been assimilated, it flags that
workunit as ready to have its associated files deleted.

• The Feedermaintains a queue of workunits that are
ready to be sent to clients.

• TheSchedulerhandles incoming and outgoing com-
munication with clients. New incoming results flag
that workunit to be processed by the transitioner. This
spawns CGI scripts which handle connections with
clients that send work units from the ready-to-be-sent
queue.

• The Validator is a daemon that verifies the reported
results for workunits. When it determines that a
certain quorum of results are the same, that workunit
is ready to be handled by the assimilator.

• The Assimilator handles workunits that have been
verified to be correct. After a workunit has been
assimilated, it will not be sent to clients again.

• The Work Generator is either a daemon or a script
which generates new workunits to be sent to clients.
After work units are generated they will eventually
place them in the ready to send queue.

B. Using BOINC for Asynchronous Optimization

While typical BOINC projects, such as SETI@Home,
generate large amounts of workunits at a time and then
later examine those results, asynchronous optimization re-
quires new workunits to be generated in response to results
reported from previous workunits. Additionally, using the
limited redundancy strategy discussed in Section IV, not
all workunits need to be verified, only those that could
potentially improve the population.

Because validation, assimilation and work generation all
depend on the population of an asynchronous search, these
three services have been combined into a singlesearch
manager. The search manager can handle multiple simul-
taneous asynchronous searches. Searches run as follows:

Initialization: Each search has a maximum popula-
tion size (or number of particles). While the population is
not complete, random individuals are generated and their
results verified before being inserted into the population.

Work Generation: After the initial population has
been generated and verified, the search manager tracks
the number of workunits that have been generated but are
not yet being processed by a client. When the number
of workunits available for update falls beneath a certain
threshold, more individuals are generated either from the
verification queue or by the search method (as described
in Section III-C). If there are any individuals in the
verification queue, the verification rate is used to determine
how many workunits are generated from the verification
queue.

Work Insertion: When a result is reported it is
compared to the workunits in the verification queue, if it
verifies one of these, that individual is removed from the
queue and inserted into the population. If the individual
does not verify an individual in the verification queue and
could improve the population it is added to the verification
queue, otherwise it is discarded.

III. G LOBAL OPTIMIZATION

Evolutionary search methods are the most common
global optimization methods. Evolutionary search methods



maintain a population of parameters and their correspond-
ing fitness. The population is used to generate new popula-
tions via different recombination heuristics to find a glob-
ally optimal fitness. These methods are typically iterative
in nature, where the current population is used to generate
the next population which then has fitness of its members
evaluated. Unfortunately this traditional approach is not
particularly suitable to volunteer computing networks due
to its lack of scalability and sensitivity to faults. This
work examines two popular global optimization methods,
genetic search and particle swarm optimization and how
they have been modified for use on MilkyWay@Home.

A. Distributed Genetic Search

In the simplest form, genetic search selects an initial
population randomly in the search space and then gener-
ates subsequent populations by generating new individuals
usingselection, crossoverandmutationoperators on mem-
bers of the previous population. Individuals represent a set
of parameters within the search space. Selection simply
involves taking a set of the most fit individuals from the
previous population and copying them to the subsequent
population. For continuous search spaces, the most com-
mon crossover operator is simply to take two parameter
sets in the population and average them. Mutation takes
a parameter set, select a single parameter at random from
within that set and perturbs it. It is common to initially
select a random point within the range of possible values,
and then later decrease the range to points around the
mutating parameter.

A wide range of parallel genetic algorithms (PGAs)
have been examined for different distributed computing
environments. Generally, parallel genetic algorithms can
be classified in three different types:cellular, island
or multi-population, andpanmictic or single popula-
tion [5].

Cellular GS parallelize by single individuals that com-
municate with a a subsection of the population (its neigh-
bors). A processor evaluates its individual then performs
crossover or mutation with thes neighbors [6], [7], [8].
This approach is well suited for homogeneous and tighly
coupled (low latency) processors, such as a supercomputer,
however it has also been shown to be effective in peer-to-
peer environments [9].

Island GS parallelize by sets of individuals (sub-
populations) which update independantly of each other,
until they periodically propagate their most fit individu-
als to other islands. It has been shown that superlinear
speedup can be attained using this method, as smaller
populations can converge to minima quicker than larger
populations [10], [11]. This approach is well suited to
clusters and grids as inter-population communication can
reduce the effect of high latency connections [12], [13].

Panmictic GS traditionally parallelizes by generating a
new population and evaluating each individual simultane-
ously, which limits the scalability of this approach to the
population size. Faults can also cause significant delays.

B. Distributed Particle Swarm Optimization

Particle swarm optimization (PSO) was initially in-
troduced by Kennedy and Eberhart [14], [15] and is a
population-based global optimization method based on
biological swarm intelligence, such as bird flocking, fish
schooling, etc. This approach consists of a population of
particles, whichfly through the search space based on
their previous velocity, their individual best found position
(cognitive intelligence) and the global best found position
(social intelligence). The population of particles is updated
iteratively as follows, wherex is the position of the particle
at iterationt, v is its velocity,p is the individual best for
that particle, andg is the global best position:

vi(t + 1) = ω ∗ vi(t)

+c1 ∗ rand() ∗ (pi − xi(t))

+c2 ∗ rand() ∗ (gi − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

Two user defined constants,c1 andc2, allow modifica-
tion of the balance between local (cognitive) and global
(social) search. Later, the inertia weightω was added to the
method by Shi and Eberhart to balance the velocity with
the local and global search capability of PSO [16] and is
generally used by most modern PSO implementations.

PSO has been widely modified taking inspiration from
quantum mechanics [17], [18] and immune systems [19].
Adaptation of the PSO parameters [20] and population
diversity [21] have also been examined.

Various strategies have been used for distributed PSO.
Koh et al. and Venter et al. have examined asynchronous
PSO using work stealing [22], [23]. In this strategy,
the master keeps a queue of unevaluated particles that
the workers retrieve and process. Xu and Zhong use an
asynchronous approach where each processor is assigned
a particle, and new global best positions are reported to
a master processor which then broadcasts this position to
the other processors [24].

C. Asynchronous Optimization with Genetic Search and
Particle Swarm Optimization

For both distributed GS and PSO, the same problems
remain in applying these strategies to large scale vol-
unteer computing grids. The methods are either limited
in scalability to the population size, require inter-client
communication, or both. They are also highly vulnerable
to faulty clients. Using asynchronous optimization as
described in Section II-B results in search methods that
are not dependant on any particular results, making them
resilient to faults, and that can also generate work at any
time, letting them scale to a very large number of clients,
all while remaining within the restriction of only client-
server communication. The following sections describe
how genetic search and particle swarm optimization can
be used within this asynchronous framework.



Figure 2. Simplex recombination generates a point randomlyalong the
line created by the worst parent and the centroid (average) of the other
parents.

1) Asynchronous Genetic Search:The approach used
by asynchronous genetic search is similar to steady state
genetic search, which instead of generating whole pop-
ulations per iteration, generates single individuals using
crossover and mutation and then inserts these into the
population by replacing the least fit individual. Instead
of generating a single individual at a time, multiple
individuals are generated from the population in response
to requests for work, and the population is updated when
the results of these new individuals are reported. In pre-
vious work we have examined different operators for this
type of asynchronous genetic search [25]. For the Milk-
Way@Home application it was shown that recombination
using an operator similar to the Nelder-Mead simplex
algorithm provides the best results in comparison to other
tested recombination operators.

The Nelder-Mead simplex search takesN + 1 sets
of parameters, and performsreflection, contraction and
expansionoperators between the worst set of parameters
and the centroid of the remainingN (see Figure 2).
After calculating the centroid, a line search is performed
by expanding or contracting the simplex along this line.
Because in the asynchronous model it is not possible to
iteratively perform expansions and contractions, a random
point is selected on the line joining the worst point and
its reflection. There are three parameters involved in this
operator,N , the number of parents used to form the
simplex (chosen randomly from the population), and two
limits l1 and l2 which specify the range on the line over
which points can be generated. For example,l1 = −1
would set one limit to the reflection andl2 = 1 would set
the other limit to the worst point.

2) Asynchronous Particle Swarm:Asynchronous par-
ticle swarm works as follows. The search is initialized
by having positions of particles generated at random with
zero velocity until there has been a fitness reported for
a possible position of each particle. The server keeps
track of each particle’s current position and current ve-
locity, generating new positions for particles in a round-
robin fashion when work is requested. As opposed to
the previously discussed approaches that only process one
position per particle at a time, this approach continues
to generate new future positions for particles and send

them to workers. Using this approach, multiple positions
for a single particle can be calculated concurrently, and
the search does not need to wait for un-reported fitnesses.
When a worker reports the fitness of a particle, it also
reports the position and velocity of that particle. If the
fitness of the reported particle is better than that particle’s
locally best found position, that position is updated, and
the velocity of the particle is reverted to the reported
velocity. If the fitness is the globally best found fitness,
the position of the global best particle is updated as well.

In this way, asynchronous particle swarm performs
nearly identical to traditional particle swarm when the
number of processors used is less than the number of
particles and there are no faults, however it can also
scale to very large systems by letting workers evaluate
possible future positions of a particle. For a large number
of workers, the search is more exploratory, examining
many possible future positions of a particle assuming the
local and global best positions have not been updated. The
approach is also resilient to unreported results, as more
future positions of a particle are generated until one is
found which improves that particle’s locally best found
position.

IV. L IMITED REDUNDANCY FOR ASYNCHRONOUS

OPTIMIZATION

Due to the large scale, public and highly heterogeneous
nature of volunteer computing systems, some kind of
verification strategy is required to ensure that the results
reported are correct. BOINC uses redundancy to ensure
correct results. Each unit of work is sent to multiple
hosts, and when a quorum reaches the same result it is
verified for use by the validator. Unfortunately, even the
smallest minimum quorum (two identical results) requires
each work unit to be calculated at least twice, effectively
reducing the amount of work that can be done by half.

In the global search methods discussed, only results
which will improve the population of the genetic search,
or update the local and global best particle positions need
to be verified, as the other results are simply discarded.
The amount of redundancy required can be significantly
reduced by treating incorrect results with fitness worse
than the population simply as those with bad fitness, which
are discarded. By doing this only results with fitnesses that
would be inserted into the population need to be verified,
preventing the population from being corrupted by invalid
parameter sets. For the optimization problem examined in
this work, less than 30% of results were actually inserted
into the population (see Section V-B). Because so few
results actually need to be verified this can be a significant
performance improvement.

Instead of evaluating every work unit at least twice
using BOINC’s built in redundancy, MilkyWay@Home
uses the above strategy and a tunable redundancy rate.
The search manager keeps track of results that need to
be verified, and when work is generated a corresponding
proportion of those workunits are copied from this list.
For example, with a redundancy rate of 0.5, 50% of the



workunits generated would be for verification (assuming
there are results that need to be verified). This verification
rate allows the search to determine whether to devote
resources to verifying potentially excellent individuals, as
opposed generating more recombinations with the already
known-to-be-correct population.

V. SEARCH ANALYSIS

Asynchronous genetic search and particle swarm were
tested using MilkyWay@Home on Sagittarius Stripe 22
from the Sloan Digital Sky Survery [1]. This problem
involves calculating how well a model of three streams
of stars and a background function fit a 5 degree wedge
of 100,789 observed stars collected along Sagittarian Lon-
gitude 55 degrees from Sagittarian Latitude 155 degrees to
230 degrees (for more information about the fitness func-
tion readers are referred to [26], [27]). In total there are
20 parameters to be optimized. This model is calculated
by a wide variety of hosts. The fastest high end double
precision GPUs can calculate the fitness in under two
minutes. High end CPUs require around an hour, and the
slowest CPUs can take days. At the time these results were
gathered, MilkyWay@Home had approximately 75,000
volunteered hosts participating in the experiments.

Both asynchronous genetic search (AGS) and asyn-
chronous particle swarm optimization (APSO) used a 50
member population for all searches. AGS was tested using
2, 4, 6, 8 and 10 parent individuals as input to the simplex
recombination (see [25] for an in depth presentation of
this method), while APSO was tested with inertia weights
of 0.2, 0.4, 0.6, 0.8 and 1.0. As input to the simplex
recombination,l1 = −1.5 andl2 = 0.5 were used as these
have been shown to be good values for this problem [28],
[25].

Verification rates of 0.3, 0.6 and 0.9 were tested across
all these search parameters. For each search parameter and
verification rate, five searches were performed simultane-
ously and exclusively by the search manager. This was
done to keep the network that the searches were tested on
as similar as possible.

A. Convergence

Tables I and II shows the best, average and worst fitness
across these five searches after 25,000 and 50,000 reported
individuals, for all combinations of verification rates and
search parameters. Values in boldface represent the best
individual found by the searches with the same verifica-
tion rate after a certain amount of reported individuals,
values in italics represent the best values found over all
verification rates. Underlined values show the best fitness
found over both AGS and APSO.

APSO performed better than AGS overall, finding the
best fitness over all the searches and having the better
average fitnesses among its searches. In generate, the
APSO searches performed very well with low inertia
weights (less than 0.6), and the lowest verification rate
(0.3). However, APSO seemed to be more robust in
that other values for the inertia weight and verification

Asynch. Particle Swarm Inserts

v: 0.3 0.6 0.9
w = 0.2 746.6 854.2 608.8
w = 0.4 754.6 849.0 611.8
w = 0.6 691.8 773.0 484.2
w = 0.8 552.8 563.4 402.2
w = 1.0 432.6 382.6 323.0

Table III
THE NUMBER OF PARTICLES INSERTED INTO THEAPSOPOPULATION

AFTER 50,000RESULTS.

Asynch. Genetic Search Inserts

v: 0.3 0.6 0.9
p = 2 1315.5 1120.2 598
p = 4 1259.6 1063.6 625.8
p = 6 1293.6 1161.2 642.4
p = 8 1269.4 1153.6 610.3
p = 10 1344.8 1178.0 611.5

Table IV
THE NUMBER OF INDIVIDUALS INSERTED INTO THEAGS

POPULATION AFTER50,000RESULTS.

rate still provided competitive results. The various AGS
searches seemed to perform competitively with the lowest
verification rate for any number of parents, however higher
verification rates caused significantly worse results.

B. Redundancy Overhead

Tables III and IV show the average number of indi-
viduals inserted into the populations for 50,000 reported
results, for the varying verification rates and search pa-
rameters. Of all the results reported, 25% or less were
inserted into the populations, meaning the verification rate
of 0.3 was a good reflection of the amount of resources
that should be devoted to verification. Increasing the
verification rate tended to reduce the number of individuals
inserted, which was to be expected as more resources were
devoted to verifying results that were already reported.
Interestingly, while APSO had better results than AGS,
it did so inserting less individuals into its population,
especially with lower verification rates. Because of this,
it required less verification which could partially explain
its better performance compared to AGS.

VI. D ISCUSSION

This paper examined extending the BOINC computing
framework to perform asynchronous global optimization.
Asynchronous optimization maintains a population of in-
dividuals representing points in the search space, and
at any time uses different recombination operators to
generate new individuals. Individuals are inserted into the
population when their results are received from clients. In
this way, asynchronous optimization is not dependent on
any particular result, making it tolerant to faults, and as
new work can be generated at any time it can scale to as
many clients as are available.

Traditional particle swarm optimization and genetic
search have been modified to work within this asyn-
chronous optimization model. Asynchronous particle



Asynchronous Particle Swarm Convergence
25,000 results reported 50,000 results reported

best average worst best average worst

w = 0.2 -3.169272 -3.170184 -3.170872 -3.169037 -3.169355 -3.169679
w = 0.4 -3.169807 -3.170349 -3.170816 -3.167358 -3.169100 -3.170081

v = 0.3 w = 0.6 -3.169887 -3.170272 -3.170420 -3.169128 -3.169579 -3.169930
w = 0.8 -3.169913 -3.170747 -3.172100 -3.169243 -3.169965 -3.170665
w = 1.0 -3.171184 -3.172528 -3.174188 -3.170732 -3.171247 -3.171778
w = 0.2 -3.169545 -3.169812 -3.170252 -3.168843 -3.169197 -3.169487
w = 0.4 -3.169694 -3.169936 -3.170110 -3.169073 -3.169405 -3.169650

v = 0.6 w = 0.6 -3.169505 -3.169815 -3.170221 -3.168870 -3.169142 -3.169374
w = 0.8 -3.170305 -3.170817 -3.171458 -3.169647 -3.169900 -3.170217
w = 1.0 -3.171372 -3.172507 -3.173307 -3.171011 -3.172153 -3.173089
w = 0.2 -3.170161 -3.171611 -3.173086 -3.169592 -3.170143 -3.171253
w = 0.4 -3.169895 -3.170542 -3.171397 -3.169333 -3.169583 -3.170070

v = 0.9 w = 0.6 -3.170182 -3.171695 -3.175647 -3.169506 -3.169807 -3.170136
w = 0.8 -3.171230 -3.172986 -3.177449 -3.170344 -3.171061 -3.171553
w = 1.0 -3.170701 -3.173401 -3.175725 -3.170329 -3.171741 -3.173602

Table I
FIVE ASYNCHRONOUS PARTICLE SWARMS WERE RUN FOR EACH VERIFICATION RATE (V) AND INERTIA WEIGHT (W). THIS TABLE SHOWS THE

BEST, AVERAGE AND WORST OF THE BEST PARTICLES FOUND BY THESE SEARCHES AFTER25,000AND 50,000RESULTS REPORTED. BEST
RESULTS FOR EACH VERIFICATION RATE ARE IN BOLDFACE, BEST FOR ALL REUNDANCY RATES ARE IN ITALICS, AND THE BEST ACROSSAPSO

AND AGS ARE UNDERLINED.

Asynchronous Genetic Search Convergence
25,000 results reported 50,000 results reported

best average worst best average worst

p = 2 -3.171410 -3.173042 -3.174443 -3.170022 -3.170320 -3.170653
p = 4 -3.170200 -3.171203 -3.171817 -3.169413 -3.169697 -3.170042

v = 0.3 p = 6 -3.171318 -3.171887 -3.172633 -3.170146 -3.170519 -3.171506
p = 8 -3.170104 -3.171009 -3.172346 -3.169340 -3.169903 -3.170603
p = 10 -3.169374 -3.170770 -3.172604 -3.169057 -3.169980 -3.171557
p = 2 -3.171732 -3.173018 -3.174762 -3.170036 -3.170656 -3.171376
p = 4 -3.170204 -3.171466 -3.173090 -3.168789 -3.169626 -3.170054

v = 0.6 p = 6 -3.170994 -3.173666 -3.175648 -3.169242 -3.171014 -3.172707
p = 8 -3.170366 -3.171647 -3.172820 -3.169572 -3.170106 -3.170700
p = 10 -3.169655 -3.171382 -3.173527 -3.169431 -3.170073 -3.170988
p = 2 -3.171128 -3.175371 -3.181739 -3.169240 -3.172969 -3.177777
p = 4 -3.174878 -3.177981 -3.183386 -3.171966 -3.174694 -3.180511

v = 0.9 p = 6 -3.172288 -3.178447 -3.185784 -3.170294 -3.176296 -3.184854
p = 8 -3.173696 -3.176495 -3.179121 -3.172342 -3.175242 -3.178753
p = 10 -3.182238 -3.182855 -3.183472 -3.180842 -3.181347 -3.181852

Table II
FIVE ASYNCHRONOUS GENETIC SEARCHES WERE RUN FOR EACH VERIFICATION RATE (V) AND NUMBER OF SIMPLEX PARENTS(P). THIS TABLE

SHOWS THE BEST, AVERAGE AND WORST OF THE BEST INDIVIDUALS FOUND BY THESE SEARCHES AFTER25,000AND 50,000RESULTS

REPORTED. BEST RESULTS FOR EACH VERIFICATION RATE ARE IN BOLDFACE, BEST FOR ALL VERIFICATION RATES ARE IN ITALICS, AND THE

BEST ACROSSAPSOAND AGS ARE UNDERLINED.

swarm optimization (APSO) is compared to the asyn-
chronous opimization method found to be best in previous
work, asynchronous genetic search (AGS) using simplex
recombination [25]. APSO is shown to provide better
results, while at the same time being less sensitive to its
search parameters, making it more reliable.

Further, on noting that for asynchronous search, only
results that will be inserted into the population need to
be verified, it was shown that the amount of redundant
calculation done to provide resilience against malicious
and incorrect results can be reduced significantly. Where
BOINC typically verifies each result at least once, this
work has shown that less than 30% redundancy can pro-
vide the best optimization rates for asynchronous particle
swarm and 60% redundancy for asynchronous genetic
search.

The results have also shown that how fast the asyn-
chronous optimization reaches good solutions is dependent
on this redundancy rate. It may be possible that using an
adaptive redundancy rate based on how many results are
waiting to be verified could improve the optimization rate
further, while eliminating one of the search parameters
which would lead to more reliable results. Other future
work involves testing asynchronous versions of other
search methods, such as differential evolution, and testing
these search methods on other scientific problems.

This research shows that volunteer computing grids can
be effectively and efficiently utilized for global optimiza-
tion of scientific problems. By using a selective verifica-
tion strategy, asynchronous optimization can significantly
reduce the amount of redundant computation required by
a volunteer computing grid.



ACKNOWLEDGMENT

We would like to thank our many volunteers for taking
part in the MilkyWay@HOME BOINC computing project
as this research would not be possible without them.

This work has been partially supported by the following
grants: NSF AST No. 0607618, NSF IIS No. 0612213,
NSF MRI No. 0420703 and NSF CAREER CNS Award
No. 0448407. Any opinions, findings, and conclusions or
recommen- dations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES

[1] D. G. York et al., “The sloan digital sky survey: Technical
summary,”Astrophysics Journal, vol. 120, pp. 1579–1587,
Sep. 2000.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “SETI@home: an experiment in public-
resource computing,”Commun. ACM, vol. 45, no. 11, pp.
56–61, 2002.

[3] D. P. Anderson, E. Korpela, and R. Walton, “High-
performance task distribution for volunteer computing.” in
e-Science. IEEE Computer Society, 2005, pp. 196–203.

[4] V. Pandeet al., “Atomistic protein folding simulations on
the submillisecond timescale using worldwide distributed
computing,”Biopolymers, vol. 68, no. 1, pp. 91–109, 2002,
peter Kollman Memorial Issue.

[5] E. Cantu-Paz, “A survey of parallel genetic algorithms,”
Calculateurs Paralleles, Reseaux et Systems Repartis,
vol. 10, no. 2, pp. 141–171, 1998.

[6] B. Dorronsoro, E. Alba, M. Giacobini, and M. Tomassini,
“The influence of grid shape and asynchronicity on cellular
evolutionary algorithms,” inIEEE Congress on Evolution-
ary Computation (CEC2004), vol. 2, June 2004, pp. 2152–
2158.

[7] E. Alba and B. Dorronsoro, “The exploration/exploitation
tradeoff in dynamic cellular genetic algorithms,”IEEE
Transactions on Evolutionary Computation, vol. 9, pp.
126–142, April 2005.

[8] B. Dorronsoro and E. Alba, “A simple cellular genetic
algorithm for continuous optimization,”IEEE Congress
on Evolutionary Computation (CEC2006), pp. 2838–2844,
July 2006.

[9] G. Folino, A. Forestiero, and G. Spezzano, “A JXTA
based asynchronous peer-to-peer implementation of genetic
programming,” Journal of Software, vol. 1, pp. 12–23,
August 2006.

[10] E. Alba and J. M. Troya, “Analyzing synchronous and
asynchronous parallel distributed genetic algorithms,”Fu-
ture Generation Computer Systems, vol. 17, pp. 451–465,
January 2001.

[11] J. Berntsson and M. Tang, “A convergence model for asyn-
chronous parallel genetic algorithms,” inIEEE Congress on
Evolutionary Computation (CEC2003), vol. 4, December
2003, pp. 2627–2634.

[12] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee,
“Efficient hierarchical parallel genetic algorithms usinggrid
computing,”Future Generation Computer Systems, vol. 23,
pp. 658–670, May 2007.

[13] H. Imade, R. Morishita, I. Ono, N. Ono, and M. Okamoto,
“A grid-oriented genetic algorithm framework for bioinfor-
matics,”New Generation Computing: Grid Systems for Life
Sciences, vol. 22, pp. 177–186, January 2004.

[14] J. Kennedy and R. C. Eberhart, “Particle swarm opti-
mization,” in IEEE International Conference on Neural
Networks, vol. 4, 1995, pp. 1942–1948.

[15] R. C. Eberhart and J. Kennedy, “A new optimizer using
particle swarm theory,” inSixth International Symposium
on Micromachine and Human Science, 1995, pp. 33–43.

[16] Y. Shi and R. C. Eberhart, “A modified particle swarm
optimizer,” in IEEE World Congress on Computational
Intelligence, May 1998, pp. 69–73.

[17] J. Sun, W. Xu, and B. Feng, “Particle swarm optimization
with particles having quantum behavior,” inCongress on
Evolutionary Computation, vol. 1, June 2004, pp. 325–331.

[18] J. Liu, W. Xu, and J. Sun, “Quantum-behaved particle
swarm optimization with mutation operator,” inInterna-
tional Conference on Tools with Artificial Intelligence,
November 2005.

[19] J. Liu and J. Sun, “Quantum-based particle swarm opti-
mization based on immune memory and vaccination,” in
IEEE International Conference on Granular Computing,
May 2006, pp. 453–456.

[20] Z. Dingxue, G. Zhihong, and L. Xinzhi, “An adaptive
particle swarm optimization algorithm and simulation,” in
IEEE International Conference on Automation and Logis-
tics, August 2007, pp. 2399–2042.

[21] J. J. Liang, A. K. Qin, P. M. Suganthan, and S. Baskar,
“Particle swarm optimization with novel learning strate-
gies,” in IEEE International Conference on Systems, Man
and Cybernetics, vol. 4, October 2004, pp. 3659–3664.

[22] B.-I. Koh, A. D. George, and R. T. Haftka, “Parallel
asynchronous particle swarm optimization,”International
Journal of Numerical Methods in Engineering, vol. 67,
no. 4, pp. 578–595, July 2006.

[23] G. Venter and J. Sobieszczanski-Sobieski, “A parallelpar-
ticle swarm optimization algorithm accelerated by asyn-
chronous evaluations,” inSixth World Congresses of Struc-
tural and Multidisciplinary Optimization, May 2005, pp.
1–10.

[24] L. Xu and F. Zhang, “Parallel particle swarm optimiza-
tion for attribute reduction,” inEighth ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, vol. 1,
July 2007, pp. 770–775.

[25] T. Desell, B. Szymanski, and C. Varela, “An asynchronous
hybrid genetic-simplex search for modeling the milky way
galaxy using volunteer computing,” inGenetic and Evo-
lutionary Computation Conference, Atlanta, Georgia, July
2008.



[26] N. Cole, “Maximum likelihood fitting of tidal streams
wit happlication to the sagittarius dwarf tidal tails,” Ph.D.
dissertation, Rensselaer Polytechnic Institute, 2009.

[27] N. Cole, H. Newberg, M. Magdon-Ismail, T. Desell,
K. Dawsey, W. Hayashi, J. Purnell, B. Szymanski, C. A.
Varela, B. Willett, and J. Wisniewski, “Maximum likeli-
hood fitting of tidal streams with application to the sagit-
tarius dwarf tidal tails,”Astrophysical Journal, vol. 683, pp.
750–766, 2008.

[28] B. Szymanski, T. Desell, and C. Varela, “The effect of
heterogeneity on asynchronous panmictic genetic search,”
in Proc. of the Seventh International Conference on Parallel
Processing and Applied Mathematics (PPAM’2007), ser.
LNCS, Gdansk, Poland, September 2007.


