
Pricing the American Option using
Reconfigurable Hardware

Chris Wynnyk
Electrical Engineering Department, RPI,
110 8th Street, Troy, NY 12180, USA

chriswynnyk@gmail.com

Malik Magdon-Ismail
Computer Science Department, RPI,

110 8th Street, Troy, NY 12180, USA
magdon@cs.rpi.edu

Abstract— We present a novel reconfigurable hardware ar-
chitecture for accelerating American option pricing using the
Binomial Lattice algorithm. The architecture provides double
precision floating point pricing, evaluating up to N = 64, 000
time steps in the binomial lattice. Advanced memory manage-
ment techniques and optimized control logic allow for 4-way
parallelism on a single-asset evaluation. These techniques achieve
a 73× speedup over an optimized CPU implementation, and a
considerable improvement over the best previous reconfigurable
hardware implementation. A significant advantage of our ap-
proach is that the speed up is on a per asset basis whereas all
previous approaches on FPGA and GPU architectures achieve
their speed up by evaluating many assets in parallel.

I. INTRODUCTION

This research addresses the acceleration of American option
pricing. American options are interesting from a mathematical
perspective because they have no closed form solution [1].
This makes them difficult to price both quickly and accurately.
The time delay between changes in the underlying stock
value and price of the American option creates a potential
arbitrage opportunity. Low-latency, accurate pricing can give
a significant competitive advantage to arbitrage-based fast
trading strategies.

Typical algorithms discretize the underlying continuous
pricing equations into N time steps, allowing for a tradeoff
between computation time and precision through the choice
of N . Real-life option evaluation requires an N = 10,000
to 50,000 steps for adequate precision. For a 2-year option,
this corresponds to a discrete point roughly every 15 minutes.
All known previous work is severely limited in this respect,
reporting a maximum N = 1, 024 timesteps [2], [3]. This
reduced precision is due to fundamental architecture and
platform limitations of previous designs.

This paper contributes the first high-precision, accelerated
architecture for pricing American options. The architecture
provides double precision floating point pricing, evaluating up
to N = 64, 000 time steps in the binomial lattice. Advanced
memory management techniques and optimized control logic
allow for 4-way parallelism on a single-asset evaluation.
These techniques achieve a 73× speedup over an optimized
CPU implementation, and a considerable improvement over
the best previous reconfigurable hardware implementation. A
significant advantage of our approach is that the speed up is on
a per asset basis whereas all previous approaches on FPGA

and GPU architectures achieve their speed up by evaluating
many assets in parallel.

The outline of this paper is as follows: Section II presents
the algorithm for pricing the American option. Section III
presents our acceleration approach on reconfigurable hard-
ware. Section IV presents implementation details for architec-
ture, memory management, and control strategies. Section V
presents results and compares against previous work. Section
VI presents conclusions and areas for further research.

II. AMERICAN OPTION PRICING

An American option is a financial instrument in which the
owner has the right but not the obligation to buy (call option)
or sell (put option) a stock for a specified price K (strike price)
at time T (expiry). Without loss of generality, we will only
consider the put option.

The value of the option is dependent on the price of the
underlying stock. In a continuous model, the value of a stock
in the risk neutral world is modeled as a geometric Brownian
motion (1) with fixed drift r and volatility σ2.

dSt = µStdt+ σStdWt (1)

European options can only be exercised at the maturity T ,
whereas American options can be exercised at any time up to
T . The European option can be priced directly using the Black-
Scholes formula [4]. American options are more difficult to
price. Pricing requires calculating an optimal exercise strategy,
the stock price (at any given time) above which the option is
exercised [1].

A. Recombining Binomial Lattice

Rather than a continuous model, the Binomial Lattice
approach models the underlying stock price as a discrete
binomial lattice. At each time step the stock price goes up
by a factor of λ+, or down by λ−:

S(t+ 1) =

{
λ+St, with probability p̃,
λ−St, with probability 1− p̃.

(2)

The lattice is indexed by time t and index i. The value of
exercising the option is computed using the logarithm (3) to
improve numerical stability. The value of holding (4) is the

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.496

532

discounted expected value of the future nodes. The value of
the option is the maximum of exercising and holding:

vex(t, i) = K − S0 ∗ ei log λ+ + (t−i) log λ− , (3)

vhold(t, i) = e−r∆t
(
p̃ vopt(t+ 1, i+ 1) +

(1− p̃) vopt(t+ 1, i)
)
, (4)

vopt(t, i) = max (vex(t, i), vhold(t, i)). (5)

Lattice nodes are evaluated backwards in time, starting from
the boundary condition at expiry T (6). The final option value
is vopt(0, 0).

vopt(T, i) = max(K − ST,i, 0) (6)

The risk-neutral model is calibrated using real-world stock
drift µR and volatility σR

2. Constraining the risk neutral
variables (7) makes it possible to cache the exercise values
vex at the start of each pricing. The risk-neutral binomial
lattice parameters are then given by (8 - 10). Refer to [1]
for algorithm details.

λ− =
1
λ+

(7)

λ+ = eµRδt+σR

√
δt (8)

λ− = eµRδt−σR

√
δt (9)

p̃ =
erδt − λ−
λ+ − λ−

(10)

This Binomial Lattice algorithm is well suited for imple-
mentation with reconfigurable hardware. The computation of
vopt at each node requires only two multiplies, an addition, and
a compare. The algorithm requires O(N2) node evaluations
and 3N memory space (including the vex cache).

B. Monte Carlo Simulation

Monte Carlo methods can be used to price European and
American options. Pricing is straightforward for European op-
tions. Random paths are generated using geometric Brownian
motion (1), and each path is evaluated at expiry T (11). The
final price is the expected value of vopt over all sampled paths.

vopt = max(K − ST , 0) (11)

Monte Carlo European option pricing is very fast on re-
configurable hardware, with reported speedups of 146× [5],
250× [6], and 340× [7]. For the American option, Monte
Carlo methods are complicated by the need to find an optimal
exercise boundary. This requires either sorting or regression
[1], which consumes significant configurable chip resources
[8], [9], [10]. Performing sorting or regression off-chip intro-
duces a communication bottleneck that quickly overwhelms
any acceleration gains.

XtremeData’s 250× European pricing architecture [6] is
highly scalable, since path evaluations are completely indepen-
dent. American option pricing eliminates this independence, as
all paths need to be computed incrementally and simultane-
ously to estimate the optimal exercise boundary.

Beyond these technical hurdles, Monte Carlo pricing is
stochastic, rather than deterministic. The risk of a statistically
anomalous result has significant implications when the results
are the basis for a trading strategy. For these reasons, the
Monte Carlo method is not further considered.

C. Finite Difference Methods

These methods solve the American option pricing equation
as a free boundary differential equation. The solution is arrived
at directly, through finite differencing. These algorithms are
typically highly sequential in nature, and therefore poorly
suited for hardware acceleration. Additionally, differencing
techniques have the potential to introduce numerical instabili-
ties in certain situations [1], which makes them less desirable
for automated trading applications.

III. HARDWARE SELECTION

Graphical Processing Units (GPU) are highly-parallel chips
originally designed for graphics acceleration. NVidia’s CUDA
programming language makes GPUs accessible for general-
purpose high performance computing. NVidia’s Tesla S1070
GPU platform contains up to 120 GPU blocks, with 8 pro-
cessing cores and 1 double precision floating point unit per
block [11]. Each block has 64 Kb of local memory, with
access to a much larger shared memory. Speedup is achieved
by formulating the problem into a number of threads, which
are then dispatched to the cores in parallel.

Field Programmable Gate Arrays (FPGA) are reconfigurable
logic chips. FPGA’s provide four mechanisms for algorithm
acceleration. Logic elements can be pipelined, allowing mul-
tiple arithmetic operations to occur during a single cycle.
Multiple copies of the pipeline can operate in parallel on a
single chip. Local memory is large and highly configurable,
reducing stalls from cache misses. Lastly, control logic can be
implemented separately from the arithmetic pipeline, allowing
for full pipeline utilization.

This project uses FPGAs for algorithm acceleration. Altera’s
Stratix III EP3SE260 FPGA has sufficient local memory to
evaluate up to N = 64, 000 time step binomial lattices,
whereas the S1070 GPU can accommodate at most N = 2, 730
time steps in local memory. Larger N requires the use of
GPU shared memory, which incurs significant synchronization
penalties due to pipeline stalls.

IV. IMPLEMENTATION

The American Put Binomial Lattice pricing algorithm is
implemented entirely in double-precision floating point repre-
sentation (IEEE 754-1985). The architecture performs single
asset pricing with up to N = 64, 000 time steps. The
algorithm is written exclusively in Verilog, with Altera IP
Cores performing floating point operations.

The architecture is optimized and implemented for the
Stratix III EP3SE260F1152C2 FPGA featured on Terasic’s
DE3 development board. The implementation is verified using
ModelSim v6.3g simulation, and compiled using Altera’s
Quartus v9.0 software.

533

wrdata (4 Channels, 64 Bits)

vopt Pipeline

vopt Pipeline

vopt Pipeline

vopt Pipeline

vex Cache

8 Banks

16384 Lines

64 Bits

vopt Cache

4 Banks

16384 Lines

64 Bits

rdaddr

rdaddr

wraddr

State Machine

Control Logic

vex Pipeline

Fig. 1. High Level Architecture. The vex cache is structured as 8 banks,
each with 16384 lines and 64 bits per line, using on-chip memory. Each bank
is capable of one read and one write per cycle, from different addresses.

v
ex

?

K
S

max
X -

+

0
exp

log (λ+)

log (λ_)

counterState Machine

Fig. 2. The vex pipeline computes one exercise value per cycle, storing
results in the vex cache. Computing the exponent is expensive in hardware,
but minimizes communication bandwidth and processor overhead, improving
scalability. There is single copy of this pipeline; it runs for 2N + 1 cycles at
the start of each pricing operation.

vex (t, i)

max vopt (t, i)

p e – r ∆ t ~

vopt (t + 1, i)

X
(1 – p) e – r ∆ t ~

vopt (t + 1, i + 1)
+
+

X

Fig. 3. The vopt pipeline evaluates nodes in the binomial lattice. Each
pipeline evaluates one node per cycle, and is replicated 4 times. This pipeline
operates for N2

8
cycles to price the option.

A. Architecture

(Fig. 1) shows the top-level architecture. First, vex values
are computed and cached (Fig. 2). Next, the binomial lattice
is evaluated (Fig. 3). The lattice evaluation pipeline is based
on previous work by Jin [3].

B. Memory

Each node evaluation requires two reads and a write, all in
double precision floating point (64 bits). With 4 replications
running at 150 MHz, this amounts to 76.8 (Gbits/sec) reading
and 38.4 (Gbits/sec) writing. This high-bandwidth memory
access requires the use of on-chip memory resources.

Memory is organized into separate banks, with dedicated
state machines generating read and write addresses for each
memory bank. Node evaluation is performed for a single t,
for 4 adjacent values of i. This adjacency simplifies address
generation, and allows for the vopt(t, i + 1) necessary to
calculate vhold(t, i) to also be used as vopt(t, i) for evaluating
vhold for i = i+ 1. Otherwise, node evaluation would require
3 reads per cycle [3]. The algorithm is evaluated in place;
write addresses are the same as read addresses, delayed by 40
cycles to account for pipeline latency.

This precise memory management avoids stalls that would
otherwise occur in a computer or GPU implementation, allow-
ing for efficient parallel computation.

4000 3000 2000 1000 0
0

500

1000

A
dd

re
ss

Time Step t

Fig. 4. Optimal Control for N = 4000. Since we evaluate across four
replications, our address ranges from 0 to 1000. The lattice is evaluated
backwards in time from t = 4000 to t = 0. Runtime is proportional to
the area under the line. The solid line shows the niave indexing. The tail on
the far right is necessary due to data dependencies. The dashed line shows an
optimized maximum address required, when nodes above the strike price are
neglected. When the vex optimization is used, all addresses under the dotted
line can be neglected. These two optimizations significantly reduce the area,
and thus the computational complexity of analyzing the binomial lattice.

C. Control

The node evaluation pipeline has a 40 cycle delay between
reading vopt(t, i), and reading valid data for vopt(t − 1, i).
The latency is managed by setting the minimum index i to
be greater than the latency. The binomial lattice indexing
is constructed such that non-existent nodes can be evaluated
without impacting the final result. This stall imposes a small
overhead (less than 1000 cycles), and is critical for enabling
low-latency parallel pricing of a single option. This is seen as
the flat tail in the far right of Figure 4.

Two further control optimizations are possible to accelerate
FPGA implementations. These are not implemented for this
paper. First, observe that the price of all nodes above the
original strike price is always zero. These can be left out of
calculations without affecting results, reducing computation
time by N2/8 if K = S0 (Fig 4).

Also, observe that the exercise boundary is always non-
decreasing with t [12]. When evaluating vhold(t, i) for i
below the optimal exercise value, we know that vopt(t+ 1, i)
and vopt(t + 1, i + 1) can be reduced to vex(t + 1, i) and
vex(t + 1, i + 1). The vopt only needs to be computed for
values of i above the optimal exercise boundary. We can stop
evaluating once we reach the optimal exercise boundary. This
removes the area below the dotted line (Fig 4). The speedup in
standard C code is overwhelmed by the cost of the conditional
branching introduced, but this could offer significant gains
in an FPGA where conditional branching could be tested in
parallel to pipeline operation.

V. RESULTS

A. Performance

Table I shows compilation results for the Stratix III chip.
Logic and DSP utilization is low, meaning there is room for
more pipeline replications. Initial estimates suggest that we
can increase pipeline replication from 4× to 32×.

Table II shows a comparison of results. Our CPU benchmark
runs on a single core of an AMD Turion 64 bit 1.6 GHz dual-
core processor. The benchmark is written in C, and compiled
using ‘gcc -march=k8 -mfpmath=sse’. The benchmark node
evaluations per second decrease as N increases due to cache

534

TABLE II
PERFORMANCE COMPARISON

Our Benchmark Our FPGA Jin CPU [3] Jin FPGA [3] Jin GPU [3] Pharr CPU [2] Pharr GPU [2]

Hardware AMD Turion 64 Stratix III Intel Virtex 4 FPGA Nvidia GPU AMD Athlon 64 Nvidia GPU
TL-52 EP3SE260F1152C2 Core2 Duo xc4vsx55 GeForce 7900 3200+ GeForce 6800

MHz 1600 150 2200 67.3 650 2000 400
Precision Double Double Double Double Single Single Single

Performance at N = 1000 time steps
Node Evals/sec 60 M 576 M 4.2 M 202 M 477 60 M 575
Pricings/sec 120 1152 8.4 385 954 120 1150
Speedup 1× 9.6× 0.24× 3.4× 8.1× 1× 9.6×

Performance at N = 10,000 time steps
Node Evals/sec 16.67 M 599 M - - - - -
Pricings/sec 0.3 12 - - - - -
Speedup 1× 36× - - - - -

Performance at N = 50,000 time steps
Node Evals/sec 10.3 M 600 M - - - - -
Pricings/sec 0.0082 0.48 - - - - -
Speedup 1× 59× - - - - -

Performance at N = 64,000 time steps
Node Evals/sec 8.26 M 600 M - - - - -
Pricings/sec 0.0040 0.293 - - - - -
Speedup 1× 73× - - - - -

TABLE I
COMPILATION RESULTS, QUARTUS II V9.0

Hardware Stratix III
EP3SE260F1152C2

Logic 10%
Registers 8% (15,287 / 203,520)

Memory Bits 84% (12,584,289 / 15,040,512)
Multipliers 19% (148 / 768 DSP blocks)

Clock Speed 150 MHz

misses. The FPGA nodes per second increases for larger N ,
since there are no cache misses and larger N decreases cache
calculation overhead.

B. Comparison

There are several previously published results for accelera-
tion of American option binomial lattice pricing [2] [3]. Table
II compares our work with these previous implementations.
To the author’s knowledge, there has been no published
work using hardware accelerated with Monte Carlo or finite
difference methods to price American options.

Our implementation provides three improvements over pre-
vious work. First, it can evaluate lattices of up to N = 64, 000
time steps, whereas previous work only reported up to N =
1, 024 time steps [2] [3]. It is unclear how previous methods
would scale to large N .

Second, our results are computed entirely in double preci-
sion floating point, providing improved precision over previous

GPU implementations. We compute exercise values using the
logarithm (3) to provide improved numerical stability.

Lastly, previous implementations require large portfolios (up
to several thousand options) to be priced simultaneously to
achieve speedup. Our method accelerates single asset pricing,
providing low-latency performance important for trading ap-
plications.

VI. CONCLUSION

This paper presents a scalable architecture for accelerating
American option pricing using reconfigurable hardware, for
binomial lattices with up to N = 64, 000 time steps. We
achieve a 72× speedup over a CPU benchmark, and a sig-
nificant improvement over previous reconfigurable hardware
implementations.

Future work will increase the pipeline replication from 4×
to 32×, and implement control optimizations for additional
speedup. Other future research will develop this into an
industrial implementation, by including capability for dividend
paying stocks and estimation of the Greek sensitivity parame-
ters. One further improvement could be to develop an Ethernet
based C-interface to allow the acceleration to be accessed as
a network resource. It is envisioned that pricing arguments
could be passed as a URL, and the FPGA, acting as a web
server, would return the price. This would allow for data-center
scaling of the resource.

535

REFERENCES

[1] P. Brandimarte, Numerical Methods in Finance and Economics:
A MATLAB-Based Introduction, 2nd ed. Hoboken, NJ: Wiley-
Interscience, 2006.

[2] M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation (Gpu
Gems). Addison-Wesley Professional, 2005.

[3] Q. Jin, D. B. Thomas, W. Luk, and B. Cope, “Exploring reconfigurable
architectures for binomial-tree pricing models,” in ARC ’08: Proceedings
of the 4th international workshop on Reconfigurable Computing. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 245–255.

[4] F. Black and M. S. Scholes, “The pricing of options and
corporate liabilities,” Journal of Political Economy, vol. 81,
no. 3, pp. 637–54, May-June 1973. [Online]. Available:
http://ideas.repec.org/a/ucp/jpolec/v81y1973i3p637-54.html

[5] G. Morris and M. Aubury, “Design space exploration of the european
option benchmark using hyperstreams,” Aug. 2007, pp. 5–10.

[6] N. A. Woods, “Fpga acceleration of european options pricing,” April
2008. [Online]. Available: http://www.xtremedatainc.com

[7] X. Tian and K. Benkrid, “Design and implementation of a high perfor-
mance financial monte-carlo simulation engine on an fpga supercom-
puter,” Dec. 2008, pp. 81–88.

[8] J. Harkins, T. A. El-Ghazawi, E. El-Araby, and M. Huang, “Performance
of sorting algorithms on the src 6 reconfigurable computer,” in FPT,
2005, pp. 295–296.

[9] A. Beechick, S. Casselman, and L. D. Yarbrough, “Internal sorting
and FPGA,” in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, ser. Presented at the Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference, J. Schewel, P. M.
Athanas, V. M. Bove, and J. Watson, Eds., vol. 2914, Oct. 1996, pp. 66–
71.

[10] M. van der Horst and R. Mak, “Multi-dimensional parallel rank order
filtering,” Oct. 2007, pp. 627–632.

[11] B. Oster, “Nvidia advanced cuda: Optimizing to get 20x performance,”
2008, nVISION 2008 Presentation.

[12] X. Chen, J. Chadam, L. Jiang, and W. Zheng, “Convexity of the
exercise boundary of the american put option on a zero divident
asset,” vol. 18, no. 1, 2008, pp. 185–197. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-9965.2007.00328.x

536

